Class Test - 2 MA517M-Basic Programming Laboratory 29 August 2025 Name Roll No.: MA25M

- 1. Write a C++ program to determine the day of the week for any given date. [3]
 - (a) The program should take a date in the format dd mm yyyy as input.
 - (b) You should calculate the day of the week starting from the reference date 01/01/1900, which was a Monday.
 - (c) Use if statements to handle leap year conditions and days in each month.
 - (d) Use a switch statement to print the name of the day (Sunday, Monday, ..., Saturday).

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Student Scholarship System [3]

Write a C++ program to design a **Student Scholarship System**.

The program should read the following details of a student:

- 1. Marks (integer, 0–100)
- 2. Family income (in lakhs, integer)
- 3. Sports participation (character: 'Y' for Yes, 'N' for No)

Part 1 (using if or nested-if or if-else): Determine a scholarship code according to these rules:

- If marks ≥ 90 and family income $< 5 \rightarrow \text{assign code} = 1$ (Merit Scholarship).
- Else if marks ≥ 75 and sports = 'Y' \rightarrow assign code = 2 (Sports Scholarship).
- Else if family income $< 3 \rightarrow$ assign code = 3 (Need-based Scholarship).
- Otherwise \rightarrow assign code = 0 (No Scholarship).

Part 2 (using switch): Based on the scholarship code, print the type of scholarship as follows:

- ullet 1 o Merit Scholarship: Rs. 20,000
- ullet 2 o Sports Scholarship: Rs. 15,000
- ullet 3 o Need-based Scholarship: Rs. 10,000
- ullet $0 o ext{No Scholarship}$

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Train Ticket Fare Calculator [3]

Write a C++ program to design a **Train Ticket Fare Calculator**.

The program should read the following details of a passenger:

- 1. Age (integer)
- 2. Class of travel (integer: 1 = Sleeper, 2 = AC, 3 = First Class)

Part 1 (using if or nested-if or if-else): Determine a discount code according to these rules:

- If age $< 5 \rightarrow \text{code} = 0$ (Free Ticket).
- If $5 \le age \le 12 \rightarrow code = 1$ (Half Fare).
- If age $\geq 60 \rightarrow \text{code} = 2$ (Senior Citizen Discount).
- Otherwise \rightarrow code = 3 (Full Fare).

Part 2 (using switch): Based on the travel class and discount code, compute and print the final fare. The base fares are:

- Sleeper = Rs. 500
- AC = Rs. 1000
- First Class = Rs. 1500

The discounts are applied as:

- Code $0 \to \text{Free Ticket}$
- Code $1 \to \text{Half Fare}$
- Code $2 \rightarrow 30\%$ Discount
- Code $3 \rightarrow \text{No Discount}$

Class Test - 2 MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Flight Check-in System [3]

Write a C++ program to design a **Flight Check-in System**.

The program should read the following details of a passenger:

- 1. Ticket type (character: 'E' = Economy, 'B' = Business)
- 2. Baggage weight (in kg, integer)
- 3. Meal preference (character: Y' = Yes, N' = No)

Part 1 (using if or nested-if or if-else): Determine a service code according to these rules:

- If baggage weight $> 30 \rightarrow \text{code} = 3$ (Excess Baggage).
- Else if ticket = 'B' and meal = 'Y' \rightarrow code = 2 (Premium Service).
- Else if ticket = 'E' and meal = 'Y' \rightarrow code = 1 (Standard Service).
- Otherwise \rightarrow code = 0 (Basic Service).

Part 2 (using switch): Based on the service code, print the check-in message as follows:

- ullet 3 o Excess baggage charges apply
- ullet 2 ightarrow Premium check-in with meal service
- ullet 1 o Standard check-in with meal service
- ullet 0 o Basic check-in without meal

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Insurance Premium Calculator [3]

Write a C++ program to design an **Insurance Premium Calculator**.

The program should read the following details of a customer:

- 1. Age (integer)
- 2. Type of vehicle (character: 'C' = Car, 'B' = Bike, 'T' = Truck)
- 3. Accident history (character: Y' = Yes, N' = No)

Part 1 (using if or nested-if or if-else): Determine a risk code according to these rules:

- If accident history = 'Y' \rightarrow code = 3 (High Risk).
- Else if age $< 25 \rightarrow \text{code} = 2$ (Young Driver Risk).
- Else if age $\geq 60 \rightarrow \text{code} = 1$ (Senior Citizen Risk).
- Otherwise \rightarrow code = 0 (Normal Risk).

Part 2 (using switch): Based on the risk code and vehicle type, compute and print the premium. The base premiums are:

- Car = Rs. 5000
- Bike = Rs. 2000
- Truck = Rs. 8000

The risk adjustments are:

- Code $3 \rightarrow 50\%$ extra charge
- Code $2 \to 20\%$ extra charge
- Code $1 \to 15\%$ discount
- Code $0 \to \text{No adjustment}$

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Health Insurance Plan Selector [3]

Write a C++ program to design a **Health Insurance Plan Selector**.

The program should read the following details:

- 1. Age (integer)
- 2. Pre-existing disease (character: 'Y' = Yes, 'N' = No)
- 3. Plan type (character: 'B' = Basic, 'S' = Standard, 'P' = Premium)

Part 1 (using if or nested-if): Determine a risk category:

- If pre-existing disease = 'Y' \rightarrow category = 2 (High Risk).
- Else if age $< 30 \rightarrow \text{category} = 0$ (Low Risk).
- Else if age $< 60 \rightarrow \text{category} = 1 \text{ (Medium Risk)}.$
- Otherwise \rightarrow category = 2 (High Risk).

Part 2 (using switch): Based on the category and plan type, compute premium. Base premiums:

- Basic = Rs. 3000
- Standard = Rs. 5000
- Premium = Rs. 8000

Adjustments:

- Category $2 \to 40\%$ extra
- Category $1 \to 15\%$ extra
- Category $0 \to \text{No extra}$

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Travel Insurance Cost Calculator [3]

Write a C++ program to compute the cost of **Travel Insurance**.

The program should read:

- 1. Duration of travel in days (integer)
- 2. Destination type (character: 'D' = Domestic, 'I' = International)
- 3. Purpose (character: 'L' = Leisure, 'B' = Business)

Part 1 (using if or nested-if): Determine travel risk level:

- If duration $> 30 \text{ days} \rightarrow \text{risk} = 2 \text{ (Long Trip)}.$
- Else if destination = 'I' \rightarrow risk = 1 (International Risk).
- Otherwise \rightarrow risk = 0 (Normal).

Part 2 (using switch): Base premiums:

- Domestic Leisure = Rs. 2000
- Domestic Business = Rs. 3000
- International Leisure = Rs. 5000
- International Business = Rs. 7000

Adjustments:

- Risk 2 \rightarrow 25% extra
- Risk $1 \rightarrow 15\%$ extra
- Risk $0 \to \text{No extra}$

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Life Insurance Premium Calculator [3]

Write a C++ program for a Life Insurance Premium Calculator.

The program should read:

- 1. Age (integer)
- 2. Smoker status (character: 'Y' = Yes, 'N' = No)
- 3. Plan type (character: 'T' = Term, 'W' = Whole Life, 'E' = Endowment)

Part 1 (using if or nested-if): Decide eligibility code:

- If age $< 18 \rightarrow \text{code} = -1$ (Not Eligible).
- Else if smoker = 'Y' \rightarrow code = 2 (High Risk).
- Else if age $> 60 \rightarrow \text{code} = 1$ (Senior Risk).
- Otherwise \rightarrow code = 0 (Normal).

Part 2 (using switch): Base premiums:

- Term = Rs. 4000
- Whole Life = Rs. 6000
- Endowment = Rs. 8000

Adjustments:

- Code $-1 \rightarrow$ Not eligible (print message).
- Code $2 \rightarrow 50\%$ extra
- Code $1 \rightarrow 20\%$ extra
- Code $0 \to \text{No adjustment}$

Class Test - 2 MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

PDE Classifier [2]

A second-order linear PDE is of the form

$$au_{xx} + bu_{xy} + cu_{yy} = f(x, y),$$

where a, b, c are real constants.

The nature of the PDE is determined by the discriminant $\Delta = b^2 - 4ac$ as follows:

- $\Delta > 0 \rightarrow \text{Hyperbolic}$
- $\Delta = 0 \rightarrow Parabolic$
- $\Delta < 0 \rightarrow \text{Elliptic}$

switch only: Write a C++ program to read a, b, c and compute the discriminant Δ . Use only switch statements to classify the PDE type as hyperbolic, elliptic or parabolic.

Conic Section Classifier [1]

A general second-degree equation in two variables is given by

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0,$$

where a, b, c, g, f, h are real constants.

The nature of the conic is determined by the discriminant

$$\Delta = h^2 - ab$$

as follows:

- $\Delta < 0 \rightarrow$ Ellipse (if a = b and h = 0, it is a Circle)
- $\Delta = 0 \rightarrow Parabola$
- $\Delta > 0 \rightarrow \text{Hyperbola}$

using if or nested-if or if-else: Write a C++ program to read the values of a, b, h, g, f, c. Compute $\Delta = h^2 - ab$ and classify the type of conic.

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Quadrilateral Classification [1.5]

Write a C++ program to classify a quadrilateral based on its sides and angles. The program should read four sides (a, b, c, d) and one angle θ (in degrees).

using if or nested-if or if-else if-else:

- If a = b = c = d and $\theta = 90^{\circ}$, Square
- If opposite sides are equal and $\theta = 90^{\circ}$, Rectangle
- If a = b = c = d and $\theta \neq 90^{\circ}$, Rhombus
- Otherwise, General Quadrilateral

Point and Circle Position [1.5]

Write a C++ program to determine the position of a point relative to a circle. The program should read the circle's center (h, k), radius r, and a point (x, y). Compute $d^2 = (x - h)^2 + (y - k)^2$ and $\Delta = d^2 - r^2$.

- $\Delta < 0 \rightarrow$ Inside the circle
- $\Delta = 0 \rightarrow \text{On the circle}$
- $\Delta > 0 \rightarrow$ Outside the circle

Using only a switch statement, classify whether the given point (x, y) is inside the circle or on the circle, or outside the circle.

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Point and Plane Position [1]

Write a C++ program to determine the position of a point with respect to a plane. The plane equation is Ax + By + Cz + D = 0. The program should read the plane coefficients (A, B, C, D) and a point (x_0, y_0, z_0) .

Part 1 (using if or nested-if): Compute $val = Ax_0 + By_0 + Cz_0 + D$.

- If val > 0, assign Code 1 (Point lies above the plane).
- If val < 0, assign Code 2 (Point lies below the plane).
- If val = 0, assign Code 3 (Point lies on the plane).

Point and Sphere Position [2]

Write a C++ program to determine the position of a point relative to a sphere. The sphere is defined by center (h, k, l) and radius r. The program should read (h, k, l, r) and a point (x, y, z).

Compute
$$d^2 = (x - h)^2 + (y - k) + (z - l)^2$$
 and $\Delta = d^2 - r^2$.

- $\Delta < 0 \rightarrow$ Inside the Sphere
- $\Delta = 0 \rightarrow \text{On the Sphere}$
- $\Delta > 0 \rightarrow$ Outside the Sphere

Using only a switch statement, classify whether the given point (x, y, z) is inside the Sphere or on the Sphere, or outside the Sphere.

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Two Spheres Relation [3]

Write a C++ program to determine the relation between two spheres. The spheres are defined by centers (x_1, y_1, z_1) , (x_2, y_2, z_2) and radii r_1, r_2 .

Part 1 (using if or nested-if): Compute $d^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2$.

- If $d^2 > (r_1 + r_2)^2$, assign Code 1 (Spheres are separate).
- If $d^2 = (r_1 + r_2)^2$, assign Code 2 (Spheres touch externally).
- If $(r_1 r_2)^2 < d^2 < (r_1 + r_2)^2$, assign Code 3 (Spheres intersect)
- If $d^2 = (r_1 r_2)^2$, assign Code 4 (Spheres touch internally).
- If $d^2 < (r_1 r_2)^2$, assign Code 5 (One sphere lies inside the other).

Part 2 (using switch): Based on the code, print the relation between the spheres. Additionally, perform extra tasks:

• Code 0: Print "Spheres are coincident." Also display their common volume

$$V = \frac{4}{3}\pi r_1^3.$$

- Code 1: Print "Spheres touch externally." Also display the distance d.
- Code 2: Print "Spheres touch internally." Also display the smaller radius.
- Code 3: Print "Spheres intersect." Also compute and display the sum of their surface areas

$$A = 4\pi r_1^2 + 4\pi r_2^2.$$

- Code 4: Print "Spheres are separate." Also compute the gap $g = d (r_1 + r_2)$ and display it.
- Code 5: Print "One sphere lies inside the other." Also compute the volume difference

$$\Delta V = \frac{4}{3}\pi \left(r_{\rm max}^3 - r_{\rm min}^3\right).$$

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Position of Two Circles [1.5]

You are given six inputs: centers (x_1, y_1) , (x_2, y_2) and radii r_1 , r_2 of two circles.

Using if/nested if/if-else: Compute the distance d between the centers. Classify the relative position as:

- Coincident if d=0 and $r_1=r_2$,
- Touching externally if $d = r_1 + r_2$,
- Touching internally if $d = |r_1 r_2|$,
- Intersecting if $|r_1 r_2| < d < r_1 + r_2$,
- Separate if $d > r_1 + r_2$,
- One inside the other if $d < |r_1 r_2|$.

Line and Circle Position[1.5]

You are given inputs for a circle $x^2 + y^2 = r^2$ and a line ax + by + c = 0.

Using switch only: Compute the perpendicular distance $d = \frac{|c|}{\sqrt{a^2 + b^2}}$ of the line from the origin. Compare d with r and classify:

- Tangent if d-r=0,
- Secant if d-r < 0,
- No intersection if d-r>0.

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Conic Section from Cone and Plane[1.5]

A cone $z^2 = x^2 + y^2$ is cut by a plane z = mx + c.

Using if/nested if/if-elseif: Depending on the slope m, classify the intersection:

- Parabola if $m^2 = 1$,
- Ellipse if $m^2 < 1$,
- Hyperbola if $m^2 > 1$.

Sphere and Plane Position[1.5]

You are given inputs for a sphere $(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2$ and a plane ax+by+cz+d=0. Using switch Only: Compute the distance $D=\frac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2+c^2}}$ from the center to the plane. Compare D with r:

- Tangent if D r = 0,
- Secant if D-r<0,
- No intersection if D r > 0.

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Two Circles Relation [3]

Write a C++ program to determine the relation between two circles. The circles are defined by centers $(x_1, y_1), (x_2, y_2)$ and radii r_1, r_2 .

Part 1 (using if or nested-if): Compute $d^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2$.

- If $d^2 > (r_1 + r_2)^2$, assign Code 1 (Circles are separate).
- If $d^2 = (r_1 + r_2)^2$, assign Code 2 (Circles touch externally).
- If $(r_1 r_2)^2 < d^2 < (r_1 + r_2)^2$, assign Code 3 (Circles intersect).
- If $d^2 = (r_1 r_2)^2$, assign Code 4 (Circles touch internally).
- If $d^2 < (r_1 r_2)^2$, assign Code 5 (One circle lies inside the other).

Part 2 (using switch): Based on the code, print the relation between the circles. Additionally, perform extra tasks:

• Code 0: Print "Circles are coincident." Also display their common area

$$A = \pi r_1^2$$
.

• Code 1: Print "Circles are separate." Also compute the gap

$$g = \sqrt{d^2} - (r_1 + r_2).$$

- Code 2: Print "Circles touch externally." Also display the distance d.
- Code 3: Print "Circles intersect." Also compute and display the sum of their circumferences

$$C = 2\pi r_1 + 2\pi r_2.$$

- Code 4: Print "Circles touch internally." Also display the smaller radius.
- Code 5: Print "One circle lies inside the other." Also compute the area difference

$$\Delta A = \pi \left(r_{\text{max}}^2 - r_{\text{min}}^2 \right).$$

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Point and Ellipse Relation [1.5]

Write a C++ program to determine whether a point lies inside, outside, or on an ellipse. The ellipse is defined by equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

, and the point is (x_0, y_0) .

Part 1 (using if or nested-if): Compute

$$E = \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2}$$

- If E = 1, Point lies on the ellipse.
- If E < 1, Point lies inside the ellipse.
- If E > 1, Point lies outside the ellipse.

Point and Line Relation [1.5]

Write a C++ program to determine the relation between a point and a line. The line is defined by equation ax + by + c = 0, and the point is (x_0, y_0) .

using switch only): Compute $D = ax_0 + by_0 + c$.

- If D=0, Point lies on the line.
- If D > 0, Point lies on one side of the line.
- If D < 0, Point lies on the other side of the line.

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Point and Cube Relation [1.5]

Write a C++ program to determine the relation between a point and a cube. The cube is axis-aligned with center (x_c, y_c, z_c) and side length L. A point is (x_0, y_0, z_0) .

Part 1 (using if or nested-if): Compute half-length $h = \frac{L}{2}$.

- If $|x_0 x_c| \le h$, $|y_0 y_c| \le h$, and $|z_0 z_c| \le h$, Point lies inside the cube.
- If one of the equalities holds exactly, Point lies on the cube surface.
- Otherwise, Point lies outside the cube.

Line and Sphere Relation [1.5]

Write a C++ program to determine the relation between a line and a sphere. The sphere is centered at (x_c, y_c, z_c) with radius r. The line is given parametrically as

$$(x, y, z) = (x_0, y_0, z_0) + t(a, b, c), \quad t \in \mathbb{R}.$$

Substitute the line into the sphere equation to obtain a quadratic in t:

$$At^2 + Bt + C = 0.$$

where

$$A = a^2 + b^2 + c^2, \quad B = 2[a(x_0 - x_c) + b(y_0 - y_c) + c(z_0 - z_c)], \quad C = (x_0 - x_c)^2 + (y_0 - y_c)^2 + (z_0 - z_c)^2 - r^2.$$

Compute $D = B^2 - 4AC$ switch Only:

- If D > 0, Line intersects sphere at two points.
- If D = 0, Line touches sphere tangent.
- If D < 0, Line does not intersect sphere.

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Evaluation of a Function of Two Variables[1]

Write a C++ program to get two inputs from the user x and y. Print the value of the following function (using if or nested-if or if-else)

$$f(x,y) = \begin{cases} x^2 + y^2 - 2x^2y - \frac{4x^6y^2}{(x^2 + y^2)^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Point and Rectangle Relation[2]

You are given four integers that define a rectangle in the 2D coordinate plane. The rectangle is axisaligned (its sides are parallel to the x and y axes) and is specified by two opposite corners: (x_1, y_1) and (x_2, y_2) . You are also given another point (x, y).

Task: Write a C++ program to determine the position of the point (x, y) with respect to the rectangle:

- Print "Inside" if (x, y) lies strictly inside the rectangle.
- Print "Outside" if (x, y) lies strictly outside the rectangle.
- Print "On the Boundary" if (x, y) lies exactly on one of the sides of the rectangle.

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Probability Distribution Classification [1.5]

Write a C++ program to classify a probability distribution based on user input.

The user enters two inputs:

$$\mu = \text{mean}, \quad \sigma^2 = \text{variance}.$$

using if or nested-if: Check the following conditions:

- If $\sigma^2 = 0$, Degenerate distribution.
- If $\sigma^2 > 0$ and $\mu = 0$, Symmetric distribution about origin.
- If $\sigma^2 > 0$ and $\mu \neq 0$, General distribution.
- If $\sigma^2 < 0$, print "Invalid input."

Events Independence and Mutual Exclusiveness [1.5]

Write a C++ program to classify the relation between two events A and B.

The user inputs:

$$P(A)$$
, $P(B)$, $P(A \cap B)$.

switch Only: Check the following:

- If $\frac{P(A \cap B)}{P(A)P(B)} = 0$, Events are mutually exclusive.
- If $\frac{P(A \cap B)}{P(A)P(B)} = 1$, Events are independent.
- Otherwise, Events have general dependence.

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Inscribed Sphere in a Cube: Hit Probability [3]

Write a C++ program for an axis-aligned cube of side L centered at the origin. An inscribed sphere of radius R = L/2 shares the same center. The user provides a point (x, y, z).

Part 1 (using if or nested-if): Check cube membership: $|x| \le L/2$, $|y| \le L/2$, $|z| \le L/2$.

- If invalid \Rightarrow Code 0 (Outside cube).
- Else let $d^2 = x^2 + y^2 + z^2$. If $d^2 < R^2 \Rightarrow \text{Code 1}$ (Inside sphere), if $d^2 = R^2 \Rightarrow \text{Code 2}$ (On sphere), else Code 3 (In cube only).

Part 2 (using switch): Additionally compute:

- Code 0: Print "Outside cube." Also print L_{∞} distance to the cube: $\max\{0, |x| L/2, |y| L/2, |z| L/2\}$. (if allowed here)
- Code 1: Print "Inside sphere." Also print $P = \frac{\text{Vol(sphere)}}{\text{Vol(cube)}} = \frac{\frac{4}{3}\pi(L/2)^3}{L^3} = \frac{\pi}{6}$.
- Code 2: Print "On sphere." Also print surface area $4\pi(L/2)^2 = \pi L^2$.
- Code 3: Print "In cube only." Also print the shell volume $L^3 \frac{4}{3}\pi(L/2)^3$ and its probability $1 \frac{\pi}{6}$.

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

JAM Admission Eligibility with Reservation [3]

Write a C++ program to determine a student's admission eligibility in JAM based on score, All India Rank (AIR), and category.

Inputs: - S = Score (out of 100) - R = All India Rank (AIR) - C = Category code

 $1 = General, \quad 2 = OBC-NCL, \quad 3 = SC, \quad 4 = ST, \quad 5 = EWS.$

Cut-off Scores for Qualification:

General: 25,

OBC-NCL/EWS: 22,

SC/ST:15.

Part 1 (using if or nested-if): - If S < cutoff(C), assign Code 0 (Not Qualified). - Else, based on R:

- Code 1: Top Ranker if $R \leq 100$.
- Code 2: Good Rank if $101 \le R \le 1000$.
- Code 3: Moderate Rank if $1001 \le R \le 5000$.
- Code 4: Eligible only through Reservation if R > 5000 but $C \in \{2, 3, 4, 5\}$.
- Code 5: Not Eligible otherwise.

Part 2 (using switch): Based on the code, display results:

- Code 0: "Not Qualified. Score below category cutoff."
- Code 1: "Excellent! Top Ranker. High chance of direct admission."
- Code 2: "Good Rank. Likely to secure a seat in top institutes."
- Code 3: "Moderate Rank. Admission possible in lower preference."
- Code 4: "Eligible under Reservation Quota. Counseling required."
- Code 5: "Not Eligible. Better luck next time."

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

JEE Admission Eligibility with Reservation [3]

Write a C++ program to determine a candidate's JEE admission eligibility based on score, All India Rank (AIR), and category.

Inputs: - S = JEE Main score (out of 300) - R = All India Rank (AIR) - C = Category code

 $1 = General, \quad 2 = OBC-NCL, \quad 3 = SC, \quad 4 = ST, \quad 5 = EWS.$

Cut-off Scores for Qualification:

General: 90,

OBC-NCL/EWS: 75,

SC/ST:50.

Part 1 (using if or nested-if): - If S < cutoff(C), assign Code 0 (Not Qualified for JEE Advanced). - Else, based on R:

- Code 1: Top Ranker if $R \leq 500$.
- Code 2: Very Good Rank if $501 \le R \le 5000$.
- Code 3: Moderate Rank if $5001 \le R \le 20000$.
- Code 4: Eligible under Reservation Quota if R > 20000 but $C \in \{2, 3, 4, 5\}$.
- Code 5: Not Eligible otherwise.

Part 2 (using switch): Based on the code, display results:

- Code 0: "Not Qualified. Score below category cutoff."
- Code 1: "Excellent! Eligible for top IITs."
- Code 2: "Very Good! Admission possible in IITs and top NITs."
- Code 3: "Moderate Rank. Admission possible in lower NITs/IIITs."
- Code 4: "Eligible under Reservation Quota. Counseling required."
- Code 5: "Not Eligible. Better luck next time."

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

GATE Admission and Eligibility with Reservation [3]

Write a C++ program to determine a candidate's GATE admission eligibility based on marks, All India Rank (AIR), and category.

Inputs: - M = GATE marks (out of 100) - R = All India Rank (AIR) - C = Category code

 $1 = General, \quad 2 = OBC-NCL, \quad 3 = SC, \quad 4 = ST, \quad 5 = EWS.$

Cut-off Marks for Qualification (assume discipline = CS):

General: 28,

OBC-NCL/EWS: 25,

SC/ST:18.

Part 1 (using if or nested-if): - If M < cutoff(C), assign Code 0 (Not Qualified for GATE). - Else, based on R:

- Code 1: Topper if $R \leq 100$.
- Code 2: Very Good Rank if $101 \le R \le 1000$.
- Code 3: Good Rank if $1001 \le R \le 5000$.
- Code 4: Eligible under Reservation Quota if R > 5000 but $C \in \{2, 3, 4, 5\}$.
- Code 5: Not Eligible otherwise.

Part 2 (using switch): Based on the code, display results:

- Code 0: "Not Qualified. Marks below category cutoff."
- Code 1: "Excellent! Eligible for IITs and PSUs."
- Code 2: "Very Good! Admission possible in top NITs/IITs."
- Code 3: "Good! Admission possible in reputed NITs/IIITs."
- Code 4: "Eligible under Reservation Quota. Counseling required."
- Code 5: "Not Eligible for admissions."

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Mobile Recharge Plan Selection [3]

Write a C++ program to simulate a mobile recharge system.

Part 1 (using if—else and nested if): The user enters the recharge amount *amt*. Based on *amt*, decide the validity and benefits as follows:

- If amt < 100, print "Invalid recharge amount."
- If $100 \le amt < 300$, then validity = 28 days.
 - If $amt \le 150$, data = 1 GB/day.
 - Else, data = 1.5 GB/day.
- If $300 \le amt < 600$, then validity = 56 days.
 - If $amt \leq 400$, data = 2 GB/day.
 - Else, data = 2.5 GB/day + free SMS.
- If $amt \ge 600$, then validity = 84 days with unlimited calls and 3 GB/day.

Part 2 (using switch): Based on the integer division (amt/100), classify the recharge plan:

- Case 1: Print "Basic Plan."
- Case 2 or 3: Print "Standard Plan."
- Case 4 or 5: Print "Advanced Plan."
- Default: Print "Premium Plan."

Illustration:

Enter recharge amount: 450

Validity: 56 days

Data: 2.5 GB/day + Free SMS Plan Type: Advanced Plan

Class Test - 2 MA517M-Basic Programming Laboratory

29 August 2025

Name Roll No.: MA25M

Microwave Oven Cooking Simulation [3]

Write a C++ program to simulate a microwave oven cooking system.

Part 1 (using if—else and nested if): The user enters the food type (1 = Rice, 2 = Vegetables, 3 = Pizza) and the weight of the food (in grams). Based on the inputs, calculate the cooking time:

- If food type = Rice:
 - If weight ≤ 200 g, cooking time = 5 minutes.
 - Else if weight ≤ 500 g, cooking time = 10 minutes.
 - Else, cooking time = 15 minutes.
- If food type = Vegetables:
 - If weight ≤ 300 g, cooking time = 7 minutes.
 - Else, cooking time = 12 minutes.
- If food type = Pizza:
 - If weight ≤ 400 g, cooking time = 8 minutes.
 - Else, cooking time = 15 minutes.

Part 2 (using switch): The user selects the power level (1 = Low, 2 = Medium, 3 = High).

- Case 1: Multiply cooking time by 1.2.
- Case 2: Cooking time remains the same.
- Case 3: Multiply cooking time by 0.8.
- Default: Print "Invalid power level."

Illustration:

```
Enter food type (1=Rice, 2=Veg, 3=Pizza): 3
```

Enter weight in grams: 500

Enter power level (1=Low,2=Med,3=High): 2

Food: Pizza Weight: 500 g

Cooking Time: 15 minutes

Power Level: Medium

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Washing Machine Cycle Selection [3]

Write a C++ program to simulate a washing machine cycle selection. The user inputs the type of cloth (cotton, wool, or synthetic), the weight of clothes in kilograms, and the washing mode (quick, normal, or heavy).

Part 1 (using if or nested-if): Decide the water level W (in liters) and base washing time T (in minutes) as follows:

- If cloth type is cotton: $W = 10 \times \text{weight}$, T = 30.
- If cloth type is wool: $W = 7 \times \text{weight}$, T = 25.
- If cloth type is synthetic: $W = 5 \times \text{weight}$, T = 20.

Part 2 (using switch): Adjust the time T based on washing mode:

- Mode = quick: T = T 10.
- Mode = normal: T = T.
- Mode = heavy: T = T + 15.

Finally, display the selected cycle information:

- \bullet Cloth type, weight, and water level W.
- Final washing time T.

Class Test - 2

MA517M-Basic Programming Laboratory

29 August 2025

Name

Roll No.: MA25M

Movie Ticket Booking System [3]

Write a C++ program to simulate a movie ticket booking system. The user enters the following details:

- Age of the person.
- Type of seat (1. Regular, 2. Premium, or 3. VIP).
- Show timing (1. Morning, 2. Afternoon, or 3. Evening).

Part 1 (using if or nested-if): Decide the base ticket price P (in Rs) according to seat type:

- Regular seat: Rs 150.
- Premium seat: Rs 250.
- VIP seat: Rs 400.

Apply age-based discounts:

- Children below 12 years: P = 0.5P.
- Senior citizens (age ≥ 60): P = 0.7P.
- Others: P = P.

Part 2 (using switch): Add an extra show-time fee:

- Morning: Rs 0.
- Afternoon: Rs 20.
- Evening: Rs 50.

Final Output: Display the following booking details:

- Seat type and base price.
- Age and applied discount.
- Show timing and extra charge.
- Final payable amount with 18% GST.

Class Test - 2 MA517M-Basic Programming Laboratory 29 August 2025

Name Roll No.: MA25M

Flight Ticket Booking System [3]

Write a C++ program to simulate a flight ticket booking system. The user enters the following details:

- Age of the passenger.
- Travel class (1. Economy, 2. Business, or 3. First Class).
- Distance to travel (in kilometers).
- Meal preference (Veg, Non-Veg, or No Meal).

Part 1 (using if or nested-if): Decide the base fare per kilometer according to travel class:

- Economy: Rs 5 per km.
- Business: Rs 10 per km.
- First Class: Rs 20 per km.

The initial fare is computed as:

 $F = (\text{base fare per km}) \times (\text{distance})$

Apply age-based discounts using nested-if:

- Children below 12 years: F = 0.5F.
- Senior citizens (age ≥ 60): F = 0.8F.
- Others: F = F.

Part 2 (using switch): Add meal charges:

- Veg meal: Rs 200.
- Non-Veg meal: Rs 300.
- No Meal: Rs 0.

Final Output: Display the following booking details:

- Passenger age and discount applied.
- Travel class and base fare per km.
- Distance and initial fare.
- Meal choice charges
- Final payable amount with 18% GST.