Class Test - 5

MA517M-Basic Programming Laboratory

15 September 2025

Name

Roll No.: MA25M

C++ Programming Question: Heptaphobic Numbers

In number theory, a **heptaphobic number** is defined as follows:

A **positive integer** is called *heptaphobic* if:

- 1. It is **not divisible by 7**, and
- 2. No number divisible by 7 can be produced by swapping any two digits of the number (without creating leading zeros).

Examples

- 17 is heptaphobic: Not divisible by 7. Swapping digits gives 71, which is not divisible by 7. ✓
- 103 is heptaphobic: Not divisible by 7. Swapping any digits (e.g., 130, 301, etc.) does not produce a number divisible by 7. ✓
- 14 is **not** heptaphobic: It is divisible by 7. \times
- 231 is not heptaphobic: It is not divisible by 7, but swapping digits gives 213, which is divisible by 7. ×

Task

Write a C++ program to:

- 1. Read an integer N from the user.
- 2. Count and print the total number of heptaphobic numbers strictly less than N.
- 3. Your program should:
 - Use appropriate loops and conditionals.
 - Check for divisibility by 7.
 - Generate all valid digit swaps (excluding those that produce numbers with leading zeros).
 - Ensure efficiency for reasonably large N (e.g., up to 10,000).

Expected Output

Total heptaphobic numbers less than N: <count>

Class Test - 5

MA517M-Basic Programming Laboratory

15 September 2025

Name

Roll No.: MA25M

Problem: Truncatable Primes (Advanced Prime Manipulation)

A prime number is called **truncatable** if it remains prime when digits are successively removed from either the left or the right.

Definition

A number is a **truncatable prime** if:

- 1. The number itself is prime.
- 2. All numbers obtained by successively removing digits from **left to right** are prime.
- 3. All numbers obtained by successively removing digits from **right to left** are prime.

Note: The single-digit primes (2, 3, 5, and 7) are **not considered** truncatable primes.

Example

Consider the number 3797:

- Left to right truncation: 3797, 797, 97, 7 all are prime. \checkmark
- Right to left truncation: 3797, 379, 37, 3 all are prime. ✓

Therefore, 3797 is a truncatable prime.

Task

Write a program in C++ to:

- 1. Identify all prime numbers that are truncatable from both left to right and right to left.
- 2. There are exactly **eleven** such primes.
- 3. Compute and print the **sum** of these eleven truncatable primes.

Output Format

11 Truncable Prime: 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397 Sum of the eleven truncatable primes: 748317

Class Test - 5 MA517M-Basic Programming Laboratory 15 September 2025 Name Roll No.: MA25M

Problem: Circular Primes (Advanced Prime Manipulation)

A prime number is called a **circular prime** if all rotations of its digits are also prime numbers.

Definition

A number is a **circular prime** if:

- 1. The number itself is prime.
- 2. All cyclic rotations of its digits also result in prime numbers.

For example, the number 197 is a circular prime because:

- Rotations: 197, 971, 719
- All three numbers are prime.

Task

Write a program in C++ to:

- 1. Find all the circular prime numbers less than 1,000.
- 2. Count the total number of such circular primes.
- 3. Display the count.

Constraints

- You may use digit manipulation or string rotation to generate the circular permutations.
- Ensure that the prime checking is efficient for values up to one million.

Expected Output

Total number of circular primes below 1,000: <count>

Example

Below 100, the circular primes are:

Total: 13 circular primes under 100.

Class Test - 5

MA517M-Basic Programming Laboratory

15 September 2025

Name

Roll No.: MA25M

Problem: Semiprime Count Below a Limit

A **semiprime** is a natural number that is the product of two prime numbers. These two primes may be the same (in the case of a square of a prime) or different.

Definition

A number n is called a **semiprime** if:

 $n = p \times q$ where p and q are prime numbers, and $p \leq q$.

For example:

- $15 = 3 \times 5$ semiprime
- $49 = 7 \times 7$ semiprime
- $30 = 2 \times 3 \times 5$ **not** a semiprime (three prime factors)

Task

Write a C++ program to:

- 1. Count the number of positive integers less than a given number N that have exactly **two prime** factors.
- 2. That is, count all **semiprimes** less than N.

Input

No input is required. Use a constant value for $N = 10^4$ in your program.

Output Format

Number of semiprimes less than 10000: <count>

Example

For N = 100, the semiprimes are: Total = 34 semiprimes under 100.

Class Test - 5

MA517M-Basic Programming Laboratory

15 September 2025

Name

Roll No.: MA25M

Problem: Prime Subset Sums

Let S be the set of the first n prime numbers. We are interested in the number of subsets of S whose elements sum to a prime number.

Definition

Let:

$$S = \{p_1, p_2, p_3, \dots, p_n\}$$

where p_i is the *i*-th prime number.

A subset $A \subseteq S$ is considered valid if:

- 1. The sum of all elements in A is a prime number.
- 2. Subsets can include any number of elements

Task

Write a program in C++ to:

- 1. Generate the first n = 20 prime numbers.
- 2. Find all possible subsets of these primes.
- 3. Count how many of these subsets sum to a prime number.

Constraints

- The sum of the first 500 primes is 824693.
- The total number of subsets is 2^{500} , but you do not need to enumerate all explicitly.

Output Format

Number of prime-summing subsets of the first 20 primes: <count>

Example (Simplified)

Let n = 5. First 5 primes: $\{2, 3, 5, 7, 11\}$

Possible subsets whose sum is prime:

- $\{2\}$, $\{3\}$, $\{5\}$, $\{7\}$, $\{11\}$, $\{2,3\}$, $\{2,5\}$, $\{3,5\}$, $\{2,11\}$, ...
- {2,7} is not included as the sum 9 is not a prime.

Class Test - 5 MA517M-Basic Programming Laboratory 15 September 2025

Name

Roll No.: MA25M

Problem: Longest Collatz Sequence

The Collatz sequence for a given positive integer n is defined as follows:

- If n is even, the next term is n/2.
- If n is odd, the next term is 3n + 1.
- The sequence continues until it reaches the value 1.

For example, starting with 13, the sequence is:

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

which has 10 terms.

Task:

Write a C++ program to find the starting number under one million that produces the longest Collatz sequence (using while and if).

Your program should:

- 1. Iterate through all starting numbers from 1 up to (but not including) 1,000.
- 2. For each starting number, generate the Collatz sequence and count the number of terms.
- 3. Keep track of the starting number that produces the longest sequence.
- 4. Output the starting number with the longest Collatz sequence and the length of that sequence.

Requirements:

- Use appropriate loops, pointers, arrays and conditionals.
- Implement the logic using if and while if you wish.
- Optimize your program to run efficiently (e.g., consider caching lengths of sequences to avoid recomputation).
- Properly format your output.

Example Output:

If the upper limit is set to 14, the program output should be:

Enter the upper limit: 14

Starting number with longest Collatz sequence under 14 is 9

Length of the sequence: 20

Class Test - 5

MA517M-Basic Programming Laboratory

15 September 2025

Name

Roll No.: MA25M

Problem: Curious Numbers (Digit Factorials)

A number is called a curious number if it is equal to the sum of the factorials of its digits.

Definition

A number n is curious if:

$$n = \sum_{\text{digits } d \text{ of } n} d!$$

For example, 145 is a curious number because:

$$1! + 4! + 5! = 1 + 24 + 120 = 145$$

Task

Write a program in C++ to:

- 1. Find all curious numbers < 50000.
- 2. Calculate the sum of all such curious numbers (excluding 1 and 2, which are not considered sums).
- 3. Display the result.

Expected Output

Sum of all curious numbers is: <sum>

Example

Known curious numbers include:

145 since
$$1! + 4! + 5! = 145$$

and

$$40585$$
 since $4! + 0! + 5! + 8! + 5! = 40585$