INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI DEPARTMENT OF MATHEMATICS AND STATISTICS

Class Test - 6

MA517M-Basic Programming Laboratory

22 September 2025

Name

Roll No.: MA25M

Problem (with Functions, Arrays, and Pointers)

In number theory, a **heptaphobic number** is defined as follows:

A **positive integer** is called *heptaphobic* if:

- 1. It is **not divisible by 7**, and
- 2. No number divisible by 7 can be produced by swapping any two digits of the number (without creating leading zeros).

Examples

- 17 is heptaphobic: Not divisible by 7. Swapping digits gives 71, which is not divisible by 7. ✓
- 103 is heptaphobic: Not divisible by 7. Swapping digits (130, 301, etc.) does not give a multiple of 7. ✓
- 14 is **not** heptaphobic: It is divisible by 7. \times
- 231 is not heptaphobic: Not divisible by 7, but swapping gives 213, which is divisible by 7. ×

Task

Write a modular C++ program that makes use of functions, arrays, and pointers to:

- 1. Read an integer N from the user.
- 2. Count and print the total number of heptaphobic numbers strictly less than N.
- 3. Your program must:
 - Store the digits of a number in an **array**.
 - Use **functions** for tasks such as:
 - (a) Checking divisibility by 7.
 - (b) Generating all valid digit swaps (excluding numbers with leading zeros).
 - (c) Checking if a number is heptaphobic.
 - Pass arrays to functions using **pointers**.
 - Ensure efficiency for reasonably large values of N (e.g., up to 10,000).

Expected Output

Total heptaphobic numbers less than \mathbb{N} : <count>

- 1. Write a C++ program to add two vectors using pointers
- 2. Write a C++ function to find the GCD and LCM of two numbers using functions (you can also use recursion). Use it to find gcd of 4 numbers.

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI DEPARTMENT OF MATHEMATICS AND STATISTICS

Class Test - 6

MA517M-Basic Programming Laboratory

22 September 2025

Name

Roll No.: MA25M

Truncatable Primes (Using Functions, Arrays, and Pointers)

A prime number is called **truncatable** if it remains prime when digits are successively removed from either the left or the right.

Definition

A number is a **truncatable prime** if:

- 1. The number itself is prime.
- 2. All numbers obtained by successively removing digits from **left to right** are prime.
- 3. All numbers obtained by successively removing digits from **right to left** are prime.

Note: The single-digit primes (2, 3, 5, and 7) are **not considered** truncatable primes.

Example

Consider the number 3797:

- Left to right truncation: 3797, 797, 97, 7 all are prime. \checkmark
- Right to left truncation: 3797, 379, 37, 3 all are prime. \checkmark

Therefore, 3797 is a truncatable prime.

Task

Write a modular C++ program that makes use of functions, arrays, and pointers to:

- 1. Implement a function to check whether a number is prime.
- 2. Store the digits of a number in an **array**, and use **pointers** to pass the array to helper functions.
- 3. Implement separate functions to:
 - (a) Truncate digits from left to right using the digit array.
 - (b) Truncate digits from right to left using the digit array.
 - (c) Check if a number is truncatable prime (using the above functions).
- 4. Identify all numbers that are truncatable primes (there are exactly **eleven** such primes).
- 5. Compute and print the **sum** of these eleven truncatable primes.

Output Format

11 Truncatable Primes: 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397 Sum of the eleven truncatable primes: 748317

- 1. Write a C++ program to add two vectors using pointers
- 2. Write a C++ function to find the GCD and LCM of two numbers using functions (you can also use recursion). Use it to find gcd of 4 numbers.

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI DEPARTMENT OF MATHEMATICS AND STATISTICS

Class Test - 6 MA5

MA517M-Basic Programming Laboratory

22 September 2025

Name

Roll No.: MA25M

Circular Primes (Using Functions, Arrays, and Pointers)

A prime number is called a **circular prime** if all rotations of its digits are also prime numbers.

Definition

A number is a **circular prime** if:

- 1. The number itself is prime.
- 2. All cyclic rotations of its digits also result in prime numbers.

For example, the number 197 is a circular prime because:

- Rotations: 197, 971, 719
- All three numbers are prime.

Task

Write a modular C++ program that makes use of functions, arrays, and pointers to:

- 1. Implement a function to check whether a number is prime.
- 2. Extract and store the digits of a number in an **array**, and pass this array to functions using **pointers**.
- 3. Implement a function to generate all **cyclic rotations** of a number using the digit array and pointers.
- 4. Implement a function that checks whether a number is a **circular prime** (using prime-checking and rotations).
- 5. Find all circular prime numbers less than 1,000.
- 6. Count and display the total number of circular primes found.

Constraints

- Use efficient prime checking, suitable for values up to one million.
- Use arrays and pointer-based digit manipulation for generating rotations.

Expected Output

Total number of circular primes below 1,000: <count>

Example

Below 100, the circular primes are:

$$2,\ 3,\ 5,\ 7,\ 11,\ 13,\ 17,\ 31,\ 37,\ 71,\ 73,\ 79,\ 97$$

Total: 13 circular primes under 100.

- 1. Write a C++ program to add two vectors using pointers
- 2. Write a C++ function to find the GCD and LCM of two numbers using functions (you can also use recursion). Use it to find gcd of 4 numbers.