
INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

Class Test - 7 MA517M-Basic Programming Laboratory 29 September 2025

Name Roll No.: MA25M

Recursive Maze Solver

A robot is placed in a 2D grid maze of size N ×M . Some cells are blocked (value 1), some are open

(value 0). The robot can move only right or down.

Your task as a group is to:

1. Recursively count all possible paths from the top-left cell (0, 0) to the bottom-right cell

(N − 1,M − 1).

2. Recursively print one valid path.

3. Represent the maze using a C++ structure for each cell:

struct Cell {

int x, y; // Coordinates

bool blocked; // true if the cell is blocked

};

4. Display the maze with the path marked.

Input Example

Grid (0 = open, 1 = blocked):

0 0 0

0 1 0

0 0 0

Expected Output Example

Total paths: 2

Path example: (0,0) -> (0,1) -> (0,2) -> (1,2) -> (2,2)

Hints

• Base Case: Reached destination (N − 1,M − 1) ⇒ 1 path

• Blocked cell ⇒ 0 paths

• Recursive formula for counting paths:

paths(i, j) = paths(i+ 1, j) + paths(i, j + 1)

• For printing a path, maintain a vector of cells visited and backtrack recursively.

• Use a struct Cell to store coordinates and blocked status.

Group Task Distribution (Suggested)

1. Student 1: Implement recursive counting of paths.

2. Student 2: Implement recursive path printing.

3. Student 3: Input maze creation, validation, and structure initialization.

4. Student 4: Display maze with marked path, handle output formatting.

Notes

• Do not use loops for path counting/printing; recursion must be used.

• You may use loops only for input or displaying the maze.

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

Class Test - 7 MA517M-Basic Programming Laboratory 29 September 2025

Name Roll No.: MA25M

Recursive Treasure Hunt

A treasure hunter is in a 2D grid of size N ×M . Each cell contains some gold (non-negative integer).

Some cells may be blocked (cannot step on). The hunter can move right, down, or diagonally

(right-down).

Your group task:

1. Recursively find the maximum gold collectible from the top-left cell (0, 0) to the bottom-right

cell (N − 1,M − 1).

2. Recursively print one path that collects this maximum gold.

3. Represent the grid using a C++ structure for each cell:

struct Cell {

int x, y; // Coordinates

int gold; // Gold in this cell (0 if blocked)

bool blocked; // true if cell cannot be entered

};

4. Display the grid with the path marked.

Input Example

Grid (0 = blocked, numbers = gold):

2 3 0

0 4 5

1 0 2

Expected Output Example

Maximum gold: 12

Path example: (0,0) -> (0,1) -> (1,2) -> (2,2)

Hints

• Base Case: Reached destination (N − 1,M − 1) ⇒ return gold in this cell

• Blocked cell ⇒ return 0

• Recursive formula for maximum gold:

gold = cell.gold+max(collectGold(i+ 1, j), collectGold(i, j + 1), collectGold(i+ 1, j + 1))

• For printing the path, maintain a vector of Cell and backtrack recursively.

Group Task Distribution (Suggested)

1. Student 1: Recursive function to compute maximum gold.

2. Student 2: Recursive function to print one path with maximum gold.

3. Student 3: Input grid creation and validation using Cell structures.

4. Student 4: Display grid, print collected gold, and format output.

Notes

• Do not use loops for gold collection/path finding; recursion must be used.

• Loops may be used only for input or displaying the grid.

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

Class Test - 7 MA517M-Basic Programming Laboratory 29 September 2025

Name Roll No.: MA25M

Island Counting problem

You are given a 2D grid map of size N ×M consisting of 0s (water) and 1s (land). An island is a

group of connected 1s (land) connected horizontally, vertically, or diagonally.

Your group task:

1. Recursively count the total number of islands in the grid.

2. Recursively mark all the cells of one island for visualization.

3. Represent the grid using a C++ structure for each cell:

struct Cell {

int x, y; // Coordinates

bool isLand; // true if cell is land

bool visited; // true if visited during recursion

};

4. Display the grid with one island highlighted (optional).

Input Example

Grid (0 = water, 1 = land):

1 1 0

0 1 0

1 0 1

Expected Output Example

Total islands: 3

Cells of first island: (0,0), (0,1), (1,1)

Hints

• Base Case: Cell is out of bounds, water, or already visited → return

• Recursive case: For a land cell, mark it visited, then recursively explore all 8 neighbors (hori-

zontal, vertical, diagonal)

• Use a vector of Cell to record the coordinates of one island

Group Task Distribution (Suggested)

1. Student 1: Implement recursive function to count total islands.

2. Student 2: Implement recursive function to record and print cells of one island.

3. Student 3: Input grid creation and structure initialization.

4. Student 4: Display grid, format output, and optionally visualize islands.

Notes

• Do not use loops for island counting; recursion must be used.

• Loops may be used only for input or displaying the grid.

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

Class Test - 7 MA517M-Basic Programming Laboratory 29 September 2025

Name Roll No.: MA25M

Josephus Problem

Scenario:

A cloud computing system schedules n tasks in a circular queue. Due to limited resources, every

kth task is terminated to free up CPU time. The system administrator wants to know which task will

survive the elimination process to ensure critical operations continue uninterrupted.

Evolution to Programming Problem:

1. Each task is assigned a unique ID from 1 to n. 2. Starting from the first task, every kth task is

removed in order until only one remains. 3. The safe task ID must be computed efficiently.

Recursive Relation:

Let f(n, k) be the safe task position among n tasks with step k:

f(1, k) = 0, f(n, k) = (f(n− 1, k) + k) mod n

Add 1 at the end to shift from 0-based to 1-based indexing.

Programming Tasks:

1. Implement a recursive function to compute the surviving task ID.

2. (Optional) Use a struct or pointer-based array to store the elimination order for analysis.

3. Write a main() function to take inputs n and k, and output the surviving task.

Example: Input: n = 7 tasks, k = 3 Output: Task 4 survives

Fibonacci Problem

Scenario:

A wildlife researcher is monitoring the population of a species in a reserve. The population grows

according to Fibonacci-like patterns: each new generation is the sum of the previous two generations.

The researcher is particularly interested in even-numbered populations because only these can be

divided evenly among sub-regions for conservation studies.

Evolution to Programming Problem:

1. Let F (n) be the population at generation n:

F (0) = 0, F (1) = 1, F (n) = F (n− 1) + F (n− 2)

2. Track each generation’s population along with its parity (even/odd). 3. Compute the sum of

all even populations up to generation N .

Structure Definition:

struct FibInfo {

int value; // population

bool isEven; // true if population is even

};

Programming Tasks:

1. Implement a recursive function to generate Fibonacci numbers up to N .

2. Store each generation’s population and parity in a pointer-based dynamic array of FibInfo.

3. Calculate and output the sum of even populations.

4. Display each generation’s population along with its parity.

Example: Input: N = 10 generations Output:

Fib(0) = 0 -> Even

Fib(1) = 1 -> Odd

Fib(2) = 1 -> Odd

Fib(3) = 2 -> Even

Fib(4) = 3 -> Odd

Fib(5) = 5 -> Odd

Fib(6) = 8 -> Even

Fib(7) = 13 -> Odd

Fib(8) = 21 -> Odd

Fib(9) = 34 -> Even

Fib(10) = 55 -> Odd

Sum of even populations = 44

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

Class Test - 7 MA517M-Basic Programming Laboratory 29 September 2025

Name Roll No.: MA25M

Recursive Digit Sum

A financial system handles extremely large transaction IDs. To quickly verify data integrity, the

system computes a checksum by summing the digits of each transaction ID. For very large numbers,

this operation must be implemented recursively to handle numbers of arbitrary size efficiently.

Evolution to Programming Problem:

1. Given a number n, compute the sum of its digits recursively. 2. Store the number and its digit

sum in a structure for reporting or logging purposes.

Recursive Formula:

F (n) =

n n < 10

F (⌊n/10⌋) + (n mod 10) n ≥ 10

Structure Definition:

struct DigitSumInfo {

long long number;

int sum;

};

Programming Tasks:

1. Implement a recursive function to compute the digit sum of a number.

2. Use a pointer-based structure to store the number and its digit sum.

3. Display the number along with its computed digit sum.

Example: Input: n = 987654 Output: Number: 987654, Digit Sum: 39

Collatz Sequence

In a research simulation of population dynamics, the population count evolves according to a rule-

based system. For even populations, it halves (resource scarcity), and for odd populations, it increases

following a nonlinear growth rule. Researchers want to study how many steps it takes for a population

to reach stability (1). This is modeled by the Collatz sequence.

Evolution to Programming Problem:

1. Implement the Collatz sequence recursively:

n →

n/2 if n = 2k

3n+ 1 if n = 2k + 1
, k ∈ N

2. Count the length of the sequence until n = 1. 3. Store the starting number and the length of

the sequence in a structure for reporting.

Structure Definition:

struct CollatzInfo {

long long number;

int length;

};

Programming Tasks:

1. Implement a recursive function to compute the length of the Collatz sequence for a given number.

2. Store each number and its sequence length in a pointer-based structure.

3. Display the number along with the length of its Collatz sequence.

Example: Input: n = 6 Collatz sequence: 6, 3, 10, 5, 16, 8, 4, 2, 1 Output: Number: 6,

Sequence Length: 9

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

Class Test - 7 MA517M-Basic Programming Laboratory 29 September 2025

Name Roll No.: MA25M

Recursive Fast Exponentiation

You are asked to design a recursive program in C++ that calculates the power of a number efficiently.

Use the following structure to represent the input:

struct Power {

int base;

int exponent;

};

Write a recursive function power(int base, int exp) that:

(a) Returns 1 if the exponent is 0.

(b) If the exponent is even, compute the result as:

power(base, exp) =
(
power(base, exp/2)

)2
(c) If the exponent is odd, computes the result as:

power(base, exp) = base× power(base, exp− 1)

Example

• Input: base = 2, exponent = 10

• Output: 210 = 1024

Instructions for Students

1. Work in groups of 4.

2. Store the values of base and exponent in the given structure.

3. Implement the recursive function as described above.

4. Test your program with different inputs (small and large exponents).

Fibonacci Problem

Scenario:

A wildlife researcher is monitoring the population of a species in a reserve. The population grows

according to Fibonacci-like patterns: each new generation is the sum of the previous two generations.

The researcher is particularly interested in even-numbered populations because only these can be

divided evenly among sub-regions for conservation studies.

Evolution to Programming Problem:

1. Let F (n) be the population at generation n:

F (0) = 0, F (1) = 1, F (n) = F (n− 1) + F (n− 2)

2. Track each generation’s population along with its parity (even/odd). 3. Compute the sum of

all even populations up to generation N .

Structure Definition:

struct FibInfo {

int value; // population

bool isEven; // true if population is even

};

Programming Tasks:

1. Implement a recursive function to generate Fibonacci numbers up to N .

2. Store each generation’s population and parity in a pointer-based dynamic array of FibInfo.

3. Calculate and output the sum of even populations.

4. Display each generation’s population along with its parity.

Example: Input: N = 10 generations Output:

Fib(0) = 0 -> Even

Fib(1) = 1 -> Odd

Fib(2) = 1 -> Odd

Fib(3) = 2 -> Even

Fib(4) = 3 -> Odd

Fib(5) = 5 -> Odd

Fib(6) = 8 -> Even

Fib(7) = 13 -> Odd

Fib(8) = 21 -> Odd

Fib(9) = 34 -> Even

Fib(10) = 55 -> Odd

Sum of even populations = 44

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

Class Test - 7 MA517M-Basic Programming Laboratory 29 September 2025

Name Roll No.: MA25M

Recursive Polynomial Operations

A polynomial is represented as:

P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

You are asked to manage polynomials using structures, pointers, and recursion.

1. Define a struct called Polynomial with the following fields:

struct Polynomial {

int* coefficients;

int degree;

};

2. Implement a recursive function printPolynomial to print the polynomial in standard form.

3. Implement a recursive function evaluatePolynomial that calculates the value of the poly-

nomial at a given x.

4. Implement a function using pointers setCoefficient to dynamically assign the coefficient

of a given power.

1. Recursive Formula for Polynomial Evaluation

Let E(n, x) denote the value of the polynomial using coefficients up to degree n. The recursion is:

E(n, x) =

0 if n < 0

an · xn + E(n− 1, x) if n ≥ 0

• Base case: E(−1, x) = 0, i.e., no terms left.

• Recursive step: Take the current term anx
n and add the evaluation of all lower-degree terms.

2. Recursive Formula for Polynomial Printing

Let P (n) denote the polynomial string up to degree n. The recursion is:

P (n) =

”” if n < 0

P (n− 1) + formatTerm(an, n) if n ≥ 0

Where formatTerm(an, n) is defined as:

formatTerm(an, n) =

”” if an = 0

(sign) · |an| · xn otherwise

Example:

• Polynomial: 3x3 + 5x2 − 2x+ 7

• printPolynomial() should output: 3x^3 + 5x^2 - 2x + 7

• evaluatePolynomial(2) should return: 3 · 23 + 5 · 22 − 2 · 2 + 7 = 39

Hints:

• Use a Polynomial struct with a dynamically allocated array for coefficients.

• Recursion can be used to traverse the array for printing and evaluating.

• Use new to allocate the array of coefficients dynamically.

