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PROGRAMMING: WHAT?




PROGRAMMING: WHAT?

A way to instruct the computer to perform various tasks

Addition of two numbers
Simple Interest
Exa m p I es . Probability
y Simulation
Microwave Oven
Washing Machine
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PROGRAMMING: WHAT?

~Programming is the process of desighing and creating
instructions (code) that a computer can execute to perform
specific tasks or solve problems.
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CORE CONCEPTS OF PROGRAMMING

Data Type Numbers, Text, etc

Control Flow If — else, for, while loops

Functions and Modularity

Algorithms and Logic The flow and structure of the instructions.

Languages C, C++, Python, JAVA etc
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PROGRAMMING: WHERE?




INTERDISCIPLINARY RESEARCH

§ All Engineering Field
§ Image Processing

i Electro Chemistry

i Physics

i Fluid Mechanics

§ Atmospheric Science
i Plant Physiology

§ Human Physiology

§ Medical

i Financial

§ ...
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EXAMPLES
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EXAMPLES: ROBOTIC PIPE WELDING
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TRENDING TECHNOLOGIES

Autonomous Things Example:
Drone examines a large field, ready to harvest
nstruct an autonomous vehicle to harvest | \

Harvested crops to packaging area
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Al

Artificial Intelligence
= Study of intelligent agents

= A system’s ability to correctly interpret external data, to learn from such
data, use those learnings to achieve specific goals and tasks through
flexible adaption

ARTIFICIAL Al: Intelligence demonstrated by
machines rather than humans or animals.

INTELLIGENCE

Early artificial intelligence MACH'NE ML: Giving comp the skills to le:

stirs excitement LEARNING without explic i[ programming
Machine learning begins DEEP

to flourish DL:

LEARNING

Deep learning breakthroughs
drive Al boom

¥ B

1950's 1960’s 1970’s 1980's 1990’s 2000’s 2010's
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ML

Machine Learning

M a c h I n e Lea rn I n g Unsupewii&d Faa.:::?:u;;uun Mac:li;:ﬁlte::ing Grouping of objects
= St
S FI T bR et HOoO®
e RN el * = A
[Machine Learning is the] field of study that gives computers the § =] i i‘?x
ability to learn without being explicitly programmed. - =

—Arthur Samuel, 1959 - } - : ‘?
_—J s ‘/

A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T,

as measured by P, improves with experience E.
—Tom Mitchell, 1997

"Algorithms that parse data, learn from that data, and

then apply what theyve learned to make informed
decisfions”

https://www.zendesk.com/
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MY EXPERIENCES

Manhole Problem

MPhD & PostDoc: IIT Madras, TU
Kaiserslautern, Fraunhofer ITWM

» Sewage Water

X/

** Manhole Problem

» Darcy Flow Company: Schott Glass
> Schott Glass Steak Formation

X/

s Streak Formation

> Finite PointSet Method

Darcy Flow

Free
Left wall Surface
Right wall
U
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Critical Thinking and Solving Real-World
Problems:

Creativity and Innovation
Career Opportunities
Automation

Simulation and Experimentation

Panchatcharam M

PROGRAMMING: WHY?

Applications in science, engineering, business,
entertainment, healthcare, and more

Develop new algorithms, conduct data analysis,
and build artificial intelligence

Technology, Data Science, Finance etc

Enable computers to perform repetitive or complex
tasks efficiently

Model physical phenomena (e.g., solving PDEs,
weather forecasting)
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PROGRAMMING: WHY?

~Computers are fast

~Cheap Labor for us: In fact, a slave to human
~ No strike, No hike

~Can work 24x7

~ No Rest, No 8 hour work rules

~Can solve complicated problem
- Cryptography, bitcoins
- See earlier applications

Panchatcharam M
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PROGRAMMING: QUOTES?

“Whether you want to uncover the secrets of the universe, or you just want to
pursue a career in the 21st century, basic computer programming is an essential
skill to learn.”

—Stephen Hawking, Theoretical Physicist, Cosmologist, Author

“Learning to write programs stretches your mind, and helps you think better,
creates a way of thinking about things that | think is helpful in all domains.”
—Bill Gates, Co-Chairman, Bill & Melinda Gates Foundation, Co-Founder, Microsoft
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PROGRAMMING: QUOTES?

“We salute the coders, designers, and programmers already hard at work at their
desks, and we encourage every student who can’t decide whether to take that

computer science class to give it a try.”
—NMichael Bloomberg. Former Mayor, New York City

“Whether we’re fighting climate change or going to space, everything is moved
forward by computers, and we don’t have enough people who can code. Teaching
young people to code early on can help build skills and confidence and energize the
classroom with learning-by-doing opportunities.”

—Richard Branson, Founder, Virgin Group

August 2025 22
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PROGRAMMING: QUOTES?

“Learning to code is learning to create and innovate.”
—Enda Kenny, Taoiseach, Ireland

“Learning to code is useful no matter what your career ambitions are.”
—Arianna Huffington, Founder, The Huffington Post

Panchatcharam M
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PROGRAMMING: HOW?




BEGINNERS

» Used to skip the fundamentals and jump directly to
the shiny tools, catch words, technology
 ltis vain
« Can'’t perform well in interview
« Can’t develop a project

* Never jump into program unless you are clear with
fundamentals

Panchatcharam M
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BEGINNERS

* Choose a programming language you are most
comfortable with

« Can be C, C++, Fortran, Python etc

« Understand the basic concepts of the languages
¢ Syntax
« Variables

Conditionals

Operators

Loops

Panchatcharam M
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BEGINNERS

e Don'’t

* Try learn multiple language at the same time
« Keep on Jumping from one language to another

« Stick with one language

» Learning the first language is difficult

* Practice every day

» Write programs every single day until you get
familiar with it

August 2025 27
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BEGINNERS

Don’t

* Learn all theories and then jump to program

» Learn two hours of conceptual and spend an hour in
practical aspects of the learning
» Practice! Practice and Do more Practice!

« Create an application project based on the basics you have
learnt

« Simple program: Calculator application

« Use Google, Stackoverflow, and other online resources
when you commit mistakes

 Participate in Hackathon and competitive programming

Panchatcharam M
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DATA STRUCTURES AND ALGORITHMS

Never jump into program unless you understand algorithms and
data structure

These two are heart of programming

DATA STRUCTURES

AND

ALGORITHM ANALYSIS

Cr
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How to develop code

Remember the Understand the
syntax problem

|dentify inputs |dentify outputs

Identify the Draw a picture
approach to on how to solve?
solve problems Flowchart?

30



HOW TO DEVELOP CODE

Write your own algorithm in a paper. Need not be efficient

Create Unit tests and see whether your algorithm provides desired output for given input
Select a programming language of your choice

Convert your algorithm to a code format using the programming language

Test your unit test

Mistakes should/must be there

Debug your code and retest until desired output is obtained

Improve the algorithm, think to make an efficient algorithm and code
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DO’S AND DON'TS

\/l=sei2= Never memorize any code instead understand the logic
Look Never look at a problem in a big picture
Side=lceoiin - Break down the problem into pieces

Try Try to solve each pieces

Practice Practice! More Practice! More and More Practice!

Blelafi orzlaile . Don't panic while making mistakes, learn from it

Panchatcharam M August 2025 32



Compiler vs Interpreter
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COMPUTER BASICS



Computer Systems

@ Developed by Academia and Industry

Oy

Daily usage: General Purpose Machines
Q Specific applications: Special Purpose Machines
&P

Defined through their interfaces at a number of layered abstraction levels

Panchatcharam M
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Application Programs

S £

High-Level Languages: Set of Machine Instructions

Language Architecture: Interface between Application Program and
High-Level Language

Instruction set Architecture: Interface between machine instructions
set and runtime, 1/O Control

Panchatcharam M
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Four Basic Points

Structure: Interconnection of various hardware components

Organization Dynamic Interplay and Management of various components

Implementation: Design of hardware components

Performance: Behaviour of the computer system

Panchatcharam M
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Hardware

« Hardware: Any Physical device used in or with machines

This Photo by Unknown Author is licensed under CC BY-SA
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https://en.wikipedia.org/wiki/Computer_mouse
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Software

« Software: Collection of Code Installed on computers' hard drive

) Office

FEFPEEFRL

- i

CPFndon=T ) U b un tU ®

y
//
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Moore’s Law

 Billions of Calculations in one second

. SuperCochuters: Quadrillions of instructions 120 Years of Moore’s Law
per secon

« Computer Programs: Computer processes data
under the control of sequences of instructions

« Guides the computers through ordered actions
« Guided by people: Programmers

« Hardware cost decreases rapidly

« Capacities of computers doubles every year

« Number of transistors in dense integrated
circuit doubles every year

 SSI,LSI,VLSI,VVLSI,UVLSI,WSI,SOC,3D-IC

Panchatcharam M
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Machine Language

Computer can directly understand only its own
ML

Defined by its hardware design

Strings of Numbers (0s and 1s)

Machine Dependent

Difficult for human to understand

Slow and tedious for a programmer

* It is the lowest-level

programming language which
only the specific computer can
understand, consists of strings of
numbers and almost impossible
for humans to understand.

0DOOE00 0000 G061 0001 1010 OOL0 D001 0004 0128
0DOOO10 00O G016 OO OO28 000D DO1E OO00 02O
0000020 000G ©901 0004 D000 000D DOO0 G000 B0

3 000 DO00 00O 0204
0000040 0004 8384 0084 c7c8 00cB 4748 0048 =8e9
0000050 00=9 Fe

QEO0LlE0 Q000 0000 0000 D000 0QOQ DOEE QOO0 QQo.

W

0000130 200 0000 QEE2 0000 CQE8 BE0e Q0@
200013




Assemb|y | 3 nguage * It is a low level programming

language that allows a user to
Strings of numbers el e write a prog.ram USing .
SO abbreviations alphanumeric mnemonic codes
instead of numeric codes for a
set of instructions. It can be
o translated using an assembler

Abbreviations are . .
A Translator into machine language
programs, AL to ML

[P
s Bx52acie: movl  T3P6562(¥ebx), ¥eax

| Bx52acTc: movl  %eax, -20(%ebp)

7 Bx52ac?f: movl 50, (%edi,%eax)

71 Bx52acB6: testl %esi, %esi

72| Bx52ac88: Je Bx52ad21 HEE
[UINavigationController _updateScrollViewFromViewController:
toViewController:] + 425

72 Bx52acBe: movl  T7306542(%ebx), %eax

Code is quite easier

Need more | Bx52ac94: movl  (%edi,¥eax), ¥eax
than ML to : : f 75| Bx52ac97: movl %eax, -24(%ebp)
derstand b Instructions tor 7 Bx52ac9a: movl  7212558(%ebx), %eax
unaerstan \ . lest task 77| Bx52aca®: movl %eax, 4(%esp)
human simplest tas 78 Bx52acad4: movl Hesi, (%esp)
79 Bx52aca’: calll ©x9bffes ; symbol stub for:

objc_msgSend
| @x52acac: movl  %eax, -28(%ebp)
1l

MOV AL, 1h ; Load AL with immediate wvalue 1 D Ox52acaf: movl edx, -32(%ebp) e
Bx52acb?: movl T7211062(%ebx), %eax

' ' . a2
MOV CL, 2h ; Load CL with immediate value 2 = Bx52ach8: movl %eax, 4(%esp)
84 ExSZactL:E: :lf':r]._' %esi, (%esp)

MOV DL, 3h ; Load DL with immediate value 3 =~~~ %

P N R T R —




Natural _
Language High-
Level

High Level Language

Low-

Level
Machine

Language

* It is a programming language

that is understood by Single Statement to
accomplish substantial tasks
humans/programmers. It can be

translated using d translator, for Compilers: Translator program

example, compiler or HLL to ML
High-level

interpreters, into a simple - e
machine |anguage that C.,Pascal, Java, Python... Easy to understand
computer can understand and el

execute. It does not depend on
specific computer.

Variables, Arrays, Objects,

Loop

Low-level Boolean, Functions, threads,
programming language abstract
Machine/Assembly language
44




High Level Language

It is @ programming language that is understood by humans/programmers.
It can be translate usincl; a translator, For example, compiler or
interpreters, into a simple machine language that computer can
understand and execute. It does not depend on specific computer.

High-level
#include <iostream> programming language
) C, Pascal, Java, Python...
using namepsace std;
lnt maln () Ahracadahra*
{ , Compiler
int a=3,b=4;
cout<<"Hel lo"<K<Kendl;
cout<<<a+b<<Lendl;
Low-level
retun U; programming language
}

Machine/Assembly language

Panchatcharam M August 2025
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COMPILER



Compiler

= A compiler is a program that reads a
program written in the high-level Source
language and converts it into the Coe
machine or low-level language and
reports the errors present in the
program.

It converts the entire source code in one go or could take

multiple passes to do so, but at last, the user gets the Viachine Cod
compiled code which is ready to execute. achine Lode

Output Code

August 2025 47
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Compiler

How Compiler Works

Source Code @~ =——»  Compiler =—» Machine Code ’_’ Output

£ Scala

Panchatcharam M
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6 Phases Compiler

Equivalent

N,
CQ Grammar Source Code Q Target code

Panchatcharam M
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Lexical Analyzer (Scanning)

Equivalent

N\
CQ Grammar Source Code a Target code

Panchatcharam M

August 2025 50



Lexical Analyzer (Scanning)

Equivalent

N\
CQ Grammar Source Code a Target code

Panchatcharam M

August 2025 51



Syntax Analyzer (Parser))

o0 - i
o. o. Equivalent

®+ ®- Source Code a Target code

Tokens generated in Lexical analyzer phase are against grammar of programming language.
Checks whether the expressions are syntactically correct or not. It makes parse trees

Panchatcharam M
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Syntax Analyzer (Parser)

Equivalent
Source Code

Input: int = x 3; Error will be thrown. Missing semicolon or mismatched brackets

Panchatcharam M
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Semantic Analyzer (Meaning)

Rules @ Redundant

Q Equivalent o
CQ Grammar Source Code a Target code

Checks whether the expressions and statements generated by previous phase
follow the rule of programming language or not. Creates annotated parse trees

Panchatcharam M
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Semantic Analyzer (Meaning)

Rules @ Redundant

m Equivalent o
CQ Grammar Source Code a Target code

Input: x=5+"hello”. Error as string and integer addition is an error. Type
mismatch or undeclared variable.

Panchatcharam M
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Intermediate Code Generation (IR)

Rules ‘O’ Redundant

CQ Equivalent o
Q Grammar Source Code a Target code

Equivalent intermediate code of the source code

Panchatcharam M
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Intermediate Code Generation (IR)

Rules ‘O’ Redundant

CQ Equivalent o
Q Grammar Source Code a Target code

a=b+c, IR : t1=b+c, a=t1. Optimization and Portability

Panchatcharam M
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Code Optimizer

@ Redundant

Equivalent
Source Code

Improves the space and time requirements of the program.
Eliminates the redundant code, unused variables, dead code.

Panchatcharam M
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Code Optimizer

@ Redundant

Equivalent
Source Code

int a=6*0, is optimized by a=0; (Not always guaranteed)

Panchatcharam M
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Code Generator

@ Redundant

Equivalent

N,
CQ Grammar Source Code a Target code

Final phase.
Target code for a particular machine is generated. Executable Binary or Assembly
Performs memory, register management and machine specific optimization

Panchatcharam M August 2025 60




Code Generator

Equivalent

Source Code a Target code

t1=b+1: MOV R1, b

ADD R1, c
MOV a, R1

Panchatcharam M
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Lexical Analysis
Syntax Analysis
Semantic Analysis

Intermediate Code
Generation

Code Optimization

Code Generation

Panchatcharam M

6 Phases of Compilers

Break source into tokens
Check the Grammar Rules
Check meaning and type rules

Convert to Intermediate
Representation form

Improve Code Performance

Generate Machine/Assembly Code

Tokens
Parse Tree
Annotated Tree

IR (3-Address
Code)

Optimized IR
Target Code

August 2025



INTERPRETER



Interpreter

Source

Code

= An alternative for implementing a
programming language and does the
same work as compiler

= It Performs lexing, parsing and type
checking similar to compiler.

Output Code

Panchatcharam M
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Interpreter

= Processes syntax tree directly access
expressions and executes statements Sg(‘:gcee
rather than generating code from the
syntax tree

= Require processing same syntax tree
more than once. Slower than compiler

Output Code

J a V a PRGMMING
Language
Panchatcharam M
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Interpreter

« Large HLL to ML takes more time to
Compile Source

* Interpreters: Developed to execute
HLL directly

« No compilation delay
 Slower than compiled programs

Code

)

y

J a V a PRGMMING
Language
Panchatcharam M

A

Output Code
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Compiler vs Interpreter

How Compiler Works

Source Code @~ =——»  Compiler =—» Machine Code ’_’ Output

How Interpreter Works

Source Code = =—>  Interpreter  =———p Output

Panchatcharam M
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Input
Output
When?

Speed
Memory Requirement

Errors

Panchatcharam M

Takes an entire program at
a time

Generates intermediate
object code

Before execution

Faster
More for object code

All errors at a time after
compilation, difficult

Compiler vs Interpreter

Takes a single line of code
at a time

Won’t produce any
intermediate object code

Simultaneous compilation
and execution

Slower
less, no object code

Error, line by line, easier

August 2025
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IIT

TIRUPATI

Declarative

« Focus more on specifying what a language is supported to
accomplish rather than by what means it is suppose to

accomplish.
« Use to avoid undesired side-effects

»

« Focus on writing skeleton algorithms in terms of types that will be

specified when the algorithm is actually used.
« Allows leniency to programmers to avoid strict strong typing rules

« Powerful paradigm if well-implemented

Panchatcharam M

Program Paradigms

Functional

It is a subset of declarative programming
Tries to express problems in mathematical equations &

functions
« Goes out of its way to avoid concepts of states, mutable

variables

Fortran

« Allow programmers to give the computer-ordered list of
instructions without necessarily have to effectively state the task

« Opposite of declarative languages

August 2025
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Program Paradigms

\O\\\,\\ r
.

+ 4

Structured Procedural
* Provide some form of noteworthy structure to language « Imperative structured programming language
 Intuitive control over the order in which statements are « Support concepts of procedure, subroutines and functions
executed « Examples: C++, C, Fortran, Python

« Examples: C, C++

\
=

Object Oriented

& puython’

Object Oriented

07

e Subset of structured * Reusable, remarkable
« Expresses in terms of objects « Easy to understand and use
« Objects mean to objects in the real

world

Panchatcharam M August 2025




Top Salaried Languages

$100,636
$96,000

$95,541
$04,924

$90,221

$90,000

$88,619
$82,500
$80,555

$80,555
$79,330
$76,433

$76,292
$75,332
$75,184
$75,184
$75,184
$75,184
$73,648
$73,036
$72,673
$72,542
$70,351
$70,000
$70,000
$68,337
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$66,228
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$64,444
$64,444
$63,694

https://survey.stackoverflow.co/2024/technology#4-top-paying-technologies
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Top Salaried Languages

Haskell $68,337
PY $67,723
Solidity $66,228
Ci#t $66,066
TS $65,907
Kotlin $65,815
sQL $64,919
C++ $64,444
Delphi $64.444
R $64.444
VBA $64.444
$64,444
C $63,694
IS $63,694
Visual Basic $63,694
Java $61,714
HTML/CSS $61,485
Assembly $60,834
GDScript $60,684

https://survey.stackoverflow.co/2024/technology#4-top-paying-technologies
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Most Popular Languages

All Respondents Professional Developers Learning to Code Other Coders

JS
HTML/CSS

PY

TS
Bash/Shell
Java

C#
C

PHP

PowerShell

2022#most-popular-technologies-language
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Admired and Desired

Admiared and DesSiy A oo 2.2

Programming, scripting, and
markup languages

HTML/CSS

JavaScript, Python and SQL are all highly-desired and admired b

programming languages, but Rust continues to be the most-admired
programming language with an 83% score this year. &
Bash/Shell

Rust

JA Which programming, scripting, and markup languages have you done extensive
development work in over the past year, and which do you want to work in over the
next year? (If you both worked with the language and want to continue to do so, please
check both boxes in that row.)

Kotlin

PHP
PowerShell
Swift

Dart

Zig

Lua

Assembly

https://survey.stackoverflow.co/2024/technology
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Further Reading

https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn

https://cs.Imu.edu/~ray/notes/paradigms/

https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
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Basics of C++
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What is C++?

« A programming language
« Open ISO-Standardized language: Since 1998
« A compiled language

Panchatcharam M
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®election at the end -add
_ob.select= 1
fer_ob.select=1
Mntext.scene.objects.actiw

wl"Selected” + str(modifier i

#eirror ob.select = 0
bpy - context.selected_ob
Sata.objects[one.name].sel

srint(“please select exacthy

_ OPERATOR CLASSE

types- eratgrl'-‘e selacti Sy

B o X mirro”

5 x
t nirrorfnlr"“’"—
¥ -

Panchatcharam M

Features

v'Strongly-type unsafe language

v'Supports both manifest and inferred typing

v'Supports both static and dynamic type
checking

v’ Offers many paradigm of choices:
procedural, generic, OOPS
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®election at the end -add
_Ob.select= 1

fer_ob.select=1
Mntext.scene.objects.actiw

wl"Selected” + str(modifier i

#eirror ob.select = 0
bpy - context.selected_ob
Sata.objects[one.name].sel
srint(“please select exacthy

_ OPERATOR CLASSE

Panchatcharam M

Features

v'Portable: same code may work with
different C++ compilers, e.g, code
developed in g++ can run on MSVC

v'Upwards compatible with C: Can use C
libraries with few or no modifications
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Features

v'Incredible library support: More than 3000
C++ libraries in Sourceforge
v'Classes, Inheritance, inline, default

®election at the end -add

S el function arguments, virtual function,

Mntext.scene.objects.actiw

e, function overloading, references, operator

bpy - context.selected_ob
Sata.objects[one.name].sel

w— overloading,

_ OPERATOR CLASSE

grint("please S

gypes.OPeratgrll-ue selfct" -

B X mirror

= x
jrror_
jrror ™
£.mir
-
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HISTORY



« 1979: Bjarne Stroustrup, Ph. D Thesis

« Worked with Simula 67 language
(designed for simulations, a first OOP
paradigm)

« Worked on "C with classes”
« Constructed a superset of C language

* Included classes, inheritance, default
function arguments

Panchatcharam M
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* First C with classes compiler: Cfront
e 1983: C with classes became C++

* ++ is an increment operatorin C
language to denote that many
features added to C language

« 1985: The C++ Programming

language by Stroustrup was
published

Panchatcharam M
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% 1990: The Annotaed C++ Reference
Manual was released \

» 1990: Turbo C++ commercially releas

» 1998: Standardized, C++ISO/IEC

4882:1998 or C++98

« 2003: C++03
e 2005: C++0x
« 2011: C++11
« 2014: C++14
« 2017: C++17
« 2020: C++20
« 2023: C++23 (Dec)

Panchatcharam M
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APPLICATIONS



Applications

e Operating System Development
* Embedded systems

* Real-time systems

* Communication Systems

/

N “Windows 11
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Applications of C++

Web and Internet Development
£
Scientific and Numeric %“e
Database

cs Networking ”b,)

ot\
Rob cnt  Gaming

clopmt
Business applications
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Applications of C++
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C++ DEVELOPMENT STAGES



STAGES
Editing

Preprocessing

Compiling

Linking
Loading
Executing

Debugging

Panchatcharam M
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Phase-1: itin

e Editing or creating a C++ file

e gedit, vim, emacs

* Eclipse, MSVC, geany, DevC

e Store the program on secondary hard disk
* Save the file name with an extension .cpp

) *dhcpd.conf (fetc/ltsp) - gedit

File Edit View Search Tools Documents Help
T
¢ v o
*dhcpd.conf %
1# 3
2 # Default LTSP dhcpd.conf config file. VIM - Vi IMproved
3#
4 -
5 authoritative; version 8.1.2269
2 b 192.168.1.0 k 255.255.255.0 { J B L.
subnet netmas 0 g
range 192.168.1.20 192.168.1.250; , Modifi by team+vim@tracker.debian.org
option domain-name "example.conf"; Vim is open source and freely distributable

option domain-name-servers 192.168.1.1;

tion broadcast-address 192.168.1.255;
Zﬁniﬁ r;iierzsmg.lgg.l.]; Become a registered Vim user!

next-server 192.168.1.21; :help register< > for information

get-lease-hostnames true;

option subnet-mask 255.255.255.9; = = s

option root-path "/opt/ltsp/i386"; Enter> Lo exit 4

if substring( option vendor-class-identifier, 6, 9 ) = "PXEClient" { e :help(Er{CSY‘) or <F1> for on-line help

. areanrone H/LispAase/prelinihy :help version8<Enter> for version info
filename “/ltsp/i386/nbi.img";

PlainText » TabWidth: 8 v+ Ln9, Col 36
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Phase-2: Preprocessing

While the compiler translates the C++ program to ML or
object code

Including other files for compilation

Preprocessor program obeys preprocessor directives

Panchatcharam M August 2025



Phase-3: Compiling

Compiler Compile error
translates the due to syntax
C++ program error, violating

to ML or the rules of

object code the language

Error message
may differ
from system
to system

Issues an error
message to fix
the error

Panchatcharam M
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Phase-4: Linking

1. Usually, Phase 2,3 and 4 can be

done by a single command for .
smaller program .
2. g++ FileName.cpp ®
3. It compiles, links and creates an
executable a.out &g
2 . ‘o

August 2025 97
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Phase-5: Loading

Panchatcharam M
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Phase-6: Executing

Under the control DEEEUIES Qs To load and

of CPU |nstruc?t|on fbe execute, ./a.out
time

Provides necessary il Produces output to stderr: to display

stdout(a computer the error to the
screen) screen

input from stdin(a
keyboard)

Panchatcharam M
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Debugging

Not necessary to produce error free
code in first attempt

Syntax error, runtime error,
segmentation fault

Make necessary corrections depending
on the code and repeat all steps
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GNU G++



v'GNU is an operating system
that is free software,
contains no Unix code

v'Contains many GNU packages

v'GNU's Not Unix!. It is a
recursive acronym

v'Its design is Unix-like, but
differ from Unix

August 2025 102
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GNU Compile Collection

v'Contains collection OF * C, C++, Objective-C, Fortran, Ada, Go,
compilers

Objective-C

In Strong Typing We Trust

Panchatcharam M
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Further Reading

https://devdocs.io/cpp/
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2017/n4713.pdf
http://www.cplusplus.com/

Panchatcharam M
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