Programming: What? Why? How?

Panchatcharam M

Panchatcharam M

August 2025 1

PROGRAMMING: WHAT?

PROGRAMMING: WHAT?

A way to instruct the computer to perform various tasks

Addition of two numbers
Simple Interest
Exa m p I es . Probability
y Simulation
Microwave Oven
Washing Machine

Panchatcharam M

August 2025 3

PROGRAMMING: WHAT?

~Programming is the process of desighing and creating
instructions (code) that a computer can execute to perform
specific tasks or solve problems.

Panchatcharam M

August 2025 4

CORE CONCEPTS OF PROGRAMMING

Data Type Numbers, Text, etc

Control Flow If — else, for, while loops

Functions and Modularity

Algorithms and Logic The flow and structure of the instructions.

Languages C, C++, Python, JAVA etc

Panchatcharam M

August 2025

PROGRAMMING: WHERE?

INTERDISCIPLINARY RESEARCH

§ All Engineering Field
§ Image Processing

i Electro Chemistry

i Physics

i Fluid Mechanics

§ Atmospheric Science
i Plant Physiology

§ Human Physiology

§ Medical

i Financial

§ ...

Panchatcharam M

August 2025

W | module (HI1M)

August 2025

Panchatcharam M

Panchatcharam M

August 2025

EXAMPLES

_210‘;‘!‘0—!0"‘:"" A
Hil ALRREREEY

IRRRERR

August 2025

Panchatcharam M

EXAMPLES: ROBOTIC PIPE WELDING

(©)

Panchatcharam M

August 2025

TRENDING TECHNOLOGIES

Autonomous Things Example:
Drone examines a large field, ready to harvest
nstruct an autonomous vehicle to harvest | \

Harvested crops to packaging area

Panchatcharam M

August 2025

Al

Artificial Intelligence
= Study of intelligent agents

= A system’s ability to correctly interpret external data, to learn from such
data, use those learnings to achieve specific goals and tasks through
flexible adaption

ARTIFICIAL Al: Intelligence demonstrated by
machines rather than humans or animals.

INTELLIGENCE

Early artificial intelligence MACH'NE ML: Giving comp the skills to le:

stirs excitement LEARNING without explic i[programming
Machine learning begins DEEP

to flourish DL:

LEARNING

Deep learning breakthroughs
drive Al boom

¥ B

1950's 1960’s 1970’s 1980's 1990’s 2000’s 2010's

Panchatcharam M

August 2025

ML

Machine Learning

M a c h I n e Lea rn I n g Unsupewii&d Faa.:::?:u;;uun Mac:li;:ﬁlte::ing Grouping of objects
= St
S FI T bR et HOoO®
e RN el * = A
[Machine Learning is the] field of study that gives computers the § =] i i‘?x
ability to learn without being explicitly programmed. - =

—Arthur Samuel, 1959 - } - : ‘?
_—J s ‘/

A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T,

as measured by P, improves with experience E.
—Tom Mitchell, 1997

"Algorithms that parse data, learn from that data, and

then apply what theyve learned to make informed
decisfions”

https://www.zendesk.com/

Panchatcharam M

August 2025

MY EXPERIENCES

Manhole Problem

MPhD & PostDoc: IIT Madras, TU
Kaiserslautern, Fraunhofer ITWM

» Sewage Water

X/

** Manhole Problem

» Darcy Flow Company: Schott Glass
> Schott Glass Steak Formation

X/

s Streak Formation

> Finite PointSet Method

Darcy Flow

Free
Left wall Surface
Right wall
U

August 2025 15

Panchatcharam M

Journal Publications

10 ~ entries per page

Authors

Y. Priyanka, V. S. Hariharan, J. L. Manikandan, Adapa
Mahanth Kumar, Niyanth Sridharan, Badri
Narayanan,

Degala Venkata Kiran and P. Mariappan

Jyoti Pal, P. Mariappan and S. Sundar

G. Boregowda and P. Mariappan

S. Srivsatava and P. Mariappan

G. Boregowda and P. Mariappan

S. Srivsatava and P. Mariappan

G. Boregowda and P. Mariappan

P. Mariappan, G. Boregowda and R. Flanagan

M. J. van Amerongen, P. Mariappan, P. Voglreiter, R.
Flanagan, S. F. M. Jenniskens, M. Pollari, M. Kolesnik,
M. Moche and J. J. Futterer

H. Cindric, P. Mariappan, L. Beyer, P. Wiggermann,
M. Moche, D. Miklavcic and B. Kos

Showing 1to 10 of 16 entries

Title

Semi-analytical Thermal Model for Multi-
wire Submerged Arc Welding

Application of Finite Pointset Method to Study Two-

Way Coupled Transient Bio-Thermoelastic Effects in
Skin Tissue

Effect of High Blood Flow on Heat Distribution
and Ablation Zone During Microwave Ablation-
Numerical Approach

Hyperbolic Lattice Boltzmann Method for Three-
Dimensional Non-Fourier Heat Conduction with Phase
Change

3D modeling of vector/edge finite element method
for multi-ablation technique for large tumor-
computational approach

Hyperbolic Lattice Boltzmann Method and Discrete
Boltzmann Method for Solid—Liquid Phase Change
Problem

A Vector Finite Element Approach to Temperature
Dependent Parameters of Microwave Ablation for Liver
Cancer

A Point Source Model to Represent Heat Distribution
Without Calculating the Joule Heat during
Radiofrequency Ablation

Software-based planning of ultrasound and CT-guided

Rpercutaneous radiofrequency ablation in hepatic
tumors

Retrospective study for validation and improvement of
numerical treatment planning of irreversible
electroporation ablation for

treatment of liver tumors

Panchatcharam M

Search

Journal Details

Transactions of the Indian Institute of
Metals, vol. 78.137

Applied Research, vol 4(1), e70000

International Journal for Numerical Methods
in Biomedical Engineering,
vol. 27. 3835

Numerical Heat Transfer,
Part A: Applications, 1-17

PLoS ONE, vol. 18(7), e0289262

Mathematics in Computer Science,
vol. 17(9)

International Journal for Numerical
Methods in Biomedical
Engineering, vol. 39, no.l

Frontiers in Thermal Engineering

International Journal of Computer
Assisted Radiology and Surgery, vol. 16,
no., pp1051-1057

IEEE Transactions on Biomedical
Engineering, vol. 68, no. 12, pp.3513-3524

Year

2025

2025

2024

2023

2023

2023

2023

2022

2021

2021

MY EXPERIENC

Journal Publications

10 v; entries per page

Search

y OV

)

Authors Title Journal Details Year
T. V. Oostenbrugge, J. Heikdamp, M. Moche, P. Weir, P. Validation of a Web-Based Planning Tool Cardiovascular and Interventional 2020
Mariappan, R. Flanagan, M. Pollari, S. Payne, for Percutaneous Radiology vol. 43, no.1l, pp.1661-1670
M. Kolesnik, S. F. M. Jenniskens, and J. J. Futterer Cryoablation of Renal Tumours
M. Moche, H. Busse, J. J. Futterer, Clinical evaluation of in silico planning and real-time European Radiology, 30, 934-942 2020
C. A. Hinestrosa, D. Seider, P. Brandmaier, M. simulation of hepatic radiofrequency.
Kolesnik, S. Jenniskens, R. B. Sequeiros, G. Komar, ablation (ClinicIMPPACT Trial)
M. Pollari, M. Eibisberger, H. R. Portugaller,
P. Voglreiter,R. Flanagan, P. Mariappan and
M. Reinhardt
P. Voglreiter, P. Mariappan, M. Pollari, R. Flanagan, RFA Guardian: Comprehensive simulation of Nature Scientific Reports, 8(1) 2018
R. B. Sequeiros, H. R. Portugaller, J. J. Futterer, D. radiofrequency ablation treatment of liver tumors
Seider, M. Kolesnik and M. Moche
M. Reinhardt, P. Brandmaier, D. Seider, M. Kolesnik, A prospective development study of software-guided Contemporary Clinical Trials 2017
S. Jenniskens, R. B. Sequeiros, M. Eibisberger, radio-frequency ablation of primary and secondary. Communications, 8, 25-32
P. Voglreiter, R. Flanagan, P. Mariappan, H. Busse liver tumors:
and M. Moche Clinical intervention modeling, planning and proof for
ablation cancer treatment (CliniclMPPACT)
P. Mariappan, P. T. Weir, R. Flanagan, P. Voglreiter, GPU-based RFA simulation for minimally invasive International Journal of Computer Assisted 2017
T. Alhonnoro, M. Pollari, M. Moche, H. Busse, cancer Radiology and Surgery,
J. J. Futterer, H. P. Portugaller, H. R. Portugaller, treatment of liver tumours 12(1): 59-68
and R. B. Sequeiros
P. Mariappan, S. Subbiah, V. Vellaisamy, A. Klar, GPU computing for meshfree particle method International Journal of Numerical Analysis 2013

and S. Tiwari

Showing 11 to 16 of 16 entries

and Modeling, Series B 4:394-412

August 2025 16

Wselection at the end
_a“

=7 L
= []
extp~c S.
'SeIZEtQEW] I n g .
#sirror_ob.select = 0

» bpy.context.selected objs
#ata.objects[one. name] .sel

#rint(“please select exact.‘

L]

.- OPERATOR CLASSES

17

Critical Thinking and Solving Real-World
Problems:

Creativity and Innovation
Career Opportunities
Automation

Simulation and Experimentation

Panchatcharam M

PROGRAMMING: WHY?

Applications in science, engineering, business,
entertainment, healthcare, and more

Develop new algorithms, conduct data analysis,
and build artificial intelligence

Technology, Data Science, Finance etc

Enable computers to perform repetitive or complex
tasks efficiently

Model physical phenomena (e.g., solving PDEs,
weather forecasting)

August 2025

@

PROGRAMMING: WHY?

~Computers are fast

~Cheap Labor for us: In fact, a slave to human
~ No strike, No hike

~Can work 24x7

~ No Rest, No 8 hour work rules

~Can solve complicated problem
- Cryptography, bitcoins
- See earlier applications

Panchatcharam M

August 2025 19

#selection at
the end -
_Ob. Se].ect= 2 a“ ~.

#irror_ob.select =
noe bpy.context.selected_obp»
'“ta.objects[one.name].scb‘

grint("please select exact.‘-_ i & -

—————

.- OPERATOR CLASSES

20

PROGRAMMING: QUOTES?

“Whether you want to uncover the secrets of the universe, or you just want to
pursue a career in the 21st century, basic computer programming is an essential
skill to learn.”

—Stephen Hawking, Theoretical Physicist, Cosmologist, Author

“Learning to write programs stretches your mind, and helps you think better,
creates a way of thinking about things that | think is helpful in all domains.”
—Bill Gates, Co-Chairman, Bill & Melinda Gates Foundation, Co-Founder, Microsoft

Panchatcharam M

August 2025 21

PROGRAMMING: QUOTES?

“We salute the coders, designers, and programmers already hard at work at their
desks, and we encourage every student who can’t decide whether to take that

computer science class to give it a try.”
—NMichael Bloomberg. Former Mayor, New York City

“Whether we’re fighting climate change or going to space, everything is moved
forward by computers, and we don’t have enough people who can code. Teaching
young people to code early on can help build skills and confidence and energize the
classroom with learning-by-doing opportunities.”

—Richard Branson, Founder, Virgin Group

August 2025 22

Panchatcharam M

PROGRAMMING: QUOTES?

“Learning to code is learning to create and innovate.”
—Enda Kenny, Taoiseach, Ireland

“Learning to code is useful no matter what your career ambitions are.”
—Arianna Huffington, Founder, The Huffington Post

Panchatcharam M

August 2025 23

PROGRAMMING: HOW?

BEGINNERS

» Used to skip the fundamentals and jump directly to
the shiny tools, catch words, technology
 ltis vain
« Can'’t perform well in interview
« Can’t develop a project

* Never jump into program unless you are clear with
fundamentals

Panchatcharam M

August 2025 25

BEGINNERS

* Choose a programming language you are most
comfortable with

« Can be C, C++, Fortran, Python etc

« Understand the basic concepts of the languages
¢ Syntax
« Variables

Conditionals

Operators

Loops

Panchatcharam M

August 2025 26

BEGINNERS

e Don'’t

* Try learn multiple language at the same time
« Keep on Jumping from one language to another

« Stick with one language

» Learning the first language is difficult

* Practice every day

» Write programs every single day until you get
familiar with it

August 2025 27

Panchatcharam M

BEGINNERS

Don’t

* Learn all theories and then jump to program

» Learn two hours of conceptual and spend an hour in
practical aspects of the learning
» Practice! Practice and Do more Practice!

« Create an application project based on the basics you have
learnt

« Simple program: Calculator application

« Use Google, Stackoverflow, and other online resources
when you commit mistakes

 Participate in Hackathon and competitive programming

Panchatcharam M

August 2025 28

DATA STRUCTURES AND ALGORITHMS

Never jump into program unless you understand algorithms and
data structure

These two are heart of programming

DATA STRUCTURES

AND

ALGORITHM ANALYSIS

Cr

Panchatcharam M

August 2025

How to develop code

Remember the Understand the
syntax problem

|dentify inputs |dentify outputs

Identify the Draw a picture
approach to on how to solve?
solve problems Flowchart?

30

HOW TO DEVELOP CODE

Write your own algorithm in a paper. Need not be efficient

Create Unit tests and see whether your algorithm provides desired output for given input
Select a programming language of your choice

Convert your algorithm to a code format using the programming language

Test your unit test

Mistakes should/must be there

Debug your code and retest until desired output is obtained

Improve the algorithm, think to make an efficient algorithm and code

Panchatcharam M August 2025 31

DO’S AND DON'TS

\/l=sei2= Never memorize any code instead understand the logic
Look Never look at a problem in a big picture
Side=lceoiin - Break down the problem into pieces

Try Try to solve each pieces

Practice Practice! More Practice! More and More Practice!

Blelafi orzlaile . Don't panic while making mistakes, learn from it

Panchatcharam M August 2025 32

Compiler vs Interpreter

Panchatcharam M

Panchatcharam M

August 2025 33

COMPUTER BASICS

Computer Systems

@ Developed by Academia and Industry

Oy

Daily usage: General Purpose Machines
Q Specific applications: Special Purpose Machines
&P

Defined through their interfaces at a number of layered abstraction levels

Panchatcharam M

August 2025 35

Application Programs

S £

High-Level Languages: Set of Machine Instructions

Language Architecture: Interface between Application Program and
High-Level Language

Instruction set Architecture: Interface between machine instructions
set and runtime, 1/O Control

Panchatcharam M

August 2025 36

Four Basic Points

Structure: Interconnection of various hardware components

Organization Dynamic Interplay and Management of various components

Implementation: Design of hardware components

Performance: Behaviour of the computer system

Panchatcharam M

August 2025 37

Hardware

« Hardware: Any Physical device used in or with machines

This Photo by Unknown Author is licensed under CC BY-SA

Panchatcharam M

August 2025 38

https://en.wikipedia.org/wiki/Computer_mouse
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Software

« Software: Collection of Code Installed on computers' hard drive

) Office

FEFPEEFRL

- i

CPFndon=T) U b un tU ®

y
//

Panchatcharam M

August 2025 39

Moore’s Law

 Billions of Calculations in one second

. SuperCochuters: Quadrillions of instructions 120 Years of Moore’s Law
per secon

« Computer Programs: Computer processes data
under the control of sequences of instructions

« Guides the computers through ordered actions
« Guided by people: Programmers

« Hardware cost decreases rapidly

« Capacities of computers doubles every year

« Number of transistors in dense integrated
circuit doubles every year

 SSI,LSI,VLSI,VVLSI,UVLSI,WSI,SOC,3D-IC

Panchatcharam M

August 2025 40

Machine Language

Computer can directly understand only its own
ML

Defined by its hardware design

Strings of Numbers (0s and 1s)

Machine Dependent

Difficult for human to understand

Slow and tedious for a programmer

* It is the lowest-level

programming language which
only the specific computer can
understand, consists of strings of
numbers and almost impossible
for humans to understand.

0DOOE00 0000 G061 0001 1010 OOL0 D001 0004 0128
0DOOO10 00O G016 OO OO28 000D DO1E OO00 02O
0000020 000G ©901 0004 D000 000D DOO0 G000 B0

3 000 DO00 00O 0204
0000040 0004 8384 0084 c7c8 00cB 4748 0048 =8e9
0000050 00=9 Fe

QEO0LlE0 Q000 0000 0000 D000 0QOQ DOEE QOO0 QQo.

W

0000130 200 0000 QEE2 0000 CQE8 BE0e Q0@
200013

Assemb|y | 3 nguage * It is a low level programming

language that allows a user to
Strings of numbers el e write a prog.ram USing .
SO abbreviations alphanumeric mnemonic codes
instead of numeric codes for a
set of instructions. It can be
o translated using an assembler

Abbreviations are . .
A Translator into machine language
programs, AL to ML

[P
s Bx52acie: movl T3P6562(¥ebx), ¥eax

| Bx52acTc: movl %eax, -20(%ebp)

7 Bx52ac?f: movl 50, (%edi,%eax)

71 Bx52acB6: testl %esi, %esi

72| Bx52ac88: Je Bx52ad21 HEE
[UINavigationController _updateScrollViewFromViewController:
toViewController:] + 425

72 Bx52acBe: movl T7306542(%ebx), %eax

Code is quite easier

Need more | Bx52ac94: movl (%edi,¥eax), ¥eax
than ML to : : f 75| Bx52ac97: movl %eax, -24(%ebp)
derstand b Instructions tor 7 Bx52ac9a: movl 7212558(%ebx), %eax
unaerstan \ . lest task 77| Bx52aca®: movl %eax, 4(%esp)
human simplest tas 78 Bx52acad4: movl Hesi, (%esp)
79 Bx52aca’: calll ©x9bffes ; symbol stub for:

objc_msgSend
| @x52acac: movl %eax, -28(%ebp)
1l

MOV AL, 1h ; Load AL with immediate wvalue 1 D Ox52acaf: movl edx, -32(%ebp) e
Bx52acb?: movl T7211062(%ebx), %eax

' ' . a2
MOV CL, 2h ; Load CL with immediate value 2 = Bx52ach8: movl %eax, 4(%esp)
84 ExSZactL:E: :lf':r]._' %esi, (%esp)

MOV DL, 3h ; Load DL with immediate value 3 =~~~ %

P N R T R —

Natural _
Language High-
Level

High Level Language

Low-

Level
Machine

Language

* It is a programming language

that is understood by Single Statement to
accomplish substantial tasks
humans/programmers. It can be

translated using d translator, for Compilers: Translator program

example, compiler or HLL to ML
High-level

interpreters, into a simple - e
machine |anguage that C.,Pascal, Java, Python... Easy to understand
computer can understand and el

execute. It does not depend on
specific computer.

Variables, Arrays, Objects,

Loop

Low-level Boolean, Functions, threads,
programming language abstract
Machine/Assembly language
44

High Level Language

It is @ programming language that is understood by humans/programmers.
It can be translate usincl; a translator, For example, compiler or
interpreters, into a simple machine language that computer can
understand and execute. It does not depend on specific computer.

High-level
#include <iostream> programming language
) C, Pascal, Java, Python...
using namepsace std;
lnt maln () Ahracadahra*
{ , Compiler
int a=3,b=4;
cout<<"Hel lo"<K<Kendl;
cout<<<a+b<<Lendl;
Low-level
retun U; programming language
}

Machine/Assembly language

Panchatcharam M August 2025

45

COMPILER

Compiler

= A compiler is a program that reads a
program written in the high-level Source
language and converts it into the Coe
machine or low-level language and
reports the errors present in the
program.

It converts the entire source code in one go or could take

multiple passes to do so, but at last, the user gets the Viachine Cod
compiled code which is ready to execute. achine Lode

Output Code

August 2025 47

Panchatcharam M

Compiler

How Compiler Works

Source Code @~ =——» Compiler =—» Machine Code ’_’ Output

£ Scala

Panchatcharam M

August 2025 48

6 Phases Compiler

Equivalent

N,
CQ Grammar Source Code Q Target code

Panchatcharam M

August 2025 49

Lexical Analyzer (Scanning)

Equivalent

N\
CQ Grammar Source Code a Target code

Panchatcharam M

August 2025 50

Lexical Analyzer (Scanning)

Equivalent

N\
CQ Grammar Source Code a Target code

Panchatcharam M

August 2025 51

Syntax Analyzer (Parser))

o0 - i
o. o. Equivalent

®+ ®- Source Code a Target code

Tokens generated in Lexical analyzer phase are against grammar of programming language.
Checks whether the expressions are syntactically correct or not. It makes parse trees

Panchatcharam M

August 2025 52

Syntax Analyzer (Parser)

Equivalent
Source Code

Input: int = x 3; Error will be thrown. Missing semicolon or mismatched brackets

Panchatcharam M

August 2025 53

Semantic Analyzer (Meaning)

Rules @ Redundant

Q Equivalent o
CQ Grammar Source Code a Target code

Checks whether the expressions and statements generated by previous phase
follow the rule of programming language or not. Creates annotated parse trees

Panchatcharam M

August 2025 54

Semantic Analyzer (Meaning)

Rules @ Redundant

m Equivalent o
CQ Grammar Source Code a Target code

Input: x=5+"hello”. Error as string and integer addition is an error. Type
mismatch or undeclared variable.

Panchatcharam M

August 2025 55

Intermediate Code Generation (IR)

Rules ‘O’ Redundant

CQ Equivalent o
Q Grammar Source Code a Target code

Equivalent intermediate code of the source code

Panchatcharam M

August 2025 56

Intermediate Code Generation (IR)

Rules ‘O’ Redundant

CQ Equivalent o
Q Grammar Source Code a Target code

a=b+c, IR : t1=b+c, a=t1. Optimization and Portability

Panchatcharam M

August 2025 57

Code Optimizer

@ Redundant

Equivalent
Source Code

Improves the space and time requirements of the program.
Eliminates the redundant code, unused variables, dead code.

Panchatcharam M

August 2025 58

Code Optimizer

@ Redundant

Equivalent
Source Code

int a=6*0, is optimized by a=0; (Not always guaranteed)

Panchatcharam M

August 2025 59

Code Generator

@ Redundant

Equivalent

N,
CQ Grammar Source Code a Target code

Final phase.
Target code for a particular machine is generated. Executable Binary or Assembly
Performs memory, register management and machine specific optimization

Panchatcharam M August 2025 60

Code Generator

Equivalent

Source Code a Target code

t1=b+1: MOV R1, b

ADD R1, c
MOV a, R1

Panchatcharam M

August 2025 61

Lexical Analysis
Syntax Analysis
Semantic Analysis

Intermediate Code
Generation

Code Optimization

Code Generation

Panchatcharam M

6 Phases of Compilers

Break source into tokens
Check the Grammar Rules
Check meaning and type rules

Convert to Intermediate
Representation form

Improve Code Performance

Generate Machine/Assembly Code

Tokens
Parse Tree
Annotated Tree

IR (3-Address
Code)

Optimized IR
Target Code

August 2025

INTERPRETER

Interpreter

Source

Code

= An alternative for implementing a
programming language and does the
same work as compiler

= It Performs lexing, parsing and type
checking similar to compiler.

Output Code

Panchatcharam M

August 2025 64

Interpreter

= Processes syntax tree directly access
expressions and executes statements Sg(‘:gcee
rather than generating code from the
syntax tree

= Require processing same syntax tree
more than once. Slower than compiler

Output Code

J a V a PRGMMING
Language
Panchatcharam M

August 2025 65

Interpreter

« Large HLL to ML takes more time to
Compile Source

* Interpreters: Developed to execute
HLL directly

« No compilation delay
 Slower than compiled programs

Code

)

y

J a V a PRGMMING
Language
Panchatcharam M

A

Output Code

August 2025 66

Compiler vs Interpreter

How Compiler Works

Source Code @~ =——» Compiler =—» Machine Code ’_’ Output

How Interpreter Works

Source Code = =—> Interpreter =———p Output

Panchatcharam M

August 2025 67

Input
Output
When?

Speed
Memory Requirement

Errors

Panchatcharam M

Takes an entire program at
a time

Generates intermediate
object code

Before execution

Faster
More for object code

All errors at a time after
compilation, difficult

Compiler vs Interpreter

Takes a single line of code
at a time

Won’t produce any
intermediate object code

Simultaneous compilation
and execution

Slower
less, no object code

Error, line by line, easier

August 2025

68

PROGRAM PARADIGMS

mﬁﬁ&ﬁaﬁﬁﬁw%mﬁr

IIT

TIRUPATI

Declarative

« Focus more on specifying what a language is supported to
accomplish rather than by what means it is suppose to

accomplish.
« Use to avoid undesired side-effects

»

« Focus on writing skeleton algorithms in terms of types that will be

specified when the algorithm is actually used.
« Allows leniency to programmers to avoid strict strong typing rules

« Powerful paradigm if well-implemented

Panchatcharam M

Program Paradigms

Functional

It is a subset of declarative programming
Tries to express problems in mathematical equations &

functions
« Goes out of its way to avoid concepts of states, mutable

variables

Fortran

« Allow programmers to give the computer-ordered list of
instructions without necessarily have to effectively state the task

« Opposite of declarative languages

August 2025

WWWW
I

IT

TIRUPATI

Program Paradigms

\O\\\,\\ r
.

+ 4

Structured Procedural
* Provide some form of noteworthy structure to language « Imperative structured programming language
 Intuitive control over the order in which statements are « Support concepts of procedure, subroutines and functions
executed « Examples: C++, C, Fortran, Python

« Examples: C, C++

\
=

Object Oriented

& puython’

Object Oriented

07

e Subset of structured * Reusable, remarkable
« Expresses in terms of objects « Easy to understand and use
« Objects mean to objects in the real

world

Panchatcharam M August 2025

Top Salaried Languages

$100,636
$96,000

$95,541
$04,924

$90,221

$90,000

$88,619
$82,500
$80,555

$80,555
$79,330
$76,433

$76,292
$75,332
$75,184
$75,184
$75,184
$75,184
$73,648
$73,036
$72,673
$72,542
$70,351
$70,000
$70,000
$68,337
$67,723
$66,228
$66,066
$65,907
$65,815
$64,919
$64,444
$64,444
$64,444
$64,444
$64,444
$63,694

https://survey.stackoverflow.co/2024/technology#4-top-paying-technologies

Panchatcharam M

August 2025 72

Top Salaried Languages

Haskell $68,337
PY $67,723
Solidity $66,228
Ci#t $66,066
TS $65,907
Kotlin $65,815
sQL $64,919
C++ $64,444
Delphi $64.444
R $64.444
VBA $64.444
$64,444
C $63,694
IS $63,694
Visual Basic $63,694
Java $61,714
HTML/CSS $61,485
Assembly $60,834
GDScript $60,684

https://survey.stackoverflow.co/2024/technology#4-top-paying-technologies
Panchatcharam M August 2025

Most Popular Languages

All Respondents Professional Developers Learning to Code Other Coders

JS
HTML/CSS

PY

TS
Bash/Shell
Java

C#
C

PHP

PowerShell

2022#most-popular-technologies-language

Panchatcharam M August 2025

https://survey.stackoverflow.co/2022#most-popular-technologies-language
https://survey.stackoverflow.co/2022#most-popular-technologies-language
https://survey.stackoverflow.co/2022#most-popular-technologies-language
https://survey.stackoverflow.co/2022#most-popular-technologies-language
https://survey.stackoverflow.co/2022#most-popular-technologies-language
https://survey.stackoverflow.co/2022#most-popular-technologies-language
https://survey.stackoverflow.co/2022#most-popular-technologies-language

Admired and Desired

Admiared and DesSiy A oo 2.2

Programming, scripting, and
markup languages

HTML/CSS

JavaScript, Python and SQL are all highly-desired and admired b

programming languages, but Rust continues to be the most-admired
programming language with an 83% score this year. &
Bash/Shell

Rust

JA Which programming, scripting, and markup languages have you done extensive
development work in over the past year, and which do you want to work in over the
next year? (If you both worked with the language and want to continue to do so, please
check both boxes in that row.)

Kotlin

PHP
PowerShell
Swift

Dart

Zig

Lua

Assembly

https://survey.stackoverflow.co/2024/technology

Panchatcharam M

August 2025 75

Further Reading

https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn

https://cs.Imu.edu/~ray/notes/paradigms/

https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global

Panchatcharam M

August 2025 76

https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://cs.lmu.edu/~ray/notes/paradigms/

Basics of C++

Panchatcharam M

Panchatcharam M

August 2025 77

What is C++?

« A programming language
« Open ISO-Standardized language: Since 1998
« A compiled language

Panchatcharam M

August 2025 79

®election at the end -add
_ob.select= 1
fer_ob.select=1
Mntext.scene.objects.actiw

wl"Selected” + str(modifier i

#eirror ob.select = 0
bpy - context.selected_ob
Sata.objects[one.name].sel

srint(“please select exacthy

_ OPERATOR CLASSE

types- eratgrl'-‘e selacti Sy

B o X mirro”

5 x
t nirrorfnlr"“’"—
¥ -

Panchatcharam M

Features

v'Strongly-type unsafe language

v'Supports both manifest and inferred typing

v'Supports both static and dynamic type
checking

v’ Offers many paradigm of choices:
procedural, generic, OOPS

August 2025 80

®election at the end -add
_Ob.select= 1

fer_ob.select=1
Mntext.scene.objects.actiw

wl"Selected” + str(modifier i

#eirror ob.select = 0
bpy - context.selected_ob
Sata.objects[one.name].sel
srint(“please select exacthy

_ OPERATOR CLASSE

Panchatcharam M

Features

v'Portable: same code may work with
different C++ compilers, e.g, code
developed in g++ can run on MSVC

v'Upwards compatible with C: Can use C
libraries with few or no modifications

August 2025 81

Features

v'Incredible library support: More than 3000
C++ libraries in Sourceforge
v'Classes, Inheritance, inline, default

®election at the end -add

S el function arguments, virtual function,

Mntext.scene.objects.actiw

e, function overloading, references, operator

bpy - context.selected_ob
Sata.objects[one.name].sel

w— overloading,

_ OPERATOR CLASSE

grint("please S

gypes.OPeratgrll-ue selfct" -

B X mirror

= x
jrror_
jrror ™
£.mir
-

Panchatcharam M

August 2025 82

HISTORY

« 1979: Bjarne Stroustrup, Ph. D Thesis

« Worked with Simula 67 language
(designed for simulations, a first OOP
paradigm)

« Worked on "C with classes”
« Constructed a superset of C language

* Included classes, inheritance, default
function arguments

Panchatcharam M

August 2025 84

* First C with classes compiler: Cfront
e 1983: C with classes became C++

* ++ is an increment operatorin C
language to denote that many
features added to C language

« 1985: The C++ Programming

language by Stroustrup was
published

Panchatcharam M

August 2025 85

% 1990: The Annotaed C++ Reference
Manual was released \

» 1990: Turbo C++ commercially releas

» 1998: Standardized, C++ISO/IEC

4882:1998 or C++98

« 2003: C++03
e 2005: C++0x
« 2011: C++11
« 2014: C++14
« 2017: C++17
« 2020: C++20
« 2023: C++23 (Dec)

Panchatcharam M

4
\

L)

* @
\

L/

L)

\

August 2025 86

APPLICATIONS

Applications

e Operating System Development
* Embedded systems

* Real-time systems

* Communication Systems

/

N “Windows 11

Panchatcharam M August 2025

Applications of C++

Web and Internet Development
£
Scientific and Numeric %“e
Database

cs Networking ”b,)

ot\
Rob cnt Gaming

clopmt
Business applications

August 2025

Applications of C++

Google Dntred bOx M

® B ¢ ¢ v 4
— ™ B@coBEe
(comcast & (sirusxm) eb: ; E@ D A s ©
é et VG - o ©
$30 Q0 =
T BN a
c.ncur S’.ll(f)l’(?(f "- jeshare Ch f anware i o a m ﬂ e
openstack @ 4 Exi
e #8008 e @
\]}“ ' The m ﬁ Py - =
B = [o] =

E=] s Youlll) Quora

C++ DEVELOPMENT STAGES

STAGES
Editing

Preprocessing

Compiling

Linking
Loading
Executing

Debugging

Panchatcharam M

August 2025 92

Phase-1: itin

e Editing or creating a C++ file

e gedit, vim, emacs

* Eclipse, MSVC, geany, DevC

e Store the program on secondary hard disk
* Save the file name with an extension .cpp

) *dhcpd.conf (fetc/ltsp) - gedit

File Edit View Search Tools Documents Help
T
¢ v o
*dhcpd.conf %
1# 3
2 # Default LTSP dhcpd.conf config file. VIM - Vi IMproved
3#
4 -
5 authoritative; version 8.1.2269
2 b 192.168.1.0 k 255.255.255.0 { J B L.
subnet netmas 0 g
range 192.168.1.20 192.168.1.250; , Modifi by team+vim@tracker.debian.org
option domain-name "example.conf"; Vim is open source and freely distributable

option domain-name-servers 192.168.1.1;

tion broadcast-address 192.168.1.255;
Zﬁniﬁ r;iierzsmg.lgg.l.]; Become a registered Vim user!

next-server 192.168.1.21; :help register< > for information

get-lease-hostnames true;

option subnet-mask 255.255.255.9; = = s

option root-path "/opt/ltsp/i386"; Enter> Lo exit 4

if substring(option vendor-class-identifier, 6, 9) = "PXEClient" { e :help(Er{CSY‘) or <F1> for on-line help

. areanrone H/LispAase/prelinihy :help version8<Enter> for version info
filename “/ltsp/i386/nbi.img";

PlainText » TabWidth: 8 v+ Ln9, Col 36

Panchatcharam M August 2025 93

Phase-2: Preprocessing

While the compiler translates the C++ program to ML or
object code

Including other files for compilation

Preprocessor program obeys preprocessor directives

Panchatcharam M August 2025

Phase-3: Compiling

Compiler Compile error
translates the due to syntax
C++ program error, violating

to ML or the rules of

object code the language

Error message
may differ
from system
to system

Issues an error
message to fix
the error

Panchatcharam M

August 2025 95

Phase-4: Linking

1. Usually, Phase 2,3 and 4 can be

done by a single command for .
smaller program .
2. g++ FileName.cpp ®
3. It compiles, links and creates an
executable a.out &g
2 . ‘o

August 2025 97

Panchatcharam M

Phase-5: Loading

Panchatcharam M

August 2025

Phase-6: Executing

Under the control DEEEUIES Qs To load and

of CPU |nstruc?t|on fbe execute, ./a.out
time

Provides necessary il Produces output to stderr: to display

stdout(a computer the error to the
screen) screen

input from stdin(a
keyboard)

Panchatcharam M

August 2025 99

Panchatcharam M

Debugging

Not necessary to produce error free
code in first attempt

Syntax error, runtime error,
segmentation fault

Make necessary corrections depending
on the code and repeat all steps

August 2025 100

GNU G++

v'GNU is an operating system
that is free software,
contains no Unix code

v'Contains many GNU packages

v'GNU's Not Unix!. It is a
recursive acronym

v'Its design is Unix-like, but
differ from Unix

August 2025 102

Panchatcharam M

GNU Compile Collection

v'Contains collection OF * C, C++, Objective-C, Fortran, Ada, Go,
compilers

Objective-C

In Strong Typing We Trust

Panchatcharam M

August 2025 103

Further Reading

https://devdocs.io/cpp/
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2017/n4713.pdf
http://www.cplusplus.com/

Panchatcharam M

August 2025 104

https://devdocs.io/cpp/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf
http://www.cplusplus.com/

	Slide 1: Programming: What? Why? How?
	Slide 2: Programming: What?
	Slide 3: Programming: What?
	Slide 4: Programming: What?
	Slide 5: Core concepts of Programming
	Slide 6: Programming: where?
	Slide 7: Interdisciplinary Research
	Slide 8: Examples
	Slide 9: Examples
	Slide 10: Examples
	Slide 11: Examples: Robotic Pipe Welding
	Slide 12: Trending Technologies
	Slide 13: AI
	Slide 14: ML
	Slide 15: My Experiences
	Slide 16: My Experiences
	Slide 17: Programming: Why?
	Slide 18: Programming: Why?
	Slide 19: Programming: Why?
	Slide 20: Programming: Famous quotes?
	Slide 21: Programming: quotes?
	Slide 22: Programming: quotes?
	Slide 23: Programming: quotes?
	Slide 24: Programming: HOW?
	Slide 25: Beginners
	Slide 26: Beginners
	Slide 27: Beginners
	Slide 28: Beginners
	Slide 29: Data Structures and Algorithms
	Slide 30: How to develop code
	Slide 31: How to develop code
	Slide 32: Do’s and Don’ts
	Slide 33: Compiler vs Interpreter
	Slide 34: Computer basics
	Slide 35: Computer Systems
	Slide 36: Application Programs
	Slide 37: Four Basic Points
	Slide 38: Hardware
	Slide 39: Software
	Slide 40: Moore’s Law
	Slide 41: languages
	Slide 42: Machine Language
	Slide 43: Assembly Language
	Slide 44: High Level Language
	Slide 45: High Level Language
	Slide 46: compiler
	Slide 47: Compiler
	Slide 48: Compiler
	Slide 49: 6 Phases Compiler
	Slide 50: Lexical Analyzer (Scanning)
	Slide 51: Lexical Analyzer (Scanning)
	Slide 52: Syntax Analyzer (Parser))
	Slide 53: Syntax Analyzer (Parser)
	Slide 54: Semantic Analyzer (Meaning)
	Slide 55: Semantic Analyzer (Meaning)
	Slide 56: Intermediate Code Generation (IR)
	Slide 57: Intermediate Code Generation (IR)
	Slide 58: Code Optimizer
	Slide 59: Code Optimizer
	Slide 60: Code Generator
	Slide 61: Code Generator
	Slide 62: 6 Phases of Compilers
	Slide 63: interpreter
	Slide 64: Interpreter
	Slide 65: Interpreter
	Slide 66: Interpreter
	Slide 67: Compiler vs Interpreter
	Slide 68: Compiler vs Interpreter
	Slide 69: Program paradigms
	Slide 70: Program Paradigms
	Slide 71: Program Paradigms
	Slide 72: Top Salaried Languages
	Slide 73: Top Salaried Languages
	Slide 74: Most Popular Languages
	Slide 75: Admired and Desired
	Slide 76: Further Reading
	Slide 77: Basics of C++
	Slide 78: C++
	Slide 79: What is C++?
	Slide 80: Features
	Slide 81: Features
	Slide 82: Features
	Slide 83: History
	Slide 84: History
	Slide 85: History
	Slide 86: History
	Slide 87: Applications
	Slide 88: Applications
	Slide 89: Applications of C++
	Slide 90: Applications of C++
	Slide 91: C++ development stages
	Slide 92: STAGES
	Slide 93: Phase-1: Editing
	Slide 94: Phase-2: Preprocessing
	Slide 95: Phase-3: Compiling
	Slide 96: Phase-4: Linking
	Slide 97: Phase-4: Linking
	Slide 98: Phase-5: Loading
	Slide 99: Phase-6: Executing
	Slide 100: Debugging
	Slide 101: GNU G++
	Slide 102: GNU C++
	Slide 103: GNU Compile Collection
	Slide 104: Further Reading

