
Panchatcharam M August 2025

Programming: What? Why? How?

1

Panchatcharam M

Programming: What?

2

Panchatcharam M August 2025

Programming: What?

3

A way to instruct the computer to perform various tasks

Examples:

Addition of two numbers

Simple Interest

Probability

Simulation

Microwave Oven

Washing Machine

Panchatcharam M August 2025

Programming: What?

Programming is the process of designing and creating
instructions (code) that a computer can execute to perform
specific tasks or solve problems.

4

Panchatcharam M August 2025

Core concepts of Programming

Data Type Numbers, Text, etc

Control Flow If – else, for, while loops

Functions and Modularity

Algorithms and Logic The flow and structure of the instructions.

Languages C, C++, Python, JAVA,etc

Programming: where?

6

Panchatcharam M August 2025

Interdisciplinary Research

All Engineering Field

Image Processing

Electro Chemistry

Physics

Fluid Mechanics

Atmospheric Science

Plant Physiology

Human Physiology

Medical

Financial

…..

Panchatcharam M August 2025

Examples

Panchatcharam M August 2025

Examples

Panchatcharam M August 2025

Examples

Panchatcharam M August 2025

Examples: Robotic Pipe Welding

Panchatcharam M August 2025

Trending Technologies

Autonomous Things Example:

Drone examines a large field, ready to harvest

Instruct an autonomous vehicle to harvest

Harvested crops to packaging area

Packaging area to final delivery places

Panchatcharam M August 2025

AI

Artificial Intelligence

▪ Study of intelligent agents

▪ A system’s ability to correctly interpret external data, to learn from such
data, use those learnings to achieve specific goals and tasks through
flexible adaption

Panchatcharam M August 2025

ML

Machine Learning

“Algorithms that parse data, learn from that data, and
then apply what they’ve learned to make informed
decisions”
https://www.zendesk.com/

[Machine Learning is the] field of study that gives computers the

ability to learn without being explicitly programmed.

—Arthur Samuel, 1959

A computer program is said to learn from experience E with respect to

some task T and some performance measure P, if its performance on T,

as measured by P, improves with experience E.

—Tom Mitchell, 1997

Panchatcharam M August 2025 15

My Experiences

PhD & PostDoc: IIT Madras, TU
Kaiserslautern, Fraunhofer ITWM

➢ Sewage Water
❖ Manhole Problem

➢ Darcy Flow

➢ Schott Glass
❖ Streak Formation

➢ Finite PointSet Method

Company: Schott Glass
Steak Formation

Manhole Problem

Darcy Flow

Panchatcharam M August 2025 16

My Experiences

Programming: Why?

17

Panchatcharam M August 2025

Programming: Why?

18

Critical Thinking and Solving Real-World
Problems:

Applications in science, engineering, business,
entertainment, healthcare, and more

Creativity and Innovation
Develop new algorithms, conduct data analysis,
and build artificial intelligence

Career Opportunities Technology, Data Science, Finance etc

Automation
Enable computers to perform repetitive or complex
tasks efficiently

Simulation and Experimentation
Model physical phenomena (e.g., solving PDEs,
weather forecasting)

Panchatcharam M August 2025

Programming: Why?

Computers are fast

Cheap Labor for us: In fact, a slave to human
 No strike, No hike

Can work 24x7
 No Rest, No 8 hour work rules

Can solve complicated problem
 Cryptography, bitcoins

 See earlier applications

19

Programming: Famous quotes?

20

Panchatcharam M August 2025

Programming: quotes?

21

“Learning to write programs stretches your mind, and helps you think better,

creates a way of thinking about things that I think is helpful in all domains.”

—Bill Gates, Co-Chairman, Bill & Melinda Gates Foundation, Co-Founder, Microsoft

“Whether you want to uncover the secrets of the universe, or you just want to

pursue a career in the 21st century, basic computer programming is an essential

skill to learn.”

—Stephen Hawking, Theoretical Physicist, Cosmologist, Author

Panchatcharam M August 2025

Programming: quotes?

22

“We salute the coders, designers, and programmers already hard at work at their

desks, and we encourage every student who can’t decide whether to take that

computer science class to give it a try.”

—Michael Bloomberg. Former Mayor, New York City

“Whether we’re fighting climate change or going to space, everything is moved

forward by computers, and we don’t have enough people who can code. Teaching

young people to code early on can help build skills and confidence and energize the

classroom with learning-by-doing opportunities.”

—Richard Branson, Founder, Virgin Group

Panchatcharam M August 2025

Programming: quotes?

23

“Learning to code is learning to create and innovate.”

—Enda Kenny, Taoiseach, Ireland

“Learning to code is useful no matter what your career ambitions are.”

—Arianna Huffington, Founder, The Huffington Post

Programming: HOW?

24

Panchatcharam M August 2025

Beginners

• Used to skip the fundamentals and jump directly to

the shiny tools, catch words, technology

• It is vain

• Can’t perform well in interview

• Can’t develop a project

25

• Never jump into program unless you are clear with

fundamentals

Panchatcharam M August 2025

Beginners

• Choose a programming language you are most

comfortable with

• Can be C, C++, Fortran, Python etc

• Understand the basic concepts of the languages

• Syntax

• Variables

• Conditionals

• Operators

• Loops

• ….

26

Panchatcharam M August 2025

Beginners

• Don’t

• Try learn multiple language at the same time

• Keep on Jumping from one language to another

27

• Learning the first language is difficult

• Practice every day

• Write programs every single day until you get

familiar with it

• Stick with one language

Panchatcharam M August 2025

Beginners

• Don’t

• Learn all theories and then jump to program

28

• Create an application project based on the basics you have

learnt

• Simple program: Calculator application

• Use Google, Stackoverflow, and other online resources

when you commit mistakes

• Participate in Hackathon and competitive programming

• Learn two hours of conceptual and spend an hour in

practical aspects of the learning

• Practice! Practice and Do more Practice!

Panchatcharam M August 2025

Data Structures and Algorithms

 Never jump into program unless you understand algorithms and
data structure

 These two are heart of programming

How to develop code

30

Remember the
syntax

Understand the
problem

Identify inputs Identify outputs

Identify the
approach to

solve problems

Draw a picture
on how to solve?

Flowchart?

Panchatcharam M August 2025

How to develop code

31

Write your own algorithm in a paper. Need not be efficient

Create Unit tests and see whether your algorithm provides desired output for given input

Select a programming language of your choice

Convert your algorithm to a code format using the programming language

Test your unit test

Mistakes should/must be there

Debug your code and retest until desired output is obtained

Improve the algorithm, think to make an efficient algorithm and code

Panchatcharam M August 2025

Do’s anD Don’ts

32

Never memorize any code instead understand the logicMemorize

Never look at a problem in a big pictureLook

Break down the problem into piecesBreak down

Try to solve each piecesTry

Practice! More Practice! More and More Practice!Practice

Don't panic while making mistakes, learn from itDon't panic

Panchatcharam M August 2025

Compiler vs Interpreter

33

Panchatcharam M

Computer basics

34

Panchatcharam M August 2025

Computer Systems

35

Developed by Academia and Industry

Daily usage: General Purpose Machines

Specific applications: Special Purpose Machines

Defined through their interfaces at a number of layered abstraction levels

Panchatcharam M August 2025

Application Programs

36

High-Level Languages: Set of Machine Instructions

Language Architecture: Interface between Application Program and
High-Level Language

Instruction set Architecture: Interface between machine instructions
set and runtime, I/O Control

Panchatcharam M August 2025

Four Basic Points

37

Structure: Interconnection of various hardware components

Organization Dynamic Interplay and Management of various components

Implementation: Design of hardware components

Performance: Behaviour of the computer system

Panchatcharam M August 2025

Hardware

• Hardware: Any Physical device used in or with machines

38

This Photo by Unknown Author is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Computer_mouse
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Panchatcharam M August 2025

Software

• Software: Collection of Code Installed on computers' hard drive

39

Panchatcharam M August 2025

Moore’s Law

• Billions of Calculations in one second

• SuperComputers: Quadrillions of instructions
per second

• Computer Programs: Computer processes data
under the control of sequences of instructions

• Guides the computers through ordered actions

• Guided by people: Programmers

• Hardware cost decreases rapidly

• Capacities of computers doubles every year

• Number of transistors in dense integrated
circuit doubles every year

• SSI,LSI,VLSI,VVLSI,UVLSI,WSI,SOC,3D-IC

40

languages

41

Machine Language

• It is the lowest-level
programming language which
only the specific computer can
understand, consists of strings of
numbers and almost impossible
for humans to understand.

42

Computer can directly understand only its own
ML

Defined by its hardware design

Strings of Numbers (0s and 1s)

Machine Dependent

Difficult for human to understand

Slow and tedious for a programmer

Assembly Language • It is a low level programming
language that allows a user to
write a program using
alphanumeric mnemonic codes
instead of numeric codes for a
set of instructions. It can be
translated using an assembler
into machine language

43

Strings of numbers
computer can

understand

English-like
abbreviations

Abbreviations are
basis of AL

Assembler:
Translator

programs, AL to ML

Code is quite easier
than ML to

understand by
human

Need more
instructions for
simplest task

MOV AL, 1h ; Load AL with immediate value 1

MOV CL, 2h ; Load CL with immediate value 2

MOV DL, 3h ; Load DL with immediate value 3

High Level Language

• It is a programming language
that is understood by
humans/programmers. It can be
translated using a translator, for
example, compiler or
interpreters, into a simple
machine language that
computer can understand and
execute. It does not depend on
specific computer.

44

Single Statement to
accomplish substantial tasks

Compilers: Translator program
HLL to ML

Easy to understand

Variables, Arrays, Objects,
Loop

Boolean, Functions, threads,
abstract

Panchatcharam M August 2025

High Level Language

It is a programming language that is understood by humans/programmers.
It can be translated using a translator, for example, compiler or
interpreters, into a simple machine language that computer can
understand and execute. It does not depend on specific computer.

45

#include <iostream>

using namepsace std;

int main()

{

int a=3,b=4;

cout<<"Hello"<<endl;

cout<<a+b<<endl;

retun 0;

}

compiler

46

Panchatcharam M August 2025

Compiler

◼ A compiler is a program that reads a
program written in the high-level
language and converts it into the
machine or low-level language and
reports the errors present in the
program.

Source
Code

Compiler

Output Code

47

It converts the entire source code in one go or could take
multiple passes to do so, but at last, the user gets the
compiled code which is ready to execute. Machine Code

Panchatcharam M August 2025

Compiler

48

Panchatcharam M August 2025

6 Phases Compiler

49

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

Panchatcharam M August 2025

Lexical Analyzer (Scanning)

50

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

Scans the code as a stream of characters into lexemes. Output:
Sequence of tokens with reference to the programming languages

Panchatcharam M August 2025

Lexical Analyzer (Scanning)

51

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

Input: int a=b+1;, Output: Keyword [int], identifier [a,b], operator [=,+]
Number[1], Symbol [;]. Error: Unrecognized symbols, like @$

Panchatcharam M August 2025

Syntax Analyzer (Parser))

52

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

Tokens generated in Lexical analyzer phase are against grammar of programming language.
Checks whether the expressions are syntactically correct or not. It makes parse trees

Panchatcharam M August 2025

Syntax Analyzer (Parser)

53

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

Input: int = x 3; Error will be thrown. Missing semicolon or mismatched brackets

Panchatcharam M August 2025

Semantic Analyzer (Meaning)

54

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

Checks whether the expressions and statements generated by previous phase
follow the rule of programming language or not. Creates annotated parse trees

Panchatcharam M August 2025

Semantic Analyzer (Meaning)

55

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

Input: x=5+”hello”. Error as string and integer addition is an error. Type
mismatch or undeclared variable.

Panchatcharam M August 2025

Intermediate Code Generation (IR)

56

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

Equivalent intermediate code of the source code

Panchatcharam M August 2025

Intermediate Code Generation (IR)

57

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

a=b+c, IR : t1=b+c, a=t1. Optimization and Portability

Panchatcharam M August 2025

Code Optimizer

58

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

Improves the space and time requirements of the program.
Eliminates the redundant code, unused variables, dead code.

Panchatcharam M August 2025

Code Optimizer

59

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

int a=6*0, is optimized by a=0; (Not always guaranteed)

Panchatcharam M August 2025

Code Generator

60

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

Final phase.
Target code for a particular machine is generated. Executable Binary or Assembly

Performs memory, register management and machine specific optimization

Panchatcharam M August 2025

Code Generator

61

Redundant
Lexemes

Equivalent
Source Code

Rules

Grammar Target code

t1=b+1: MOV R1, b

ADD R1, c

MOV a, R1

Panchatcharam M August 2025

6 Phases of Compilers

Process Key Task Output

Lexical Analysis Break source into tokens Tokens

Syntax Analysis Check the Grammar Rules Parse Tree

Semantic Analysis Check meaning and type rules Annotated Tree

Intermediate Code
Generation

Convert to Intermediate
Representation form

IR (3-Address
Code)

Code Optimization Improve Code Performance Optimized IR

Code Generation Generate Machine/Assembly Code Target Code

interpreter

63

Panchatcharam M August 2025

Interpreter

◼ An alternative for implementing a
programming language and does the
same work as compiler

◼ It Performs lexing, parsing and type
checking similar to compiler.

Source
Code

Interpreter

Output Code

64

Panchatcharam M August 2025

Interpreter

◼ Processes syntax tree directly access
expressions and executes statements
rather than generating code from the
syntax tree

◼ Require processing same syntax tree
more than once. Slower than compiler

Source
Code

Interpreter

Output Code

65

Panchatcharam M August 2025

Interpreter

• Large HLL to ML takes more time to
compile

• Interpreters: Developed to execute
HLL directly

• No compilation delay

• Slower than compiled programs

Source
Code

Interpreter

Output Code

66

Panchatcharam M August 2025

Compiler vs Interpreter

67

Panchatcharam M August 2025

Compiler vs Interpreter

Process Compiler Interpreter

Input Takes an entire program at
a time

Takes a single line of code
at a time

Output Generates intermediate
object code

Won’t produce any
intermediate object code

When? Before execution Simultaneous compilation
and execution

Speed Faster Slower

Memory Requirement More for object code less, no object code

Errors All errors at a time after
compilation, difficult

Error, line by line, easier

68

Program paradigms

69

Panchatcharam M August 2025

Program Paradigms

• It is a subset of declarative programming

• Tries to express problems in mathematical equations &

functions

• Goes out of its way to avoid concepts of states, mutable

variables

• Focus more on specifying what a language is supported to

accomplish rather than by what means it is suppose to

accomplish.

• Use to avoid undesired side-effects

• Focus on writing skeleton algorithms in terms of types that will be
specified when the algorithm is actually used.

• Allows leniency to programmers to avoid strict strong typing rules
• Powerful paradigm if well-implemented

• Allow programmers to give the computer-ordered list of
instructions without necessarily have to effectively state the task

• Opposite of declarative languages

01 02

03 04

Declarative Functional

ImperativeGeneric

Panchatcharam M August 2025

Program Paradigms

• Imperative structured programming language

• Support concepts of procedure, subroutines and functions

• Examples: C++, C, Fortran, Python

• Provide some form of noteworthy structure to language

• Intuitive control over the order in which statements are

executed

• Examples: C, C++

• Subset of structured

• Expresses in terms of objects

• Objects mean to objects in the real

world

• Reusable, remarkable

• Easy to understand and use

05 06

07 07

Structured Procedural

Object OrientedObject Oriented

Panchatcharam M August 2025

Top Salaried Languages

72

https://survey.stackoverflow.co/2024/technology#4-top-paying-technologies

Panchatcharam M August 2025

Top Salaried Languages

73

https://survey.stackoverflow.co/2024/technology#4-top-paying-technologies

Panchatcharam M August 2025

Most Popular Languages

74

https://survey.stackoverflow.co/2022#most-popular-technologies-language

https://survey.stackoverflow.co/2022#most-popular-technologies-language
https://survey.stackoverflow.co/2022#most-popular-technologies-language
https://survey.stackoverflow.co/2022#most-popular-technologies-language
https://survey.stackoverflow.co/2022#most-popular-technologies-language
https://survey.stackoverflow.co/2022#most-popular-technologies-language
https://survey.stackoverflow.co/2022#most-popular-technologies-language
https://survey.stackoverflow.co/2022#most-popular-technologies-language

Panchatcharam M August 2025

Admired and Desired

75

https://survey.stackoverflow.co/2024/technology

Panchatcharam M August 2025

Further Reading

76

https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global

https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn

https://cs.lmu.edu/~ray/notes/paradigms/

https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://insights.stackoverflow.com/survey/2020#technology-what-languages-are-associated-with-the-highest-salaries-worldwide-global
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://cs.lmu.edu/~ray/notes/paradigms/

Panchatcharam M August 2025

Basics of C++

77

Panchatcharam M

C++

78

Panchatcharam M August 2025

What is C++?

• A programming language

• Open ISO-Standardized language: Since 1998

• A compiled language

79

Panchatcharam M August 2025

Features

80

✓Strongly-type unsafe language
✓Supports both manifest and inferred typing
✓Supports both static and dynamic type

checking
✓Offers many paradigm of choices:

procedural, generic, OOPS

Panchatcharam M August 2025

Features

81

✓Portable: same code may work with
different C++ compilers, e.g, code
developed in g++ can run on MSVC

✓Upwards compatible with C: Can use C
libraries with few or no modifications

Panchatcharam M August 2025

Features

82

✓Incredible library support: More than 3000
C++ libraries in Sourceforge

✓Classes, Inheritance, inline, default
function arguments, virtual function,
function overloading, references, operator
overloading,

History

83

Panchatcharam M August 2025

History

• 1979: Bjarne Stroustrup, Ph. D Thesis

• Worked with Simula 67 language
(designed for simulations, a first OOP
paradigm)

• Worked on "C with classes"

• Constructed a superset of C language

• Included classes, inheritance, default
function arguments

84

Panchatcharam M August 2025

History

• First C with classes compiler: Cfront

• 1983: C with classes became C++

• ++ is an increment operator in C
language to denote that many
features added to C language

• 1985: The C++ Programming
language by Stroustrup was
published

85

Panchatcharam M August 2025

History

• 2003: C++03

• 2005: C++0x

• 2011: C++11

• 2014: C++14

• 2017: C++17

• 2020: C++20

• 2023: C++23 (Dec)

86

❖ 1990: The Annotaed C++ Reference

Manual was released

❖ 1990: Turbo C++ commercially released

❖ 1998: Standardized, C++ISO/IEC

14882:1998 or C++98

Applications

87

Panchatcharam M August 2025

Applications

88

• Operating System Development
• Embedded systems
• Real-time systems
• Communication Systems

Panchatcharam M August 2025

Applications of C++

Education

Web and Internet Development

Scientific and Numeric

Software DevelopmentGUIs

Business applications

Gaming

AI & ML

89

RoboticsDatabase Networking

Panchatcharam M August 2025

Applications of C++

90

C++ development stages

91

Panchatcharam M August 2025

STAGES

92

Editing

Preprocessing

Compiling

Linking

Loading

Executing

Debugging

Panchatcharam M August 2025

Phase-1: Editing

93

• Editing or creating a C++ file
• gedit, vim, emacs
• Eclipse, MSVC, geany, DevC
• Store the program on secondary hard disk
• Save the file name with an extension .cpp

Panchatcharam M August 2025

Phase-2: Preprocessing

94

While the compiler translates the C++ program to ML or
object code

Including other files for compilation

Preprocessor program obeys preprocessor directives

Panchatcharam M August 2025

Phase-3: Compiling

95

Compiler
translates the
C++ program

to ML or
object code

Compile error
due to syntax

error, violating
the rules of

the language

Issues an error
message to fix

the error

Error message
may differ

from system
to system

Panchatcharam M August 2025

Phase-4: Linking

• References of functions defined
elsewhere

• Object code provided by many
programmers are linked

• Object code produced by the compiler
has holes due to missing parts

• Links the object code for the missing
functions

• Produces an executable image

96

Panchatcharam M August 2025

Phase-4: Linking

97

1. Usually, Phase 2,3 and 4 can be
done by a single command for
smaller program
2. g++ FileName.cpp
3. It compiles, links and creates an
executable a.out

Panchatcharam M August 2025

Phase-5: Loading

98

* Before Execution

* Must be placed in memory first

* Loader loads executable image from disk to memory

* Additional components from shared libraries required
for the program

Panchatcharam M August 2025

Phase-6: Executing

99

Under the control
of CPU

Executes one
instruction at a

time

To load and
execute, ./a.out

Provides necessary
input from stdin(a

keyboard)

Produces output to
stdout(a computer

screen)

stderr: to display
the error to the

screen

Panchatcharam M August 2025

Debugging

100

Not necessary to produce error free
code in first attempt

Syntax error, runtime error,
segmentation fault

Make necessary corrections depending
on the code and repeat all steps

GNU G++

101

Panchatcharam M August 2025

GNU C++

102

✓GNU is an operating system

that is free software,

contains no Unix code

✓Contains many GNU packages

✓GNU's Not Unix!. It is a

recursive acronym

✓Its design is Unix-like, but

differ from Unix

Panchatcharam M August 2025

GNU Compile Collection

103

✓Contains collection of

compilers

* C, C++, Objective-C, Fortran, Ada, Go,

Panchatcharam M August 2025

Further Reading

104

https://devdocs.io/cpp/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf
http://www.cplusplus.com/

https://devdocs.io/cpp/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf
http://www.cplusplus.com/

	Slide 1: Programming: What? Why? How?
	Slide 2: Programming: What?
	Slide 3: Programming: What?
	Slide 4: Programming: What?
	Slide 5: Core concepts of Programming
	Slide 6: Programming: where?
	Slide 7: Interdisciplinary Research
	Slide 8: Examples
	Slide 9: Examples
	Slide 10: Examples
	Slide 11: Examples: Robotic Pipe Welding
	Slide 12: Trending Technologies
	Slide 13: AI
	Slide 14: ML
	Slide 15: My Experiences
	Slide 16: My Experiences
	Slide 17: Programming: Why?
	Slide 18: Programming: Why?
	Slide 19: Programming: Why?
	Slide 20: Programming: Famous quotes?
	Slide 21: Programming: quotes?
	Slide 22: Programming: quotes?
	Slide 23: Programming: quotes?
	Slide 24: Programming: HOW?
	Slide 25: Beginners
	Slide 26: Beginners
	Slide 27: Beginners
	Slide 28: Beginners
	Slide 29: Data Structures and Algorithms
	Slide 30: How to develop code
	Slide 31: How to develop code
	Slide 32: Do’s and Don’ts
	Slide 33: Compiler vs Interpreter
	Slide 34: Computer basics
	Slide 35: Computer Systems
	Slide 36: Application Programs
	Slide 37: Four Basic Points
	Slide 38: Hardware
	Slide 39: Software
	Slide 40: Moore’s Law
	Slide 41: languages
	Slide 42: Machine Language
	Slide 43: Assembly Language
	Slide 44: High Level Language
	Slide 45: High Level Language
	Slide 46: compiler
	Slide 47: Compiler
	Slide 48: Compiler
	Slide 49: 6 Phases Compiler
	Slide 50: Lexical Analyzer (Scanning)
	Slide 51: Lexical Analyzer (Scanning)
	Slide 52: Syntax Analyzer (Parser))
	Slide 53: Syntax Analyzer (Parser)
	Slide 54: Semantic Analyzer (Meaning)
	Slide 55: Semantic Analyzer (Meaning)
	Slide 56: Intermediate Code Generation (IR)
	Slide 57: Intermediate Code Generation (IR)
	Slide 58: Code Optimizer
	Slide 59: Code Optimizer
	Slide 60: Code Generator
	Slide 61: Code Generator
	Slide 62: 6 Phases of Compilers
	Slide 63: interpreter
	Slide 64: Interpreter
	Slide 65: Interpreter
	Slide 66: Interpreter
	Slide 67: Compiler vs Interpreter
	Slide 68: Compiler vs Interpreter
	Slide 69: Program paradigms
	Slide 70: Program Paradigms
	Slide 71: Program Paradigms
	Slide 72: Top Salaried Languages
	Slide 73: Top Salaried Languages
	Slide 74: Most Popular Languages
	Slide 75: Admired and Desired
	Slide 76: Further Reading
	Slide 77: Basics of C++
	Slide 78: C++
	Slide 79: What is C++?
	Slide 80: Features
	Slide 81: Features
	Slide 82: Features
	Slide 83: History
	Slide 84: History
	Slide 85: History
	Slide 86: History
	Slide 87: Applications
	Slide 88: Applications
	Slide 89: Applications of C++
	Slide 90: Applications of C++
	Slide 91: C++ development stages
	Slide 92: STAGES
	Slide 93: Phase-1: Editing
	Slide 94: Phase-2: Preprocessing
	Slide 95: Phase-3: Compiling
	Slide 96: Phase-4: Linking
	Slide 97: Phase-4: Linking
	Slide 98: Phase-5: Loading
	Slide 99: Phase-6: Executing
	Slide 100: Debugging
	Slide 101: GNU G++
	Slide 102: GNU C++
	Slide 103: GNU Compile Collection
	Slide 104: Further Reading

