
MA517M-Basic Programming Laboratory
Laboratory 3 : Selection

Panchatcharam Mariappan1

1Associate Professor
Department of Mathematics and Statistics

IIT Tirupati, Tirupati

August 18, 2025

Assignment Operator

1

Assignment Operator

• An Assignment statement has three components: lvalue, equal sign (=),
rvalue

• It assigns the literal value of the RHS to a variable of the LHS:
• example x = 5;
• or It evaluates an expression of the RHS and assigns the result to a

variable of the LHS. c = a + b;
• The expression on the RHS is evaluated first to produce an rvalue, and the

result is assigned to the variable in the LHS or lvalue

2

Assignment Operator

• Note: The LHS must be a variable. It must not contain any expressions.
The following are invalid assignment statements

• a + b = c
• 5 = x
• Note: The = sign in mathematics is different than in programming.
• x = x + 1 is illegal in mathematics, but valid in C++
• a + b = c is legal in mathematics, but invalid in C++
• a + b = c + d is legal in mathematics, but invalid in C++

3

Overflow/Underflow

4

Overflow/Underflow

• You will often encounter underflow and overflow in your research or
programming in the lab.

• It is a programmer’s responsibility to check the overflow and underflow
Overflow occurs while you assign a value less than the maximum permissible
value.

5

Overflow

1 #include <iostream >
2 using namespace std;
3 int fact(int n)
4 {
5 if(n==0)
6 return 1;
7 else
8 return n*fact(n-1);
9 }

10 int main()
11 {
12 int n;
13 cout <<"Enter n"<<endl;
14 cin >>n;
15 cout <<n<<"! = "<<fact(n)<<endl;
16 return 0;
17 }

Give the input as 5, and you will get proper input. If you change the input to 12,
you will still get the correct answer. But when you use 20 as the input, you will
get a negative number or a wrong answer from 13 onward. Why?

6

Overflow

• When the number exceeds INT_MAX which we have found from Example 2
of Lab2 shows that, it is 2147483647. However, 12!= 479001600, whereas
13!=6227020800 which exceeds INT_MAX. Therefore, it is an overflow.

• If you change int as long int, then you will get the correct answer for 13 to
20!. However, this also has a limitation. Check!

7

Underflow
Underflow occurs while you assign a value less than the minimum value.
Consider the following example,

1 #include <iostream >
2 using namespace std;
3 int main()
4 {
5 int n = -2147483640;
6 int m = 50000;
7 cout <<n-m<<endl;
8 return 0;
9 }

n-m should be negative, but when you execute the program, you will get a
positive number, because it is an underflow error. Since INT_MIN is
−2147483647, we get this error.

8

Compound Assignment
Operators

9

Compound Assignment Operators
Apart from the simple assignment operator, we can combine the arithmetic
operators with the assignment operator as follows:

Operator Description Example Result
+= varName+=expression varName = varName + expression x+=2;
-= varName+=expression varName = varName + expression x-=2;
*= varName+=expression varName = varName * expression x*=2;
/= varName+=expression varName = varName * expression x/=2;
%= varName=expression varName = varName % expression x%=2;

10

Relational Operators

11

Relational Operators
It checks the relationship between two operands, returns 1 if the relation is true
and returns 0 if the relation is false. For the example, we have int x=2,y=3;

Operator Syntax Description Example Result
> Expression1>Expression2 Greater than x>y False (0)
< Expression1<Expression2 Less than x<y True (1)
>= Expression1>=Expression2 Greater than or Equal to x>=y False (0)
<= Expression1<=Expression2 Less than or Equal to x<=y True (1)
== Expression1==Expression2 Equal to x==y False (0)
!= Expression1!=Expression2 Not Equal to x!=y True (1)

Note: a + b = c + d is not valid in C++, but a + b == c + d is valid in C++. The first one is an
assignment operator, whereas the second one is a relational operator that verifies whether the
relation between lvalue and rvalue is true or not.

12

Logical Operators

13

Logical Operators
It checks the relationship between two operands, returns 1 if the relation is true,
and returns 0 if the relation is false. For example, we have
int x=2,y=3,z=4;

Operator Syntax Meaning Example
&& Logical AND x>y && x<z False (0) AND TRUE (1) = FALSE (0)

x<y && x<z TRUE (1) AND TRUE (1) = TRUE (1)
x<y && x>z TRUE (1) AND FALSE (0) = FALSE (0)
x>y && x>z FALSE (0) AND FALSE (0) = FALSE (0)

|| Logical OR x>y || x<z FALSE (0) OR TRUE (1) = TRUE (1)
x<y || x<z TRUE (1) OR TRUE (1) = TRUE (1)
x<y || x>z TRUE (1) AND FALSE (0) = TRUE (1)
x>y || x>z FALSE (0) OR FALSE (0) = FALSE (0)

! Logical NOT !(x==y) NOT FALSE (0) = TRUE (1)
!(x<y) NOT TRUE (1) = FALSE (0)

14

Selection/Decision
Making: if Condition

15

if condition
It checks the relationship between two operands, returns 1 if the relation is true,
and returns 0 if the relation is false. For the example, we have int x=2,y=3;
When there are multiple choices available to select from, we can use
decision-making to select based on the requirement
• It is useful if you want to execute the code only if the given condition is true

Syntax

1 // if-then
2 if (booleanExpression)
3 {
4 true -block ;
5 }

16

Example

1 #include <iostream >
2 using namespace std;
3 int main()
4 {
5 int x=8;
6 if (x%2==0)
7 {
8 cout <<"The given number is even"<<endl;
9 }

10 return 0;
11 }

17

Example

Figure 1: Flowchart

18

if..else condition

1. It is useful if you want to execute a code block when the condition is true
and another code block if the condition is false

2. This is a fundamental control structure in programming that allows for
decision-making based on conditions

3. This is also known as Binary Decision Making
4. Short-Circuit Evaluation: In a condition with logical operators (&&, ||),

C++ uses short-circuit evaluation

19

if..else condition
Syntax

1 // if-else
2 if (booleanExpression)
3 {
4 true -block ;
5 }
6 else
7 {
8 false -block
9 }

20

Example

1 #include <iostream >
2 using namespace std;
3 int main()
4 {
5 int x=5;
6 if (x%2==0)
7 {
8 cout <<"The given number is even"<<endl;
9 }

10 else
11 {
12 cout <<"The given number is odd"<<endl;
13 }
14 return 0;
15 }

21

Example
For given two integers, find which one is smaller than the other

1 #include <iostream >
2 using namespace std;
3 int main()
4 {
5 int a,b;
6 cout <<"Enter two integers , let me tell you their relations"<<endl;
7 cout <<"Enter the first integer: "<<endl;
8 cin >>a;
9 cout <<"Enter the second integer: "<<endl;

10 cin >>b;
11
12 if(a<b)
13 {
14 cout <<a<<" is smaller than "<<b<<endl;
15 }
16 else
17 {
18 cout <<b<<" is smaller than "<<a<<endl;
19 }
20 return 0;
21 }

22

Example

Figure 2: Flowchart

23

Ternary Conditional
Operator

24

Example

• The ternary conditional operator ?: can sometimes replace a simple
if-else statement for compact code.

• It is a compact form of an if-else statement
Syntax

1 booleanExpression? true -block: false -block;

Example
1 #include <iostream >
2 using namespace std;
3 int main()
4 {
5 int x=5, y=8;
6 int max=(x>y)?x:y; // Ternary Conditional Operator
7 cout <<"max("<<x<<","<<y<<" = "<<max <<endl;
8 return 0;
9 }

25

Benefits and Warning

• It makes your code more concise, especially for simple conditional
assignments.

• Readability: It can improve readability when used in simple situations
• Reduces the amount of code needed
• Don’t use it for complex expressions or nested ternary operations
• If you need to perform more complex logic, use multiple if-else

statements

26

Nested if

27

Nested if
It is a if statement placed inside another if or else statement. This allows
you to test multiple conditions in a hierarchical manner. Syntax

1 if (boolExpr -1)
2 {
3 // Block of code executed if boolExpr -1 is true
4 if (boolExpr -2)
5 {
6 // Block of code executed if boolExpr -1 & boolExpr -2 are both true
7 if (boolExpr -3)
8 {
9 // Block of code executed if boolExpr -1, boolExpr -2, and boolExpr -3 are all true

10 }
11 else
12 {
13 // Block of code executed if boolExpr -1 and boolExpr -2 are true , but boolExpr -3 is false
14 }
15 }
16 else
17 {
18 // Block of code executed if boolExpr -1 is true , but boolExpr -2 is false
19 }
20 }
21 else
22 {
23 // Block of code executed if boolExpr -1 is false
24 } 28

Example
1 bool Valid = true;
2 int correctPIN = 1234, yourPIN;
3 double Bal = 50000.0 , withdraw;
4 cout << "Welcome to the ABC Bank ATM!\n Insert Your ATM Card!\n";
5 if (Valid) {
6 cout << "Please enter your PIN: ";
7 cin >> yourPIN;
8 if (yourPIN == correctPIN)
9 {

10 cout << "Enter amount to withdraw: ";
11 cin >> withdraw;
12 if (withdraw <= Bal)
13 {
14 Bal -= withdraw;
15 cout << "Please collect your cash. Remaining balance: " << Bal << "\n";
16 }
17 else {
18 cout << "Insufficient funds. Transaction canceled .\n";
19 }
20 }
21 else {
22 cout << "You have Entered a Wrong PIN. Transaction canceled .\n";
23 }
24 }
25 else
26 {
27 cout << "Invalid card. Please contact your bank.\n";
28 } 29

Example

Figure 3: Flowchart 30

Benefits and Warning

• Hierarchical Decision Making
• Readability
• Conditional Dependence
• Deeply nested if statements can make the code harder to read and

maintain
• If the nesting becomes too deep, consider refactoring using else if
• Nested if statements can become difficult to follow, especially if the logic

is complex

31

if..else if .. else

32

if..else if .. else
This allows for executing different blocks of code based on multiple conditions.
It is useful if you want to execute a
1. first code-block when first condition is true
2. second code-block if the second condition is true but the first condition is

false
3. third code-block if the third condition is true but the first two conditions

are false
4. kth code-block if the kth condition is true but the previous k − 1 conditions

are false
5. else block, if none of the conditions are true.

33

if..else if .. else
It is a if statement placed inside another if or else statement. This allows
you to test multiple conditions in a hierarchical manner. Syntax

1 // if..else if .. else
2 if (booleanExpr -1) {
3 block -1 ;
4 }
5 else if (booleanExpr -2) {
6 block -2 ;
7 }
8 else if (booleanExpr -3) {
9 block -3 ;

10 }
11 .
12 .
13 .
14 else if (booleanExpr -k) {
15 block -k ;
16 }
17 else {
18 elseBlock ;
19 }

34

Example

Figure 4: Flowchart

35

Example

1 if (mark >= 90)
2 {
3 cout << "S Grade" << endl;
4 }
5 else if (mark >= 80)
6 {
7 cout << "A Grade" << endl;
8 }
9 else if (mark >= 70)

10 {
11 cout << "B Grade" << endl;
12 }
13 else if (mark >= 60)
14 {
15 cout << "C Grade" << endl;
16 }
17 else if (mark >= 50)
18 {
19 cout << "D Grade" << endl;
20 }
21 else
22 {
23 cout << "E Grade" << endl;
24 }

36

Example : Smallest of three integers
1 #include <iostream >
2 using namespace std;
3 int main(void)
4 {
5 int a,b,c;
6 cout <<"Enter three integers , let me find the smallest integer"<<endl;
7 cout <<"Enter the first integer: "<<endl;
8 cin >>a;
9 cout <<"Enter the second integer: "<<endl;

10 cin >>b;
11 cout <<"Enter the third integer: "<<endl;
12 cin >>c;
13
14 if(a<b && a<c)
15 {
16 cout <<a<<" is the smallest integer"<<endl;
17 }
18 else if(b<a && b<c)
19 {
20 cout <<b<<" is the smallest integer"<<endl;
21 }
22 else
23 {
24 cout <<c<<" is the smallest integer"<<endl;
25 }
26
27 return 0;
28 } 37

Benefits and Warning

• Efficient Decision Making
• Readability
• Flexibility

38

Switch

39

switch

1. An alternate for long if ... else if ... else statements
2. Multiway branch statement
3. Useful to check a single variable for different conditions

40

switch
Syntax

1 switch (n)
2 {
3 case constant1:
4 //Code to be executed
5 break;
6 case constant2:
7 //Code to be executed
8 break;
9 .

10 .
11 .
12 case constantN:
13 //Code to be executed
14 break;
15 default:
16 //code to be executed if any of the above don’t match
17 }

41

Example:Traffic Light Simulation

1 #include <iostream >
2 using namespace std;
3 int main()
4 {
5 char sig;
6 cout <<"Enter the Signal"<<endl;
7 cin >>sig;
8
9 switch(sig)

10 {
11 case ’R’:
12 cout <<"Stop"<<endl;
13 break;
14
15 case ’Y’:
16 cout <<"Ready"<<endl;
17 break;
18
19 case ’G’:
20 cout <<"Go"<<endl;
21 break;
22 default:
23 cout <<"Invalid Signal"<<endl;
24 }
25 return 0;
26 }

42

Example: Simple Calculator

1 #include <iostream >
2 using namespace std;
3 int main()
4 {
5 char op;
6 double a,b,c;
7
8 cout <<"Enter an operator (+, -, *, /):"<<

endl;
9 cin >>op;

10
11 cout <<"Enter the first number: "<<endl;
12 cin >>a;
13
14 cout <<"Enter the second number: "<<endl;
15 cin >>b;
16
17 switch(op)
18 {
19 case ’+’:
20 c = a + b;
21 cout <<a<<" + "<<b<<" = "<<c<<endl;
22 break;

21 case ’-’:
22 c = a - b;
23 cout <<a<<" - "<<b<<" = "<<c<<endl;
24 break;
25 case ’/’:
26 if (b==0) {
27 cout <<"Division by zero is not possible"<<endl;
28 }
29 else {
30 c=a/b;
31 cout <<a<<"/"<<b<<" = "<<c<<endl;
32 }
33 break;
34 case ’*’:
35 c = a*b;
36 cout <<a<<" * "<<b<<" = "<<c<<endl;
37 break;
38
39 // operator is doesn’t match any case constant (+, -,

*, /)
40 default:
41 cout <<"Invalid Operator"<<endl;
42 }
43 return 0;
44 } 43

Tips

While writing the code, always make proper indentation, so that you
can differentiate between the loops, if, start, and end of each block
will be readable

44

Tips

Dangline else Problem: When if-else statements are nested with-
out braces {}, it can lead to ambiguity known as the dangling else
problem, where it’s unclear which if the else belongs to. Remedy:
Always use braces {} to clearly define blocks.

45

Tips

Using operator == for assignment or using operator = for equality is

a logical error.

46

Thanks
Doubts and Suggestions

panch.m@iittp.ac.in

47

