
MA517M-Basic Programming Laboratory
Laboratory 4 : Repetition and Arrays

Panchatcharam Mariappan1

1Associate Professor
Department of Mathematics and Statistics

IIT Tirupati, Tirupati

August 28, 2025

Increment/Decrement
Operators

1

Increment/Decrement Operators
Increment (++) and decrement (- -) operators change the value of the operand
(integer variable) by 1. Assume x = 10;

Operator Description Example Result
++ Increases the integer value by 1 x++ 11
- - Decreases the integer value by 1 x- - 9

2

Bitwise Operators

• These operators perform bit-level operations.
• For example, If a = 10 and b = 15, then their binary format is a = 00001010

and b = 00001111.
• Now, &, |, ^ , ~denote respectively AND, OR, XOR, and Complement

operators.
• For example, c=a&b = 0000 1010.

3

Bitwise Operators

Operator Description Example Result
& Binary AND operator c = a & b 0000 1010
| Binary OR operator c = a|b 0000 1111
^ Binary XOR operator c = a ^ b 0000 0101
~ Binary complement (Unary) c = ~a 1111 0101
<< Binary Left shift operator c = a<<2 0010 1000
>> Binary Right shift operator c = a>>2 0000 0010

4

for Loop

5

for Loop Syntax

1 for (initialization; condition; updateStatment)
2 {
3 statement(s);
4 }

6

for Loop

• Repetition structure
• Initialization: declare and initialize any loop variables. Executed once
• Condition: Evaluated at each step. If the condition is true, the body of the

loop is executed. Otherwise, it jumps out of the loop
• UpdateStatement: Evaluated at each step. Once the body of the loop is

executed, the loop variable is incremented or decremented, or updated
• Entry controlled loop

7

while Loop

8

while Loop Syntax

1 while (condition)
2 {
3 statement(s);
4 }

9

while Loop

• Repetition structure
• Condition: Evaluated at each step. If the condition is true, the body of the

loop is executed. Otherwise, it exits from the loop
• Entry controlled loop

10

do..while Loop

11

do..while Loop Syntax

1 do
2 {
3 statement(s);
4 }while (condition);

12

for Loop

• Similar to a while loop, but exit exit-controlled loop. That is, the body of the
loop is executed at least once, irrespective of whether the condition is true
or false.

13

Examples

14

Examples
Write a C++ program to calculate the sum of the first n natural numbers using a
for loop.

1 #include <iostream >
2 using namespace std;
3 int main()
4 {
5 int n,sum;
6 cout <<"Enter the integer to get the sum of 1 to n: "<<endl;
7 cin >>n;
8 if (n<=0)
9 {

10 cout <<"Invalid Input"<<endl;
11 return 0;
12 }
13 sum =0;
14 for(int i=0;i<n;i++)
15 {
16 sum+=i;
17 }
18 cout <<"The sum first "<<n<<" natural numbers = "<<sum <<endl;
19 return 0;
20 }

15

Examples
Write a C++ program to calculate the sum of the first n natural numbers using a
while loop.

1 #include <iostream >
2 using namespace std;
3 int main()
4 {
5 int n, sum;
6 cout <<"Enter the integer to get the sum of 1 to n: "<<endl;
7 cin >>n;
8 if (n<=0)
9 {

10 cout <<"Invalid Input"<<endl;
11 return 0;
12 }
13 sum =0;
14 int x=n;
15 while (n!=0)
16 {
17 sum+=n;
18 n--;
19 }
20 cout <<"The sum first "<<x<<" natural numbers = "<<sum <<endl;
21 return 0;
22 }

16

Examples
Write a C++ program to get the number of voters (at least 6). Each voter should
vote for one of the following choices.
1. Cup
2. Candle
3. Chalk
4. Pen
5. Pencil

Count the number of votes for each choice and then print.

17

Examples
Count the number of votes for each choice and then print.

1 #include <iostream >
2 using namespace std;
3 int main()
4 {
5 int n, vote;
6 int cup=0,candle=0,pen=0,pencil=0,chalk =0;
7 cout <<"Enter the number of voters "<<endl;
8 cin >>n;
9

10 int i=0;
11 while(i<n)
12 {
13 cout <<"Voter "<<i+1<<" : Enter one of the following numbers to Vote: "<<endl;
14 cout <<"1. Cup"<<endl;
15 cout <<"2. Candle"<<endl;
16 cout <<"3. Chalk"<<endl;
17 cout <<"4. Pen"<<endl;
18 cout <<"5. Pencil"<<endl;
19 cin >>vote;

18

Examples
Count the number of votes for each choice and then print.

1 switch(vote) {
2 case 1:
3 cup ++; i++;
4 break;
5 case 2:
6 candle ++;i++;
7 break;
8 case 3:
9 chalk ++;i++;

10 break;
11 case 4:
12 pen ++;i++;
13 break;
14 case 5:
15 pencil ++;i++;
16 break;
17 default:
18 cout <<"Invalid Input , ReEnter"<<endl;
19 } }
20 cout <<"Number of Votes for Cup: "<<cup <<endl;
21 cout <<"Number of Votes for Candle: "<<candle <<endl;
22 cout <<"Number of Votes for Chalk: "<<chalk <<endl;
23 cout <<"Number of Votes for Pen: "<<pen <<endl;
24 cout <<"Number of Votes for Pencil: "<<pencil <<endl;
25 return 0;}

19

Examples
Write a C++ program to find all prime numbers between 1 to n.

1 #include <iostream >
2 using namespace std;
3 int main()
4 {
5 int n, Prime;
6
7 cout <<"Enter an integer to find prime numbers between 1 to n: "<<endl;;
8 cin >>n
9 cout <<"Prime numbers between 1 to "<<n<< "are\n:";

10 for(int i=2; i<=n; i++){
11 Prime = 1;
12 for(int j=2; j<=i/2; j++){
13 if(i%j==0){
14 Prime = 0;
15 break; }}
16 if(Prime ==1)
17 cout <<i<<"\t";
18 }
19 cout <<endl;
20 return 0;
21 }

20

Comparison

21

Comparison

• How do you modify the above program using a do..while loop?
• Create a table to list the differences between the for loop, the while loop,

and the do..while loop.
• What are definite conditions and indefinite conditions?

In general, there’s no strict rule that one loop type is inherently better than
the other. It’s about choosing the loop type that fits the specific problem
you’re trying to solve. If you know the exact number of iterations, a for loop
might be more appropriate. If the number of iterations depends on a
condition, a while loop might be the better choice.

22

Comparison
For loops:
1. Definite iteration: for loops are particularly useful when you know the

exact number of times you want to iterate through a block of code. They
are great for iterating over collections like lists, arrays, or ranges.

2. Simple counting: When you want to iterate a fixed number of times, such
as performing an action on each element of a list.

3. Sequential iteration: When you need to process elements in a sequential
manner, like going through the characters in a string.

23

Comparison
While loops:
1. Indefinite iteration: while loops are used when you don’t know in advance

how many times the loop needs to execute. They continue running as long
as a specified condition is met.

2. Dynamic conditions: When the loop termination depends on some
dynamic condition that may change during the loop’s execution.

3. User input validation: For repeatedly prompting a user for input until they
provide a valid response.

24

Comparison

• Too many nesting levels will be difficult to understand
• Better to avoid controlling counting loops with floating-point variables
• Control counting loops with integer values
• Place only expressions involving the control variables in the initialization

and increment sections of a for statement
• Using commas instead of semicolons in a for header is a syntax error
• Infinite loops: When the condition in the for or while loop never becomes

false. To prevent infinite loops, ensure that you do not place a semicolon
Immediately after a while statement’s header. Make sure the The control
variable is incremented (or decremented) in the loop.

• Better to avoid a change of variable in the body of the for loop
• Don’t confuse with == operator and = operator in conditions

25

Arrays

26

Arrays

• Sequential collection of homogeneous data
• Contiguous memory locations
• One Dimensional
• Multidimensional
• Access elements by indices
• Possible to initialize during declaration
• It is identified by square brackets

27

Arrays
To declare an array, you need four things:
1. Variable Name
2. data type
3. size of the array or length of the array
4. Dimension of the array (single dimensional or multi-dimensional)

28

Arrays
Example for arrays: vectors, matrices, tensors
• In Mathematics and physics, you know scalars, vectors (do not confuse

with C++ vectors, it meant for vectors of mathematics), matrices and
tensors.

• Declaring a variable like int x = 5; are scalar type
• Vectors can be represented using one-dimensional array

29

Syntax

1 cType arrayName [arraySize];

30

Arrays

• Declaring a variable like int x[100] = {0}; is similar to defining a vector
with 100 dimensions

• Here, 100 integer variables are declared and initialized to zero at one go.
• All these 100 variables are to be allotted in a contiguous way.
• To refer to a particular location or element in the array, specify the array’s

name and the position number of the particular element in the array.
• In C++, the indexing starts from 0
• * The first element is referred by VariableName[0] Example: x[0]
• The i th element is referred by VariableName[i] Example: x[i]

31

Examples
Write a C++ program to add two vectors (Vectoraddition.cpp)

1 #include <iostream >
2 #include <cmath >
3 using namespace std;
4 int main()
5 {
6 float x[50],y[50],res [50];
7 for(int i=0;i<50;i++)
8 {
9 x[i]=0.0+i*0.5;

10 y[i]=0.0+i*0.5;
11 }
12 for(int i=0;i<50;i++)
13 {
14 res[i]=x[i]+y[i];
15 }
16 for(int i=0;i<50;i++)
17 {
18 cout <<x[i]<<" + "<<y[i]<<" = "<<res[i]<<endl;
19 }
20 return 0;
21 }

32

Examples
Write a C++ program to conduct an election poll of 11 candidates with 50
voters. Announce the result of the winning candidate.

1 #include <iostream >
2 using namespace std;
3 int main(void)
4 {
5 int candidate [11]={0};
6 int voters [50]={1 , 2, 6, 4, 8, 5, 9, 7, 8, 10,
7 1, 6, 3, 8, 6, 10, 3, 8, 2, 7, 6, 5, 7, 6, 8, 6, 7, 5, 6, 6,
8 5, 6, 7, 5, 6, 4, 8, 6, 8, 10,7,5,6,7,8,9,7,2,1};
9 int winner =0;

10 for(int i=0;i<50;i++)
11 {
12 ++ candidate[voters[i]];
13 }
14 cout <<"Candidates\t\t Votes\n";
15 for(int i=0;i<11;i++)
16 {
17 cout <<i+1<<"\t\t"<<candidate[i]<<endl;
18 }
19 //Write a code to compute the winner by finding maximum number of votes registered candidate
20 cout <<"The winner is Candidate"<< winner+1<<"and votes are "<<candidate[winner]<<endl;
21 return 0;
22 }

33

2D Array Syntax

1 datatype VariableName[RowSize][ColSize];

34

2D Arrays

1. Declaring a variable like int x[100][100] = {0} are similar to defining a
vector with 100 dimensions

2. Here, 10000 integer variables are declared and initialized to zero at one go.
3. All these 10000 variables will be allocated in a contiguous way.
4. To refer to a particular (i,j)th element of the array, use x[i][j]

5. In C++, the indexing starts from 0
6. The first element is referred by VariableName[0][0] Example: x[0][0]

35

Examples
Write a C++ program to add two matrices (Matrixaddition.cpp)

1 #include <iostream >
2 #include <cmath >
3 using namespace std;
4 int main()
5 {
6 float a[50][50] ,b[50][50] ,C[50][50];
7 int RowSize =50, ColSize =50;
8 for(int i=0;i<RowSize;i++)
9 {

10 for(int j=0;j<ColSize;j++)
11 {
12 a[i][j]=0.0+i*0.5;
13 b[i][j]=0.0+i*0.5;
14 }
15 }
16 for(int i=0;i<RowSize;i++)
17 {
18 for(int j=0;j<ColSize;j++)
19 {
20 C[i][j]=a[i][j]+b[i][j];
21 }
22 }
23 //Print
24 return 0;
25 }

36

Examples
Write a C++ program to multiply two matrices (MatrixMultiplication.cpp)

1 //Fill the rest
2 float A[m][n], B[n][p], C[m][p]
3 for(int i=0;i<m;i++)
4 {
5 for(int j=0;j<p;j++)
6 {
7 C[i][j]=0.0;
8 for(int k=0;k<n;k++)
9 {

10 C[i][j]+=a[i][k]*b[k][j];
11 }
12 }
13 }
14
15 //Fill the rest

37

Common Mistakes

• Forgetting to initialize an array
• Referring to an element outside the array bounds
• Keeping array indices below 0 when looping or going beyond its size-1

38

Thanks
Doubts and Suggestions

panch.m@iittp.ac.in

39

