C++ Classes

Panchatcharam Mariappan

Associate Professor

Department of Mathematics and Statistics,
IIT Tirupati

October 2025

Panchatcharam

1

00PS CONCEPTS

OO®S

v Programming Paradigms

= Procedural
« Modules, Data Structures, Procedures that Operate upon them

= QObjectural:
« Objects which encapsulate data and behavior
 Messages passed between objects

= Functional
 Functions, Closures, Recursion, lists, ...

October 2025 3

Panchatcharam

OO®S

Object Oriented Programming

Programming paradigm or programming language mode
Programs are organized around data or objects rather
than functions and logic

It compartmentalizes data into objects or data fields

It describes the object contents and its behaviour
through the declaration of classes or methods

v' Encapsulation: Easier to manage, variables and states
are hidden behind well-defined boundaries

SN X

AN

October 2025

Panchatcharam

OO®S

v' Easy to design software
v' Easy to maintain the software
v Reusable software

October 2025 5

Panchatcharam

What are Objects

v A data type
= Stores Data
= + Operations defined to act on the data

v' Tangible Entities (Physically exists in real world)
 Person, Student, Locker, Air Ticket, etc

v Intangible Entities (Exists logically in real world)
« Bank Account, Email, Reservation

v Interactions between objects define the system
operations

October 2025

Panchatcharam

Abstraction

*+ Take a Bank Details or Your Mobile Phone or PC
v It is not necessary that everyone should know
everything about your account
v" Manager/Administrator has a role
v' Cashier/User has a role
v" Think: A piece of code as black box
v Cannot See
v Do not need to see
v Do not want to see
v" High Coding details

October 2025

Panchatcharam

What are Objects

v’ Attributes or Data Attributes

v' Characteristics or properties of an entity in a database table
v A named piece of data or variable
v Data members (class variables and instance variables)

+ Example 2: Circle has

v' Example 1: Student has + Radius
= Name = Center
% Roll Number
= Marks + Example 3: Rectangle has
= Branch/discipline = Sides/Edges
= Vertices

What are Objects

v Methods or Procedural Attributes
v Attributes bound to functions/behavior/operators

v Example 1: Student has < Example 2: Circle has
= Average Marks Calculation e A!'ea
#= Decide Grades = Circumference

< Example 3: Rectangle has
< Area

= Circumference

Panchatcharam

October 2025 9

Messages

v A process by which class components interact
% Send data to another object
Request data from another object
Request object to perform some behaviour
v Implemented as methods (not called functions)

Functions are process that are object independent
Methods are dependent on the state of the object

October 2025

Panchatcharam

Abstraction

v' Encapsulation implements the concept of abstraction

#* Details associated with object

End user could see the public interface, but
implementation are hidden

Attributes

Methods

9oe}131U] 21|gNnd

October 2025 11

Panchatcharam

Encapsulation

v Attributes and methods are encapsulated within the logical
boundary of the object entity
% In procedural paradigms, data and functions are typically
maintained as separate entities
In Objectural paradigms, each object has attributes (data)
and methods (functions) that operates upon those
attributes

October 2025

Panchatcharam

Class

v Classes

v Classes ¢ Bundling Data
¢ A definition of objects of the same kind ¢ + Functionality

é Basic unit of OOP

é A blueprint, template or prototype that
encapsulates both static attributes and dynamic
behaviours within a box

Defines a public interface for using these boxes
easily reusable

Combines data structures and algorithms in the
same box

o & o

Panchatcharam

October 2025

Class

v Classes
¢ Bundling Data
v Classes é +FunCti0na|ity

é A collection of functions and attributes
¢ Attached to a specific name to represent an
abstract concept

v Classes
¢ User-defined prototype for an object with
attributes and methods

October 2025

Panchatcharam

Class

v Classes
¢ Bundling Data
v Classes é +FunCti0na|ity

é A collection of functions and attributes
¢ Attached to a specific name to represent an
abstract concept

v Classes
¢ User-defined prototype for an object with
attributes and methods

October 2025

Panchatcharam

Classes

v A software item that contains variables and methods

v Object Oriented Design focuses on

= Encapsulation
« dividing the code into a public interface, and a private implementation of
that interface
= Polymorphism:
« the ability to overload standard operators so that they have appropriate
behavior based on their context
* |nheritance:
« the ability to create subclasses that contain specializations of their
parents

October 2025

Panchatcharam

Instances

v View class/object as factories or templates

v" An Individual Object of a certain class

v' Each object instance takes all the properties of the class
from which it was created

Attributes Methods/Functions
Abstract + Radius = Area()
= Circumference()
Concept

Radius=6
Area()=113.1
Circumference()=37.7

Radius=3
Area()=28.27
Circumference()=18.85

Panchatcharam

October 2025 18

Class Vs Instance of a Class

v class name is the type v Instance is one specific object
» class circle (object) » Circle C1;

v Defined generically » Circle C2;
> area=pi*r*r v’ Data varies between instances

v' Defines data and methods » Cl.setRadius(5.0)
common across all » C2.setRadius (10.0)
instances » Cl.r and C2.r are different

v Instance has the structure of
the class

> Cl.area()=278.5398
> C2.area()=2314.159

Panchatcharam

October 2025

Class Vs Instance of a Class

OBJECT: c1

. dius =5
CLASS: Circle 5 P
area() » 78.5
- radius circumference

- 31.4

+ setRadius()
+ area()
+ circumferencel()

OBJECT: c2
radius =10

area() - 314.1

circumference
- 62.8

WV

October 2025 20

Panchatcharam

Class Vs Instance of a Class

Concept Description Example
Blueprint describing what all circles :

Class Uepr! 'oing W ! class Circle { ... };
have/do

Instance/Object | Actual circle with its own radius Circle c1; Circle c2;

Data Each object stores its own radius cl.radius =5, c2.radius = 10

. All objects can call the same

Function J cl.area(), c2.area()

methods

October 2025 21

Panchatcharam

OO® Terminologies

*» Object
< A unique instance of data structured defined by its class
& Contains Data Members
A Class Variables

A Instance Variables
A Methods

October 2025 22

Panchatcharam

OO® Terminologies

+ Class
< User-defined prototype for an object
= Set of attributes to characterize any object of the class
= Attributes
A Data Members(Class Variables, Instance Variables)
A Methods

A Accessed via dot notation
*» Instance

<> An individual object of a certain class

* Instantiation
@ Creation of an instance of a class

Panchatcharam

October 2025 23

OO® Terminologies

*» Class Variable
<> Shared by all instance of a class
< Defined within a class
< Qutside any of the class’ methods
< Not use as frequently as instance variable

“+ Instance Variable
< Defined inside a method
= Belongs to only to the current instance of the class

October 2025 24

Panchatcharam

OO® Terminologies

< Data Member
< A class variable
< |Instance Variable
< Holds data associated with a class and its objects

* Method
< A special kind of function that is defined in a class
definition

Panchatcharam

October 2025 25

OO® Terminologies

“* Function Overloading
< Assignment of more than one behaviour to a particular
function

“ Operator Overloading
< Assignment of more than one function to a particular
operator

* Inheritance
& Transfer of the characteristic of a class to other classes
that are derived from it

Panchatcharam

October 2025 26

OO® Terminologies

* Overriding
<> When inheriting from a class, we can alter behaviour of
the parent class by overriding function
< Declaring functions in the subclass with the same name
< More precedence over parent class

N/

*+ Polymorphism

< Two objects of different classes

& Supports same set of functions

< Attributes can be treated identically

= Implementation are different, but appears to be same

October 2025

Panchatcharam

Why Use OOP and Classes of Objects

d Do you know or care how a smartphone or TV or washing
machine or any electrical appliances or your own body??
X No. As long as you are the user of the appliances and the
appliance functions well

October 2025 28

Panchatcharam

Why Use OOP and Classes of Objects

* Group different object of the same type
+ Classes and objects are more like the real world
+ Mimic the real world
+ Minimize the semantic gap by modelling the real world
* Semantic Gap:
+ Difference Between the real world and the
representation in a computer
<+ Allow you to define an interface to some object and its
operations
+ Use it without knowing the internals
** Modularize the program into multiple objects that work
together, each has its own purpose

Panchatcharam

October 2025 29

2

\jﬂ

-

mm_-ru
D

Syntax for Classes

class ClassName
{
//Data members
private:
varTypel varl;
varType2 var2;
varType3 *var3;
varTyped vard[100];
//Member Functions
public:
ClassName (varTypel varl, varType2 var2, varType3 *var3, varTyped var4d[100]); //Constructor
Print () ;
void Functionl () ;
varTypel Function2 (varType2 var?);
varType2 Function3(varType3 *var) ;

October 2025 31

Panchatcharam

Classes

class Course
{
private:
string code;
string name;
float Marks;
char Grade;
public:
Course(string c="MAOOO1",string n="AVBACA" ,float m=0.0,char G="'S")
{
code=c;
name=n;
Marks=m;
Grade=G;
}
void CalculateGrade() ;
void Print () ;

};

Panchatcharam

October 2025 32

o Classes
éé““ e

\o> @
class|/Course

{

private: Members of the Class
string code;

string name;
float Marks;
char Grade;
public:
Course(string c="MAOOO1",string n="AVBACA" ,float m=0.0,char G="'S")
{

code=c;

name=n; Constructors of the Class
Marks=m;

Grade=G;

}
void CalculateGrade() ;

void Print () ;

Functions of the Class

};

Panchatcharam

October 2025 33

R Instance

R
ae e
\o° @
class |Course 0
int main
{ (Instance of the Class
private:
string code; Members of the Class Course Coursel ("MA5191'",
string name; "Programming Laboratory",95.0,'A");
float Marks: Coursel.CalculateGrade() ;
char Grade: Coursel.Print () ;
lpublic: return 0O;
Course(string c="MAOOOL",string
n="AVBACA" ,float m=0.0,char G='S") }
{
code=c ; Mappedtoc, n, m andG
=n: ->"MA5191"”
name=n, Constructors of the Class < 213 ,
Marks=m; » n—->“"Programming Laboratory”
Grade=G; m->95.0
} G->'A’
vold CalculateGrade() ;
void Print(); Functions| of the Class
}; Download the CPP File

Panchatcharam

October 2025 34

https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/CourseClass.cpp

Constructor

* A constructor in C++ is a special member function of a
class that is automatically called when an object is created.
» Its main purpose is to initialize the object’s data members.

*+» Has the same as the class
“+ Has no return type, not even void.
*+ |Is automatically invoked when you create an object.

October 2025 35

Panchatcharam

Constructor

* A constructor in C++ is a special member function of a

class that is automatically called when an object is created.
 Its main purpose is to initialize the object’s data members.

&

#include <iostream>
using namespace std;

class Student { . .
public: int main() { |
string name; Student sl (“Raja", 20); // constructor
int age; called automatically

// Constructor : .
Student(string n, int a)) sl.display();

{

name = nj;
age = a;

void display() {
cout << "Name: " << name << ", Age: "

<< age << endl;

October 2025 36

Implicit vs Explicit Constructor Calls

* A constructor in C++ is a special member function of a
class that is automatically called when an object is created.

X l&mmwpaﬁjmT|tlallze the object’s data members.
#include <iostream>
using namespace std; |

int main() {
;i;iicétudent { Student sl(“Raja", 20); // implicit call
string name; Student s2=Student (“Ravi”,19);/Explicit call

int age; sl.display();
// Constructor }
Student (string n, int a)

{

name = nj;
age = a;

void display() { Download the CPP File

cout <K< "Name: " << name << ", Age: "
<< age << endl;

October 2025 37

https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/StudentClass.cpp

Default Constructor

+ A constructor with no arguments.

class Box {
public:
int length;
Box() { // default constructor
length = 10;
}
b

October 2025 38

Panchatcharam

Parametrized Constructor

+ A constructor with no arguments.

class Box {
public:
int length;
Box (int 1) { // constructor
length = 1;
}

October 2025 39

Panchatcharam

Copy Constructor

*+ Used to create a new object as a copy of an existing object.

class Box {
public:
int length;
Box (const Box &b) ({ // copy constructor
length = b.length;
}

October 2025 40

Panchatcharam

Constructor Overloading

*+ Used to create a new object as a copy of an existing object.

class Rectangle {
public:
int width, height;

17} // default
w; height = h; } // parameterized

Rectangle() { width = 1; height
Rectangle(int w, int h) { width

October 2025 41

Panchatcharam

Constructor with initialization [ist

*+ A faster and preferred way to initialize members.

class Point {

int x, y;
public:

Point (int a, int b) : x(a), y(b) {} // initialization list
};

October 2025 42

Panchatcharam

Constructor

4

» Constructors cannot return a value.

* You can’t call a constructor like a normal function.

> If no constructor is defined, the compiler provides a default
one automatically.

*» Constructors can be private, useful in design patterns like

Singleton.

* o

°

L)

L X 2

4

October 2025 43

Panchatcharam

Scope (::) Operator

** The :: (scope resolution operator) connects a name to its
scope — it tells the compiler where to find or define
something.

October 2025 44

Panchatcharam

Scope (::) Operator

<+ When we declare a member function inside a class, we can
later define it outside using the :: operator.

October 2025 45

Panchatcharam

@ :: Operator

2
\25° \d functions are defined outside the class
class |[Course void Course::Print ()
{

{ cout<<"Course Code : "<<this->code<<endl;
private: cout<<"Course Name : "<<this->name<<endl;
string code; Members of the Class cout<<"Marks Scored : "<<this->Marks<<endl;

i ! cout<<"Grade : "<<this->Grade<<endl;
string name; }
float Marks; .
n c d void Course::CalculateGrade()
char Grade; {
publ 1 C: if (this->Marks>90)
L5 . — - ' this->Grade='S";
Course(string c="MAOOOL",string else if (this->Marks>20 && this->Marks<90)
n="AVBACA" ,float m=0.0,char G='S") this->Grade='A";
//Complete the rest

{ else

code=c; this->Grade='"F";

name=n;, Constructors of the Class }

Marks=m;

Grade=G; int main()

{
} - Course Coursel ("MAS191", "Programming
VOld calCUlateGrade () ; Laboratory",95‘o,'A');
volid Print () ; . Coursel.CalculateGrade() ;
Only functions are declared Coursel.Print () ;
} return 0O;
}

this - pointer

®

* In C++, every non-static member function of a class has
access to a special hidden pointer called this.

*» It points to the object that is currently calling the function.

» Differentiate between class data members and local
variables with the same name.

* Return the object itself (for function chaining).

» Pass the current object as an argument to another

function.

®

4

®

¢ o

®

L)

4

®

* @&

®

®

October 2025 47

Panchatcharam

this - pointer

“* Think of this as the word “myself” inside the class.

October 2025 48

Panchatcharam

K
\25° >

&

(2
(\’5((\

class

{

Course

private:
string code;
string name;
float Marks;
char Grade;
lpublic:

Members of the Class

n="AVBACA" ,float m=0.0,char G='S")

Course(string c="MAOOOL",string

{
code=c;
name=n, Constructors of th
Marks=m;
Grade=G;
}

};

volid CalculateGrade () ;
volid Print () ;

ass

Only functions are declared

Panchatcharam

this - pointer

functions are defined outside the class

void Course: :Print ()

{

}

void Course::CalculateGrade()

{

cout<<"Course Code : "<<this->code<<endl;
cout<<"Course Name : "<<this->name<<endl;
cout<<"Marks Scored : "<<this->Marks<<endl;
cout<<"Grade : "<<this->Grade<<endl;

“the name variable belonging to this object”.

if (this->Marks>90)

this->Grade='S";

else if (this->Marks>30 && this->Marks<90)
this->Grade="A";

//Complete the rest

else

this->Grade="F";

“the Marks variable belonging to this object”.

int main ()
{
Course Coursel ("MAS191", "Programming
Laboratory",95.0,'A");
Coursel.CalculateGrade() ;
Coursel.Print () ;
return 0O;

October 2025 49

this - pointer

class Box {
int length;
public:
Box (int 1=0) { length = 1; }
Box& setLength(int 1) {
this->length = 1;

return *this; // return the current object

}

void show() { cout << "Length = " << length << endl; }
};

int main() {
Box b;

b.setLength(10) .show(); // method chaining

Panchatcharam

October 2025 50

friend function

class Vector

{
private:
int length;
double *values;

public:

Vector (int N=0, double=0); //Constructor

Vector (const Vectoré&); // copy constructor

~Vector(){ delete [] values; } // destructor 1is defined inline

Vector& operator=(const Vectoré&); // overload assignment

void LinSpace (double x1,double xu,int n); //Linspace generates the list of equidistant n points between
x1l and xu

Vector operator+(const Vector &x); //+ operator overloading

friend Vector operator+(const Vector &x, const Vector &y); //To add two vector
friend Vector operator-(const Vector &x, const Vector &y); //Subtract x-y

friend Vector operator* (const Vector &x, double c); //c*x
friend Vector operator* (double c, const Vector &x); //X*yy
double& operator[] (int i) const { return values[i]; } // eg vI[i] = 10

double norm() ;
double norm?2 () ;
double norm(int p);
double infnorm() ;

int size() const { return length; } // return length of vector
void print () ; //prints the wvector
void save(char *); //prints the vector in a file

October 2025 51

Panchatcharam

friend function

A friend function is a function that is not a member of a class but is allowed to access the class’s private
and protected members.
P In short, it’s an outsider with special access granted by the class.

Normally, private members of a class cannot be accessed directly from outside.

But sometimes, we want two or more classes or a standalone function to work closely together and
share internal data.

Example use cases:

*Operator overloading (+, ==, etc.)

*Accessing data from two different classes simultaneously

*Debugging or utility functions that need internal details

October 2025 52

Panchatcharam

friend function

A friend function is a function that is not a member of a class but is allowed to access the class’s private
and protected members.
P In short, it’s an outsider with special access granted by the class.

Think of a friend function like a trusted guest —
It’s not part of the family (class),
but it’s trusted enough to enter private rooms (private data).

October 2025 53

Panchatcharam

friend function

A friend function is a function that is not a member of a class but is allowed to access the class’s private
and protected members.
7 In short, it’s an outsider with special access granted by the class.

Declared using friend keyword Inside class definition

Not called with dot (.) operator Called like a normal function

Accesses private/protected data If declared as a friend

Friendship is not mutual If A'is friend of B, B isn’t automatically friend of A
Friendship is not inherited Derived class doesn’t inherit friendship

October 2025 54

Panchatcharam

friend function

A friend function is a function that is not a member of a class but is allowed to access the class’s private
and protected members.
P In short, it’s an outsider with special access granted by the class.

Friend Function Member Function

Belongs to class X No Yes
Access to private data Yes (if declared friend) Yes
Called using object K No Yes
Uses this pointer X No Yes

Panchatcharam

October 2025 55

friend function

class Vector

{
private:
int length;
double *values;
public:
Vector (int N=0, double=0); //Constructor
Vector (const Vectorg); // copy constructor
~Vector(){ delete [] values; } // destructor is defined inline
Vector& operator=(const Vectoré&); // overload assignment
void LinSpace (double x1,double xu,int n); //Linspace generates the list of equidistant n points between x1 and xu
Vector operator+(const Vector &x); //+ operator overloading

friend Vector operator+(const Vector &x, const Vector &y); //To add two vector
friend Vector operator-(const Vector &x, const Vector &y); //Subtract x-y

friend Vector operator*(const Vector &x, double c); //c*x
friend Vector operator* (double c, const Vector &x); //x*yy
double& operator[] (int i) const { return values[i]; } // eg v[i] = 10

double norm() ;
double norm2();
double norm(int p);
double infnorm() ;

int size() const { return length; } // return length of vector
void print(); //prints the vector
void save(char *); //prints the vector in a file

*They are not member functions.

*They can access private members (length and values) of Vector.
*They allow flexible operations, e.g., 2.0 * v1 (scalar first) which
cannot be done easily with member functions.

October 2025 56

Panchatcharam

friend function

Vector operator+(const Vector &x,
// assume same length
Vector result(x.length);
for(int i=0; i<x.length; i++) {
result.values[i] =

const Vector &y) {

// create a vector for result

x.values[i] + y.values[i]; // access private 'values'
}
return result;
}
*Even though values is private, the friend function can access it directly.
*|If this were not a friend, you would need getter functions for values.
Panchatcharam

October 2025 57

friend function

Vector operator* (const Vector &x, double c) {
Vector result(x.length);

for(int i=0,; i<x.length; i++) {

result.values[i] = x.values[i] * c;

}

return result;

Vector operator* (double c, const Vector &x) {
return x * c;

// reuse the previous operator
}

*Friend functions create a new Vector object for the result.

*The function directly accesses the private values array, so it’s efficient.
*You avoid getters and setters, keeping syntax clean: v3 = v1 + v2;.

Panchatcharam

October 2025 58

class Student {
private:
string name;
int age;

public:

Getters and Setters Methods

// Setter for name
void setName (string n) {
name = n;

—

Q) // Setter for age (with validation)

void setAge(int a) {
if(a > 0) age = a;

else cout << "Age must be positive!" << endl;

}

// Getter for name
string getName () const ({
return name;
}
// Getter for age
int getAge () const {
return age;

}

getter

int main() {

Student s;
s.setName (“Raja"); // setter
s.setAge (20); // setter

cout << s.getName() << " is " << s.getAge()
<< " years old." << endl; // getter

s.setAge(-5); // invalid, setter prevents it
s.age=10; // compiler error

//error: 'std::string Student::name' is private
within this context
}

<4 ;Getters and setters must be used outside class to access

data attributes

Panchatcharam

October 2025 59

int main ()

{
Point P1,P2;
Pl.SetPoint(1.0,2.0,3.0);

P1.Print () ;

P2.SetPoint(3.0,4.0,5.0);

P2.Print () ;

cout<<Pl.distance (Pl,P2)<<endl;
cout<<Pl.distanceFromOrigin (P1l)<<endl;
cout<<P2.distanceFromOrigin (P2)<<endl;
cout<<Pl.distanceFromOrigin ()<<endl;
cout<<P2.distanceFromOrigin ()<<endl;
Point P3=P1l.MidPoint (P1,P2);
P3.Print () ;

//cout<<distance (P1,P2)<<endl;
cout<<distanceFromOrigin (P1l)<<endl;
cout<<distanceFromOrigin (P2)<<endl;
Point P4=MidPoint (P1,P2);

Print (P4) ;

Point P5=P1+P2;

Print (P5) ;
return 0O;

Panchatcharam

Point Class

Download the CPP File

class Point{

private:

double x, vy, z;

public:

Point (double x=0.0, double y=0.0, double z=0.0);
void SetPoint (double x, double y, double z);
Point GetPoint () ;

void SetX(double x);

void SetY (double vy);

void SetZ(double 2z);

double GetX():;

double GetY():;

double GetZz():;

void Print () ;

double distance(Point P1l, Point P2);

double distanceFromOrigin (Point P);

double distanceFromOrigin() ;

Point MidPoint (Point P1, Point P2);

const Point operator+(const Point &P) const;

October 2025 60

https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/PointClass.cpp

Vector Class

class Vector Download the HPP File

{
private: Download the CPP File
int length;

double *values;

public:

Vector (int N=0, double=0) ; //Constructor

Vector (const Vectoré&); // copy constructor

~Vector () { delete [] values; } // destructor is defined inline

Vector& operator=(const Vectoré&); // overload assignment

void LinSpace (double x1,double xu,int n); //Linspace generates the list of equidistant n points between x1 and xu
Vector operator+ (const Vector &x); //+ operator overloading

friend Vector operator+(const Vector &x, const Vector &y); //To add two vector
friend Vector operator-(const Vector &x, const Vector &y); //Subtract x-y

friend Vector operator*(const Vector &x, double c); //c*x
friend Vector operator* (double c, const Vector &x); //X*yy
double& operator[] (int i) const { return values[i]; } // eg v[i] = 10

double norm() ;
double norm2 () ;
double norm(int p);
double infnorm() ;

int size() const { return length; } // return length of vector
void print () ; //prints the vector
void save(char *); //prints the vector in a file

Panchatcharam

October 2025 61

https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/VectorClass.cpp
https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/VectorClass.hpp

Matrix Class

class Matrix

{ Download the HPP File
private:
double *values; Download the CPP File
int row, col;
public:

Matrix (const Matrix& A);
Matrix (double *val, int r, int c)//Constructor
{
TOW=r;
col=c;
values=new double[row*col];
for(int i=0;i<r;i++)
for (int J=0;j<c;j++)
values[i*c+jl=vall[i*c+]j];
}
Matrix (int M=0, int N=0, double x=0);

friend Matrix operator* (Matrix &A, Matrix &B);
friend Matrix operator+(const Matrix &A, const Matrix &B);
friend Matrix operator-(const Matrix &A, const Matrix &B);

friend Matrix operator* (double c, const Matrix &A);
double& operator[] (int i) const;
friend Vector operator* (const Matrix &A, Vector &x);

Matrix& operator=(const Matrix&);

~Matrix();//destructor
}

Panchatcharam

October 2025 62

https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/MatrixClass.cpp
https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/MatrixClass.hpp

	Slide 1: C++ Classes
	Slide 2: Oops concepts
	Slide 3: OOPS
	Slide 4: OOPS
	Slide 5: OOPS
	Slide 6: What are Objects
	Slide 7: Abstraction
	Slide 8: What are Objects
	Slide 9: What are Objects
	Slide 10: Messages
	Slide 11: Abstraction
	Slide 12: Encapsulation
	Slide 13: Glance at a class
	Slide 14: Class
	Slide 15: Class
	Slide 16: Class
	Slide 17: Classes
	Slide 18: Instances
	Slide 19: Class Vs Instance of a Class
	Slide 20: Class Vs Instance of a Class
	Slide 21: Class Vs Instance of a Class
	Slide 22: OOP Terminologies
	Slide 23: OOP Terminologies
	Slide 24: OOP Terminologies
	Slide 25: OOP Terminologies
	Slide 26: OOP Terminologies
	Slide 27: OOP Terminologies
	Slide 28: Why Use OOP and Classes of Objects
	Slide 29: Why Use OOP and Classes of Objects
	Slide 30: C++ classes
	Slide 31: Syntax for Classes
	Slide 32: Classes
	Slide 33: Classes
	Slide 34: Instance
	Slide 35: Constructor
	Slide 36: Constructor
	Slide 37: Implicit vs Explicit Constructor Calls
	Slide 38: Default Constructor
	Slide 39: Parametrized Constructor
	Slide 40: Copy Constructor
	Slide 41: Constructor Overloading
	Slide 42: Constructor with initialization list
	Slide 43: Constructor
	Slide 44: Scope (::) Operator
	Slide 45: Scope (::) Operator
	Slide 46: :: Operator
	Slide 47: this  pointer
	Slide 48: this  pointer
	Slide 49: this  pointer
	Slide 50: this  pointer
	Slide 51: friend function
	Slide 52: friend function
	Slide 53: friend function
	Slide 54: friend function
	Slide 55: friend function
	Slide 56: friend function
	Slide 57: friend function
	Slide 58: friend function
	Slide 59: Getters and Setters Methods
	Slide 60: Point Class
	Slide 61: Vector Class
	Slide 62: Matrix Class

