
Panchatcharam October 2025

C++ Classes

1

Panchatcharam Mariappan

Associate Professor

Department of Mathematics and Statistics,

IIT Tirupati

Oops concepts

2

Panchatcharam October 2025

OOPS

✓ Programming Paradigms

▪ Procedural
• Modules, Data Structures, Procedures that Operate upon them

▪ Objectural:
• Objects which encapsulate data and behavior

• Messages passed between objects

▪ Functional
• Functions, Closures, Recursion, lists, …

3

Panchatcharam October 2025

OOPS

✓ Object Oriented Programming

✓ Programming paradigm or programming language mode

✓ Programs are organized around data or objects rather

than functions and logic

✓ It compartmentalizes data into objects or data fields

✓ It describes the object contents and its behaviour

through the declaration of classes or methods

✓ Encapsulation: Easier to manage, variables and states

are hidden behind well-defined boundaries

4

Panchatcharam October 2025

OOPS

✓ Easy to design software

✓ Easy to maintain the software

✓ Reusable software

5

Panchatcharam October 2025

What are Objects

✓ A data type

 Stores Data

 + Operations defined to act on the data

✓ Tangible Entities (Physically exists in real world)

• Person, Student, Locker, Air Ticket, etc

✓ Intangible Entities (Exists logically in real world)

• Bank Account, Email, Reservation

✓ Interactions between objects define the system

operations

6

Panchatcharam October 2025

Abstraction

7

❖ Take a Bank Details or Your Mobile Phone or PC

✓ It is not necessary that everyone should know

everything about your account

✓ Manager/Administrator has a role

✓ Cashier/User has a role

✓ Think: A piece of code as black box

✓ Cannot See

✓ Do not need to see

✓ Do not want to see

✓ High Coding details

Panchatcharam October 2025

What are Objects

✓ Attributes or Data Attributes

✓ Characteristics or properties of an entity in a database table

✓ A named piece of data or variable

✓ Data members (class variables and instance variables)

8

✓ Example 1: Student has

 Name

 Roll Number

 Marks

 Branch/discipline

❖ Example 3: Rectangle has

 Sides/Edges

 Vertices

❖ Example 2: Circle has

 Radius

 Center

Panchatcharam October 2025

What are Objects

✓ Methods or Procedural Attributes

✓ Attributes bound to functions/behavior/operators

9

✓ Example 1: Student has

 Average Marks Calculation

 Decide Grades

❖ Example 3: Rectangle has

 Area

 Circumference

❖ Example 2: Circle has

 Area

 Circumference

Panchatcharam October 2025

Messages

10

✓ A process by which class components interact

 Send data to another object

 Request data from another object

 Request object to perform some behaviour

✓ Implemented as methods (not called functions)

 Functions are process that are object independent
 Methods are dependent on the state of the object

Panchatcharam October 2025

Abstraction

11

✓ Encapsulation implements the concept of abstraction

 Details associated with object

 End user could see the public interface, but
implementation are hidden

Attributes

Methods

Encapsulated

P
u

b
lic In

terface

Panchatcharam October 2025

Encapsulation

12

✓ Attributes and methods are encapsulated within the logical

boundary of the object entity

 In procedural paradigms, data and functions are typically

maintained as separate entities

 In Objectural paradigms, each object has attributes (data)

and methods (functions) that operates upon those
attributes

Glance at a class

13

Panchatcharam October 2025

Class

✓ Classes

 Bundling Data

 + Functionality

14

✓ Classes

 A definition of objects of the same kind

 Basic unit of OOP

 A blueprint, template or prototype that

encapsulates both static attributes and dynamic

behaviours within a box

 Defines a public interface for using these boxes

 easily reusable

 Combines data structures and algorithms in the

same box

Panchatcharam October 2025

Class

✓ Classes

 Bundling Data

 + Functionality

15

✓ Classes

 A collection of functions and attributes

 Attached to a specific name to represent an

abstract concept

✓ Classes

 User-defined prototype for an object with

attributes and methods

Panchatcharam October 2025

Class

✓ Classes

 Bundling Data

 + Functionality

16

✓ Classes

 A collection of functions and attributes

 Attached to a specific name to represent an

abstract concept

✓ Classes

 User-defined prototype for an object with

attributes and methods

Panchatcharam October 2025

Classes

✓ A software item that contains variables and methods

✓ Object Oriented Design focuses on
▪ Encapsulation

• dividing the code into a public interface, and a private implementation of

that interface

▪ Polymorphism:
• the ability to overload standard operators so that they have appropriate

behavior based on their context

▪ Inheritance:

• the ability to create subclasses that contain specializations of their

parents

17

Panchatcharam October 2025

Instances

✓ View class/object as factories or templates

✓ An Individual Object of a certain class

✓ Each object instance takes all the properties of the class

from which it was created

18

Abstract
Concept

Circle

Attributes

 Area()

 Circumference()

Methods/Functions

Radius=3

Area()=28.27

Circumference()=18.85

 Radius

Radius=6

Area()=113.1

Circumference()=37.7

Panchatcharam October 2025

Class Vs Instance of a Class

✓ class name is the type
➢ class circle(object)

✓ Defined generically
➢ area=pi*r*r

✓ Defines data and methods

common across all

instances

19

✓ Instance is one specific object
➢ Circle C1;

➢ Circle C2;

✓ Data varies between instances
➢ C1.setRadius(5.0)

➢ C2.setRadius(10.0)

➢ C1.r and C2.r are different

✓ Instance has the structure of

the class
➢ C1.area()➔78.5398

➢ C2.area()➔314.159

Panchatcharam October 2025

Class Vs Instance of a Class

20

Panchatcharam October 2025

Class Vs Instance of a Class

21

Concept Description Example

Class
Blueprint describing what all circles
have/do

class Circle { ... };

Instance/Object Actual circle with its own radius Circle c1; Circle c2;

Data Each object stores its own radius c1.radius = 5, c2.radius = 10

Function
All objects can call the same
methods

c1.area(), c2.area()

Panchatcharam October 2025

OOP Terminologies

22

❖ Object

 A unique instance of data structured defined by its class

 Contains Data Members

 Class Variables

 Instance Variables

 Methods

Panchatcharam October 2025

OOP Terminologies

23

❖ Class

 User-defined prototype for an object

 Set of attributes to characterize any object of the class

 Attributes

 Data Members(Class Variables, Instance Variables)

 Methods

 Accessed via dot notation
❖ Instance

 An individual object of a certain class

❖ Instantiation

 Creation of an instance of a class

Panchatcharam October 2025

OOP Terminologies

24

❖ Instance Variable

 Defined inside a method

 Belongs to only to the current instance of the class

❖ Class Variable

 Shared by all instance of a class

 Defined within a class

 Outside any of the class’ methods

 Not use as frequently as instance variable

Panchatcharam October 2025

OOP Terminologies

25

❖ Method

 A special kind of function that is defined in a class

definition

❖ Data Member

 A class variable

 Instance Variable

 Holds data associated with a class and its objects

Panchatcharam October 2025

OOP Terminologies

26

❖ Operator Overloading

 Assignment of more than one function to a particular

operator

❖ Function Overloading

 Assignment of more than one behaviour to a particular

function

❖ Inheritance

 Transfer of the characteristic of a class to other classes

that are derived from it

Panchatcharam October 2025

OOP Terminologies

27

❖ Overriding

 When inheriting from a class, we can alter behaviour of

the parent class by overriding function

 Declaring functions in the subclass with the same name

 More precedence over parent class

❖ Polymorphism

 Two objects of different classes

 Supports same set of functions

 Attributes can be treated identically

 Implementation are different, but appears to be same

Panchatcharam October 2025

Why Use OOP and Classes of Objects

28

❑ Do you know or care how a smartphone or TV or washing

machine or any electrical appliances or your own body??

 No. As long as you are the user of the appliances and the

appliance functions well

Panchatcharam October 2025

Why Use OOP and Classes of Objects

29

❖ Group different object of the same type

 Classes and objects are more like the real world

 Mimic the real world

 Minimize the semantic gap by modelling the real world

❖ Semantic Gap:

 Difference Between the real world and the

representation in a computer

❖ Allow you to define an interface to some object and its

operations

 Use it without knowing the internals

❖ Modularize the program into multiple objects that work

together, each has its own purpose

C++ classes

30

Panchatcharam October 2025

Syntax for Classes

31

class ClassName

{

//Data members

private:

varType1 var1;

varType2 var2;

varType3 *var3;

varType4 var4[100];

//Member Functions

public:

ClassName(varType1 var1, varType2 var2, varType3 *var3, varType4 var4[100]); //Constructor

Print();

void Function1();

varType1 Function2(varType2 var2);

varType2 Function3(varType3 *var);

}

Panchatcharam October 2025

Classes

32

class Course

{

private:

string code;

string name;

float Marks;

char Grade;

public:

Course(string c="MA0001",string n="AVBACA",float m=0.0,char G='S')

{

code=c;

name=n;

Marks=m;

Grade=G;

}

void CalculateGrade();

void Print();

};

Panchatcharam October 2025

Classes

33

class Course

{

private:

string code;

string name;

float Marks;

char Grade;

public:

Course(string c="MA0001",string n="AVBACA",float m=0.0,char G='S')

{

code=c;

name=n;

Marks=m;

Grade=G;

}

void CalculateGrade();

void Print();

};

Members of the Class

Constructors of the Class

Functions of the Class

Panchatcharam October 2025

Instance

34

class Course

{

private:

string code;

string name;

float Marks;

char Grade;

public:

Course(string c="MA0001",string

n="AVBACA",float m=0.0,char G='S')

{

code=c;

name=n;

Marks=m;

Grade=G;

}

void CalculateGrade();

void Print();

};

Members of the Class

Constructors of the Class

Functions of the Class

int main()

{

Course Course1("MA5191",

"Programming Laboratory",95.0,'A');

Course1.CalculateGrade();

Course1.Print();

return 0;

}

Instance of the Class

Mapped to c, n, m and G
c->”MA5191”

n->“Programming Laboratory”

m->95.0

G->’A’

Download the CPP File

https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/CourseClass.cpp

Panchatcharam October 2025

Constructor

35

❖ A constructor in C++ is a special member function of a

class that is automatically called when an object is created.

❖ Its main purpose is to initialize the object’s data members.

❖ Has the same as the class

❖ Has no return type, not even void.

❖ Is automatically invoked when you create an object.

Panchatcharam October 2025

#include <iostream>

using namespace std;

class Student {

public:

string name;

int age;

 // Constructor

 Student(string n, int a)

 {

 name = n;

 age = a;

 }

void display() {

cout << "Name: " << name << ", Age: "

<< age << endl;

}

};

Constructor

36

❖ A constructor in C++ is a special member function of a

class that is automatically called when an object is created.

❖ Its main purpose is to initialize the object’s data members.

int main() {

Student s1(“Raja", 20); // constructor

called automatically

s1.display();

}

Panchatcharam October 2025

#include <iostream>

using namespace std;

class Student {

public:

string name;

int age;

 // Constructor

 Student(string n, int a)

 {

 name = n;

 age = a;

 }

void display() {

cout << "Name: " << name << ", Age: "

<< age << endl;

}

};

Implicit vs Explicit Constructor Calls

37

❖ A constructor in C++ is a special member function of a

class that is automatically called when an object is created.

❖ Its main purpose is to initialize the object’s data members.

int main() {

Student s1(“Raja", 20); // implicit call

Student s2=Student(“Ravi”,19);/Explicit call

s1.display();

}

Download the CPP File

https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/StudentClass.cpp

Panchatcharam October 2025

Default Constructor

38

❖ A constructor with no arguments.

class Box {
public:

int length;
Box() { // default constructor

length = 10;
}

};

Panchatcharam October 2025

Parametrized Constructor

39

❖ A constructor with no arguments.

class Box {

public:

int length;

Box(int l) { // constructor

length = l;

}

};

Panchatcharam October 2025

Copy Constructor

40

❖ Used to create a new object as a copy of an existing object.

class Box {

public:

int length;

Box(const Box &b) { // copy constructor

length = b.length;

}

};

Panchatcharam October 2025

Constructor Overloading

41

❖ Used to create a new object as a copy of an existing object.

class Rectangle {

public:

int width, height;

Rectangle() { width = 1; height = 1; } // default

Rectangle(int w, int h) { width = w; height = h; } // parameterized

};

Panchatcharam October 2025

Constructor with initialization list

42

❖ A faster and preferred way to initialize members.

class Point {

int x, y;

public:

Point(int a, int b) : x(a), y(b) {} // initialization list

};

Panchatcharam October 2025

Constructor

43

❖ Constructors cannot return a value.

❖ You can’t call a constructor like a normal function.

❖ If no constructor is defined, the compiler provides a default

one automatically.

❖ Constructors can be private, useful in design patterns like

Singleton.

Panchatcharam October 2025

Scope (::) Operator

44

❖ The :: (scope resolution operator) connects a name to its

scope — it tells the compiler where to find or define

something.

Panchatcharam October 2025

Scope (::) Operator

45

❖ When we declare a member function inside a class, we can

later define it outside using the :: operator.

Panchatcharam October 2025

:: Operator

46

class Course

{

private:

string code;

string name;

float Marks;

char Grade;

public:

Course(string c="MA0001",string

n="AVBACA",float m=0.0,char G='S')

{

code=c;

name=n;

Marks=m;

Grade=G;

}

void CalculateGrade();

void Print();

};

Members of the Class

Constructors of the Class

Only functions are declared

int main()

{

Course Course1("MA5191", "Programming

Laboratory",95.0,'A');

Course1.CalculateGrade();

Course1.Print();

return 0;

}

void Course::Print()

{

cout<<"Course Code : "<<this->code<<endl;

cout<<"Course Name : "<<this->name<<endl;

cout<<"Marks Scored : "<<this->Marks<<endl;

cout<<"Grade : "<<this->Grade<<endl;

}

void Course::CalculateGrade()

{

if(this->Marks>90)

this->Grade='S';

else if(this->Marks>80 && this->Marks<90)

this->Grade='A';

//Complete the rest

else

this->Grade='F';

}

functions are defined outside the class

Panchatcharam October 2025

this → pointer

47

❖ In C++, every non-static member function of a class has

access to a special hidden pointer called this.
❖ It points to the object that is currently calling the function.
❖ Differentiate between class data members and local

variables with the same name.

❖ Return the object itself (for function chaining).

❖ Pass the current object as an argument to another

function.

Panchatcharam October 2025

this → pointer

48

❖ Think of this as the word “myself” inside the class.

Panchatcharam October 2025

this → pointer

49

class Course

{

private:

string code;

string name;

float Marks;

char Grade;

public:

Course(string c="MA0001",string

n="AVBACA",float m=0.0,char G='S')

{

code=c;

name=n;

Marks=m;

Grade=G;

}

void CalculateGrade();

void Print();

};

Members of the Class

Constructors of the Class

Only functions are declared

int main()

{

Course Course1("MA5191", "Programming

Laboratory",95.0,'A');

Course1.CalculateGrade();

Course1.Print();

return 0;

}

void Course::Print()

{

cout<<"Course Code : "<<this->code<<endl;

cout<<"Course Name : "<<this->name<<endl;

cout<<"Marks Scored : "<<this->Marks<<endl;

cout<<"Grade : "<<this->Grade<<endl;

}

void Course::CalculateGrade()

{

if(this->Marks>90)

this->Grade='S';

else if(this->Marks>80 && this->Marks<90)

this->Grade='A';

//Complete the rest

else

this->Grade='F';

}

functions are defined outside the class

“the name variable belonging to this object”.

“the Marks variable belonging to this object”.

Panchatcharam October 2025

this → pointer

50

class Box {

int length;

public:

Box(int l=0) { length = l; }

Box& setLength(int l) {

this->length = l;

return *this; // return the current object

}

void show() { cout << "Length = " << length << endl; }

};

int main() {

Box b;

b.setLength(10).show(); // method chaining

}

Panchatcharam October 2025

friend function

51

class Vector

{

private:

int length;

double *values;

public:

Vector(int N=0, double=0); //Constructor

Vector(const Vector&); // copy constructor

~Vector(){ delete [] values; } // destructor is defined inline

Vector& operator=(const Vector&); // overload assignment

void LinSpace(double xl,double xu,int n); //Linspace generates the list of equidistant n points between

xl and xu

Vector operator+(const Vector &x); //+ operator overloading

friend Vector operator+(const Vector &x, const Vector &y); //To add two vector

friend Vector operator-(const Vector &x, const Vector &y); //Subtract x-y

friend Vector operator*(const Vector &x, double c); //c*x

friend Vector operator*(double c, const Vector &x); //x*yy

double& operator[](int i) const { return values[i]; } // eg v[i] = 10

double norm();

double norm2();

double norm(int p);

double infnorm();

int size() const { return length; } // return length of vector

void print(); //prints the vector

void save(char *); //prints the vector in a file

};

Panchatcharam October 2025

friend function

52

A friend function is a function that is not a member of a class but is allowed to access the class’s private
and protected members.

 In short, it’s an outsider with special access granted by the class.

Normally, private members of a class cannot be accessed directly from outside.
But sometimes, we want two or more classes or a standalone function to work closely together and
share internal data.
Example use cases:
•Operator overloading (+, ==, etc.)
•Accessing data from two different classes simultaneously
•Debugging or utility functions that need internal details

Panchatcharam October 2025

friend function

53

A friend function is a function that is not a member of a class but is allowed to access the class’s private
and protected members.

 In short, it’s an outsider with special access granted by the class.

Think of a friend function like a trusted guest —
It’s not part of the family (class),
but it’s trusted enough to enter private rooms (private data).

Panchatcharam October 2025

friend function

54

A friend function is a function that is not a member of a class but is allowed to access the class’s private
and protected members.

 In short, it’s an outsider with special access granted by the class.

Rule Description

Declared using friend keyword Inside class definition

Not called with dot (.) operator Called like a normal function

Accesses private/protected data If declared as a friend

Friendship is not mutual If A is friend of B, B isn’t automatically friend of A

Friendship is not inherited Derived class doesn’t inherit friendship

Panchatcharam October 2025

friend function

55

A friend function is a function that is not a member of a class but is allowed to access the class’s private
and protected members.

 In short, it’s an outsider with special access granted by the class.

Feature Friend Function Member Function

Belongs to class No Yes

Access to private data Yes (if declared friend) Yes

Called using object No Yes

Uses this pointer No Yes

Panchatcharam October 2025

friend function

56

class Vector

{

private:

int length;

double *values;

public:

Vector(int N=0, double=0); //Constructor

Vector(const Vector&); // copy constructor

~Vector(){ delete [] values; } // destructor is defined inline

Vector& operator=(const Vector&); // overload assignment

void LinSpace(double xl,double xu,int n); //Linspace generates the list of equidistant n points between xl and xu

Vector operator+(const Vector &x); //+ operator overloading

friend Vector operator+(const Vector &x, const Vector &y); //To add two vector

friend Vector operator-(const Vector &x, const Vector &y); //Subtract x-y

friend Vector operator*(const Vector &x, double c); //c*x

friend Vector operator*(double c, const Vector &x); //x*yy

double& operator[](int i) const { return values[i]; } // eg v[i] = 10

double norm();

double norm2();

double norm(int p);

double infnorm();

int size() const { return length; } // return length of vector

void print(); //prints the vector

void save(char *); //prints the vector in a file

};

•They are not member functions.

•They can access private members (length and values) of Vector.
•They allow flexible operations, e.g., 2.0 * v1 (scalar first) which
cannot be done easily with member functions.

Panchatcharam October 2025

friend function

57

Vector operator+(const Vector &x, const Vector &y) {

// assume same length

Vector result(x.length); // create a vector for result

for(int i=0; i<x.length; i++) {

result.values[i] = x.values[i] + y.values[i]; // access private 'values'

}

return result;

}

•Even though values is private, the friend function can access it directly.

•If this were not a friend, you would need getter functions for values.

Panchatcharam October 2025

friend function

58

Vector operator*(const Vector &x, double c) {

Vector result(x.length);

for(int i=0; i<x.length; i++) {

result.values[i] = x.values[i] * c;

}

return result;

}

Vector operator*(double c, const Vector &x) {

return x * c; // reuse the previous operator

}

•Friend functions create a new Vector object for the result.

•The function directly accesses the private values array, so it’s efficient.

•You avoid getters and setters, keeping syntax clean: v3 = v1 + v2;.

Panchatcharam October 2025

Getters and Setters Methods

59

se
tt

er

ge
tt

er

 Getters and setters must be used outside class to access

data attributes

int main() {

Student s;

s.setName(“Raja"); // setter

s.setAge(20); // setter

cout << s.getName() << " is " << s.getAge()

<< " years old." << endl; // getter

s.setAge(-5); // invalid, setter prevents it

s.age=10; // compiler error

//error: 'std::string Student::name' is private

within this context

}

class Student {

private:

string name;

int age;

public:

 // Setter for name

 void setName(string n) {

 name = n;

 }

 // Setter for age (with validation)

 void setAge(int a) {

 if(a > 0) age = a;

 else cout << "Age must be positive!" << endl;

 }

 // Getter for name

 string getName() const {

 return name;

 }

 // Getter for age

 int getAge() const {

 return age;

 }

};

Panchatcharam October 2025

Point Class

60

int main()

{

Point P1,P2;

P1.SetPoint(1.0,2.0,3.0);

P1.Print();

P2.SetPoint(3.0,4.0,5.0);

P2.Print();

cout<<P1.distance(P1,P2)<<endl;

cout<<P1.distanceFromOrigin(P1)<<endl;

cout<<P2.distanceFromOrigin(P2)<<endl;

cout<<P1.distanceFromOrigin()<<endl;

cout<<P2.distanceFromOrigin()<<endl;

Point P3=P1.MidPoint(P1,P2);

P3.Print();

//cout<<distance(P1,P2)<<endl;

cout<<distanceFromOrigin(P1)<<endl;

cout<<distanceFromOrigin(P2)<<endl;

Point P4=MidPoint(P1,P2);

Print(P4);

Point P5=P1+P2;

Print(P5);

return 0;

}

class Point{

private:

double x, y, z;

public:

Point(double x=0.0, double y=0.0, double z=0.0);

void SetPoint(double x, double y, double z);

Point GetPoint();

void SetX(double x);

void SetY(double y);

void SetZ(double z);

double GetX();

double GetY();

double GetZ();

void Print();

double distance(Point P1, Point P2);

double distanceFromOrigin(Point P);

double distanceFromOrigin();

Point MidPoint(Point P1, Point P2);

const Point operator+(const Point &P) const;

};

Download the CPP File

https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/PointClass.cpp

Panchatcharam October 2025

Vector Class

61

class Vector

{

private:

int length;

double *values;

public:

Vector(int N=0, double=0); //Constructor

Vector(const Vector&); // copy constructor

~Vector(){ delete [] values; } // destructor is defined inline

Vector& operator=(const Vector&); // overload assignment

void LinSpace(double xl,double xu,int n); //Linspace generates the list of equidistant n points between xl and xu

Vector operator+(const Vector &x); //+ operator overloading

friend Vector operator+(const Vector &x, const Vector &y); //To add two vector

friend Vector operator-(const Vector &x, const Vector &y); //Subtract x-y

friend Vector operator*(const Vector &x, double c); //c*x

friend Vector operator*(double c, const Vector &x); //x*yy

double& operator[](int i) const { return values[i]; } // eg v[i] = 10

double norm();

double norm2();

double norm(int p);

double infnorm();

int size() const { return length; } // return length of vector

void print(); //prints the vector

void save(char *); //prints the vector in a file

};

Download the CPP File

Download the HPP File

https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/VectorClass.cpp
https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/VectorClass.hpp

Panchatcharam October 2025

Matrix Class

62

class Matrix

{

private:

double *values;

int row, col;

public:

Matrix(const Matrix& A);

Matrix(double *val, int r, int c)//Constructor

{

row=r;

col=c;

values=new double[row*col];

for(int i=0;i<r;i++)

for(int j=0;j<c;j++)

values[i*c+j]=val[i*c+j];

}

Matrix(int M=0, int N=0, double x=0);

friend Matrix operator*(Matrix &A, Matrix &B);

friend Matrix operator+(const Matrix &A, const Matrix &B);

friend Matrix operator-(const Matrix &A, const Matrix &B);

friend Matrix operator*(double c, const Matrix &A);

double& operator[](int i) const;

friend Vector operator*(const Matrix &A, Vector &x);

Matrix& operator=(const Matrix&);

~Matrix();//destructor

}

Download the CPP File

Download the HPP File

https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/MatrixClass.cpp
https://facweb.iittp.ac.in/~pmariappan/Courses/MA517M/MatrixClass.hpp

	Slide 1: C++ Classes
	Slide 2: Oops concepts
	Slide 3: OOPS
	Slide 4: OOPS
	Slide 5: OOPS
	Slide 6: What are Objects
	Slide 7: Abstraction
	Slide 8: What are Objects
	Slide 9: What are Objects
	Slide 10: Messages
	Slide 11: Abstraction
	Slide 12: Encapsulation
	Slide 13: Glance at a class
	Slide 14: Class
	Slide 15: Class
	Slide 16: Class
	Slide 17: Classes
	Slide 18: Instances
	Slide 19: Class Vs Instance of a Class
	Slide 20: Class Vs Instance of a Class
	Slide 21: Class Vs Instance of a Class
	Slide 22: OOP Terminologies
	Slide 23: OOP Terminologies
	Slide 24: OOP Terminologies
	Slide 25: OOP Terminologies
	Slide 26: OOP Terminologies
	Slide 27: OOP Terminologies
	Slide 28: Why Use OOP and Classes of Objects
	Slide 29: Why Use OOP and Classes of Objects
	Slide 30: C++ classes
	Slide 31: Syntax for Classes
	Slide 32: Classes
	Slide 33: Classes
	Slide 34: Instance
	Slide 35: Constructor
	Slide 36: Constructor
	Slide 37: Implicit vs Explicit Constructor Calls
	Slide 38: Default Constructor
	Slide 39: Parametrized Constructor
	Slide 40: Copy Constructor
	Slide 41: Constructor Overloading
	Slide 42: Constructor with initialization list
	Slide 43: Constructor
	Slide 44: Scope (::) Operator
	Slide 45: Scope (::) Operator
	Slide 46: :: Operator
	Slide 47: this  pointer
	Slide 48: this  pointer
	Slide 49: this  pointer
	Slide 50: this  pointer
	Slide 51: friend function
	Slide 52: friend function
	Slide 53: friend function
	Slide 54: friend function
	Slide 55: friend function
	Slide 56: friend function
	Slide 57: friend function
	Slide 58: friend function
	Slide 59: Getters and Setters Methods
	Slide 60: Point Class
	Slide 61: Vector Class
	Slide 62: Matrix Class

