
Panchatcharam M January 2025

Python Basics

1

Panchatcharam M

Data Types

2

Panchatcharam M January 2025

Numeric Types

>>> a = 5

>>> type(a)

<class ‘int’>

>>> a = 8.0

 >>> type (a)
<class ‘float’>

3

>>> a = 5+4j

>>> type(a)

<class ‘complex’>

Panchatcharam M January 2025

String Data Types

Strings

Can use “” or ‘’ to specify.
“abc” ‘abc’ (Same thing.)

Unmatched can occur within the string
“matt’s”

Use triple double-quotes for multi-line

strings or strings that contain both ‘and “

inside of them:
“““a‘b“c”””

4

>>> a = “Placement”

 >>> type (a)
<class ‘str’>

Panchatcharam M January 2025

Boolean Datatypes

>>> is_pass = True

 >>> type (is_pass)
<class ‘bool’>

5

>>> is_pass = False

 >>> type (is_pass)
<class ‘bool’>

Panchatcharam M January 2025

List and Tuple Datatypes

>>> company= [“Google”,”Facebook”,”Apple”]

 >>> type (company)
<class ‘list’>

company=list(("Google","Facebook","Apple"))

6

>>> animals= (“Lion”,”Tiger”,”Cat”)

 >>> type (animals)
<class ‘tuple’>

animals= tuple((“Lion”,”Tiger”,”Cat”))

Panchatcharam M January 2025

Set Datatypes

>>> company= {“Google”,”Facebook”,”Apple”}

 >>> type (company)
<class ‘set’>

company=set(("Google","Facebook","Apple"))

7

>>> animals= frozenset({“Lion”,”Tiger”,”Cat”})

 >>> type (animals)
<class ‘frozenset’>

animals= frozenset((“Lion”,”Tiger”,”Cat”))

Panchatcharam M January 2025

Range and dict Datatypes

>>> x=range(10)

 >>> type (x)
<class ‘range’>

8

>>> s= {“name”:”Raj”,”age”:20,”Marks”:94.5,”Pass”:True}

 >>> type (s)
<class ‘dict’>

Panchatcharam M January 2025

Byte Datatypes

>>> x=b”Placement”

 >>> type(x)
<class ‘bytes’>

9

>>> x=bytearray(5)

 >>> type(x)
<class ‘bytearray’>

>>> x=memoryview(x)

 >>> type(x)
<class ‘memoryview’>

Operators and precedence

10

Panchatcharam M January 2025

Arithmetic Operators

expression: A data value or set of operations to compute a value.
 Examples: 1 + 4 * 3

Arithmetic operators we will use:
 + addition
 - subtraction/negation
 * multiplication
 / division
 % modulus, a.k.a. remainder
 ** exponentiation
 // floor division

11

Panchatcharam M January 2025

Precedence

Order in which operations are computed.
** has higher precedence than * / // %
* / // % have a higher precedence than + -

 1 + 3 * 4 is 13
Parentheses can be used to force a certain order of evaluation.
 (1 + 3) * 4 is 16

12

Advice: Better use parentheses if you have more than one
operators of multiple precedence

Multiple operators of same precedence
** right to left associativity
* / // % + -left to right associativity

Panchatcharam M January 2025

Expressions

Python can also manipulate real numbers.
 Examples: 6.022 -15.9997 42.0 2.143e17

The operators + - * / // % ** () all work for real numbers.
Example for / 15.0 / 2.0 is 7.5
Example for // : 15.0 / 2.0 is 7
The % produces an exact answer: 7.5 / 2.0 is 1.5

The same rules of precedence also apply to real numbers:
Evaluate () before * / % before + -

When integers and reals are mixed, the result is a real number.
 Example: 1 / 2.0 is 0.5

13

Panchatcharam M January 2025

Math Methods

Method Description

abs(value) absolute value

ceil(value) rounds up

cos(value) cosine, in radians

floor(value) rounds down

log(value) logarithm, base e

log10(value) logarithm, base 10

max(value1, value2) larger of two values

min(value1, value2) smaller of two values

round(value) nearest whole number

sin(value) sine, in radians

sqrt(value) square root

Constant Description

e 2.7182818...

pi 3.1415926...

tau (2*pi) 6.2831853...

◼ To use many of these Methods, you must write the following
at the top of your Python program:

◼ import math

14

Panchatcharam M January 2025

Reserved Words

and, assert, break, class, continue,

def, del, elif, else, except, exec,

finally, for, from, global, if, import,

in, is, lambda, not, or, pass, print,

raise, return, try, while

Names are case sensitive and cannot start with a number.

They can contain letters, numbers, and underscores.

bob Bob _bob _2_bob_ bob_2 BoB

15

Assignment: What goes on
behind the scene

16

Panchatcharam M January 2025

Assignment statement

◼ Assignment Statement: Stores a value into a variable.
◼ Syntax:
 name = value
◼ Examples: x = 5
 gpa = 3.14

 x, y = 2,3

◼ A variable that has been given a value can be used in
expressions.

 x + 4 is 9

◼ Exercise: Evaluate the quadratic equation for a given a, b, and c.
◼ 𝑎𝑥2 + 𝑏𝑥 + 𝑐

17

Panchatcharam M January 2025

Assignment statement

◼ Assignment manipulates references.
◼ x = y does not make a copy of the object y references
◼ x = y makes x reference the object y references
 name = value
◼ Examples: a = [1,2,3] # a now references the list [1,2,3]

 b = a # b now references what a references

 a.append(4) # this changes the list a references

 print(b) # if we print b

 [1,2,3,4] # SURPRISED!?

18

Panchatcharam M January 2025

Assignment statement

◼ There is a lot going on when we type a = 3
◼ First, an integer 3 is created and stored in memory
◼ A name a is created

◼ A reference to the memory location storing the 3 is the assigned
to the name a

◼ So: When we say that the value of a is 3
◼ we mean that a now refers to the integer 3

Type: Integer

Data: 3
Name: a
Ref: <address1>

name list memory
19

Panchatcharam M January 2025

Assignment statement

❖ The data 3 we created is of type integer. In Python, the datatypes integer, float,
and string (and tuple) are “immutable.”

❖ This doesn’t mean we can’t change the value of x, i.e. Change what x refers to …
❖ For example, we could increment x

>>> x = 5

>>> x = x + 1

>>> print(x)

6

20

Panchatcharam M January 2025

Assignment statement

➢ If we increment x, then what’s really happening is:
➢ The reference of name x is looked up.
➢ The value at that reference is retrieved
➢ The 3+1 calculation occurs, producing a new data element 4 which is

assigned to a fresh memory location with a new reference.
➢ The name x is changed to point to this new reference.
➢ The old data 3 is garbage collected if no name still refers to it

>>> x = x + 1

Type: Integer

Data: 3Name: x
Ref: <address1>

Type: Integer

Data: 4

21

Panchatcharam M January 2025

Assignment statement

>>> x = 3 # Creates 3, name x refers to 3

>>> y = x # Creates name y, refers to 3.

>>> y = 4 # Creates ref for 4. Changes y.

>>> print(x) # No effect on x, still ref 3.

3

Type: Integer

Data: 3

Name: x
Ref: <address1>

22

Panchatcharam M January 2025

Assignment statement

>>> x = 3 # Creates 3, name x refers to 3

>>> y = x # Creates name y, refers to 3.

>>> y = 4 # Creates ref for 4. Changes y.

>>> print(x) # No effect on x, still ref 3.

3

Type: Integer

Data: 3

Name: x
Ref: <address1>

Name: y
Ref: <address1>

23

Panchatcharam M January 2025

Assignment statement

>>> x = 3 # Creates 3, name x refers to 3

>>> y = x # Creates name y, refers to 3.

>>> y = 4 # Creates ref for 4. Changes y.

>>> print(x) # No effect on x, still ref 3.

3

Type: Integer

Data: 3

Name: x
Ref: <address1> Type: Integer

Data: 3

Name: x
Ref: <address1>

Name: y
Ref: <address1>

Type: Integer

Data: 3

Name: x
Ref: <address1>

Type: Integer

Data: 4

Name: y
Ref: <address1>

24

Panchatcharam M January 2025

Assignment statement

>>> x = 3 # Creates 3, name x refers to 3

>>> y = x # Creates name y, refers to 3.

>>> y = 4 # Creates ref for 4. Changes y.

>>> print(x) # No effect on x, still ref 3.

3

Type: Integer

Data: 3

Name: x
Ref: <address1>

Name: y
Ref: <address1>

25

Type: Integer

Data: 4

Panchatcharam M January 2025

Assignment statement

❑ For other data types (lists, dictionaries, user-defined types),

assignment works differently.
❑ These datatypes are “mutable.”

❑When we change these data, we do it in place.

❑We don’t copy them into a new memory address each time.

❑ If we type y=x and then modify y, both x and y are changed

immutable

>>> x = 3

>>> y = x

>>> y = 4

3

>>> print(x)

x = some mutable object

y = x

make a change to y

look at x

x will be changed as well

mutable

26

Panchatcharam M January 2025

Sharing List

a
1 2 3

b

a
1 2 3

b
4

a = [1, 2, 3]

a.append(4)

b = a

a 1 2 3

27

Print and input

28

Panchatcharam M January 2025

print

◼ print : Produces text output on the console.

◼ Syntax:
 print("Message“)
 print(Expression)
◼ Prints the given text message or expression value on the

console, and moves the cursor down to the next line.

 print(Item1, Item2, ..., ItemN)
◼ Prints several messages and/or expressions on the same line.

29

Panchatcharam M January 2025

print

◼ Examples:
 print("Hello, world!")

 age = 45

 print("You have", 65 - age, "years until
retirement")

Output:

 Hello, world!

 You have 20 years until retirement

30

Panchatcharam M January 2025

input

◼ input : Reads a number from user input.
◼ You can assign (store) the result of input into a variable.
◼ Example:

 age = input("How old are you? ")

 print("Your age is", age)

 print("You have", 65 – int(age), "years
until retirement")

 Output:

 How old are you? 53

 Your age is 53

 You have 12 years until retirement

31

More on print

32

Fancy output

Panchatcharam M January 2025

print

◼ print : Produces text output on the console.

◼ Full Syntax:
 print(*objects, sep=' ', end='\n',

file=sys.stdout, flush=False)

❑ objects: objects to be printed
❑ sep: object separated by sep
❑ file: with write string method
❑ flush: stream is forcibly flushed

33

Panchatcharam M January 2025

print

◼ Examples:
a,b = 10,5

print("a = ", a, sep='00000', end='\n\n\n')

print(“b = ", a, sep='0', end='')

Output:

 a = 0000010

 a = 05

34

Panchatcharam M January 2025

print

◼ Examples:
fp=open('Testing.txt','w')

print("MA522M-Data Science Programming Laboratory",file=fp)

fp.close()

35

Panchatcharam M January 2025

Formatted string in print

◼ Examples:
import math

print(f'The value of pi is approx {math.pi:.3f}.')

print('There are {}, {}, {}, {} in chess'.format('knights',

'king','queen','horses'))

FirstName='Raja'

LastName='Kumar'

Marks=43.5

print('Student Name {1} {2}. His Mark is {0}'.format(Marks,FirstName, LastName))

print('Student Name {0} {1}. His Mark is {2}'.format(FirstName, LastName,Marks))

print('Student Name {first} {last}. His Mark is

{mark}'.format(mark=Marks,first=FirstName, last=LastName))

print('Student Name {first} {last}. His Mark is {mark}'.format(first=FirstName,

mark=Marks,last=LastName))

36

Panchatcharam M January 2025

Formatted string in print

◼ Examples:
x=2

print('{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x))

x=3

print('{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x))

x=8

print('{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x))

x=10

print('{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x))

37

More on lists

38

Panchatcharam M January 2025

List: Key Functions

x=[1,2,3,4,5]

print('First Element: ',x[0]) #indexing

print(‘Second Element: ',x[1])

print('Last Element: ',x[-1]) #indexing from last

print('Slicing: ',x[2:]) #slicing

print('Slicing 2: ',x[-2:]) #slicing

x=x+[2,3,4,5,6] #concatenation

print('Concatenation:',x)

x.append(7) #appending

print('Appended 7: ',x)

x.remove(2) #removing

print('Removed 2: ',x)

x[2]=7 #replacing

print('Replacment: ',x)

39

Panchatcharam M January 2025

List: Key Functions

y=[0,0,0] #nested list

y[0]=[1,2,3] #replacing

y[1]=[3,4,5]

y[2]=[5,6,7]

print('Nested List :',y)

#can be mixture of all data types

A=['a','b','c','d','e','f',0,0.1,"Ram",True,3+4j,[1,2,3,4]]

print('Mixtures: ',A)

print('Slicing Again: ',A[2:7]) #slicing

#Remove item

A[2:6]=[]

print('Removing again: ',A)

del A[2]

print('Deleting: ',A)

#Remove all

A[:]=[]

print('Removed Everything: ',A)

40

Panchatcharam M January 2025

List: Key Functions

#Length

A=['a','b','c','d','e','f’]

print(‘A*2:’,A*2)

print('New List:',A)

print('Length of List: ',len(A))

A.clear()

print('Cleared Again: ',A)

A=['a','b','c','d','e','f']

A.extend('g')

print('Extended',A)

41

x=x+[2,3,4,5,6]

print(x)

print('Number of occurences of 3: ',x.count(3))

#number of occurences

print('Index of 5 in the list: ',x.index(5))

print('Maximum and Minimum: ',max(x),min(x))

#minimum and maximum

x.reverse()

print('Reversed: ',x)

x.sort()

print('Sorted: ',x)

reversed(x)

print(x)

More on Tuples

42

Panchatcharam M January 2025

Tuples: Key Functions

heros=('Arthos','Porthos','Aramis','Romeo','Juliet')

print(heros)

print(len(heros))

print(heros[1],heros[2],heros[-1],heros[-

2],heros[2:],heros[-2:],sep=' & ')

print(heros.index('Porthos'))

43

More on SETS

44

Panchatcharam M January 2025

Sets: Key Functions

emptyset=set()

print(emptyset)

print(x)

numbers=set(x)

print(numbers)

y=list(numbers)

print(y)

45

programming=set(['C','C++','Python','Ruby','Java','S

cala','Swift','Perl'])

print(programming)

programming.add('Python')

print(programming)

programming.add('SQL')

print(programming)

compilers=set(['C','C++','Scala'])

interpreters=set(['Python','Java'])

programming.update(compilers)

Panchatcharam M January 2025

Sets: Key Functions

46

intersect=compilers.intersection(interpreters)

print(intersect)

union=compilers.union(interpreters)

print(union)

union=union.union(programming)

print(union)

diff=programming.difference(compilers)

print(diff)

print(compilers.isdisjoint(interpreters))

print(compilers.issubset(programming))

print(programming.issuperset(compilers))

print(programming^compilers)#symmetric difference

print(programming.symmetric_difference(compilers))

More on Dictionaries

47

Panchatcharam M January 2025

dict: Key Functions

course={‘MA612L':'PDE',’MA522M’:’Data Science Programming

Laboratory',’MA502L':'DE',’MA633L':'Numerical'}

print(course)

print(course[‘MA612L'])

print(course.get(‘MA522M'))

print(course.keys())

print(course.values())

print(course.items())

48

course['MA101’]=‘EM-1'

print(course)

print(len(course))

course.clear()

print('cleared: ',course)

Panchatcharam M January 2025

dict: Key Functions

49

btechcourse={'MA2021':'Linear Algebra','MA2022':'Complex

Methods','MA2023':'Probability'}

print(btechcourse)

course.update(btechcourse)

print(course)

herodictionary=dict.fromkeys(heros)

print(herodictionary)

herodictionary=dict.fromkeys(heros,[1,2,3,4,5])

print(herodictionary)

	Slide 1: Python Basics
	Slide 2: Data Types
	Slide 3: Numeric Types
	Slide 4: String Data Types
	Slide 5: Boolean Datatypes
	Slide 6: List and Tuple Datatypes
	Slide 7: Set Datatypes
	Slide 8: Range and dict Datatypes
	Slide 9: Byte Datatypes
	Slide 10: Operators and precedence
	Slide 11: Arithmetic Operators
	Slide 12: Precedence
	Slide 13: Expressions
	Slide 14: Math Methods
	Slide 15: Reserved Words
	Slide 16: Assignment: What goes on behind the scene
	Slide 17: Assignment statement
	Slide 18: Assignment statement
	Slide 19: Assignment statement
	Slide 20: Assignment statement
	Slide 21: Assignment statement
	Slide 22: Assignment statement
	Slide 23: Assignment statement
	Slide 24: Assignment statement
	Slide 25: Assignment statement
	Slide 26: Assignment statement
	Slide 27: Sharing List
	Slide 28: Print and input
	Slide 29: print
	Slide 30: print
	Slide 31: input
	Slide 32: More on print
	Slide 33: print
	Slide 34: print
	Slide 35: print
	Slide 36: Formatted string in print
	Slide 37: Formatted string in print
	Slide 38: More on lists
	Slide 39: List: Key Functions
	Slide 40: List: Key Functions
	Slide 41: List: Key Functions
	Slide 42: More on Tuples
	Slide 43: Tuples: Key Functions
	Slide 44: More on SETS
	Slide 45: Sets: Key Functions
	Slide 46: Sets: Key Functions
	Slide 47: More on Dictionaries
	Slide 48: dict: Key Functions
	Slide 49: dict: Key Functions

