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Numeric Types

>>> a = 5

>>> type(a)

<class ‘int’>

>>> a = 8.0

 >>> type (a)
<class ‘float’>
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>>> a = 5+4j

>>> type(a)

<class ‘complex’>
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String Data Types

Strings

Can  use  “”  or  ‘’  to  specify.    
“abc”    ‘abc’    (Same  thing.)

Unmatched  can  occur  within  the  string
“matt’s”

Use  triple  double-quotes  for  multi-line  

strings  or  strings  that  contain  both  ‘and  “  

inside  of  them:  
“““a‘b“c”””
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>>> a = “Placement”

 >>> type (a)
<class ‘str’>
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Boolean Datatypes

>>> is_pass = True

 >>> type (is_pass)
<class ‘bool’>
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>>> is_pass = False

 >>> type (is_pass)
<class ‘bool’>



Panchatcharam M January 2025

List and Tuple Datatypes

>>> company= [“Google”,”Facebook”,”Apple”]

 >>> type (company)
<class ‘list’>

company=list(("Google","Facebook","Apple"))
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>>> animals= (“Lion”,”Tiger”,”Cat”)

 >>> type (animals)
<class ‘tuple’>

animals= tuple((“Lion”,”Tiger”,”Cat”))
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Set Datatypes

>>> company= {“Google”,”Facebook”,”Apple”}

 >>> type (company)
<class ‘set’>

company=set(("Google","Facebook","Apple"))
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>>> animals= frozenset({“Lion”,”Tiger”,”Cat”})

 >>> type (animals)
<class ‘frozenset’>

animals= frozenset((“Lion”,”Tiger”,”Cat”))
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Range and dict Datatypes

>>> x=range(10)

 >>> type (x)
<class ‘range’>
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>>> s= {“name”:”Raj”,”age”:20,”Marks”:94.5,”Pass”:True}

 >>> type (s)
<class ‘dict’>
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Byte Datatypes

>>> x=b”Placement”

 >>> type(x)
<class ‘bytes’>
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>>> x=bytearray(5)

 >>> type(x)
<class ‘bytearray’>

>>> x=memoryview(x)

 >>> type(x)
<class ‘memoryview’>



Operators and precedence
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Arithmetic Operators

expression: A data value or set of operations to compute a value.
 Examples: 1 + 4 * 3

Arithmetic operators we will use:
 +  addition
 -  subtraction/negation
 *  multiplication
 /  division
 %  modulus, a.k.a. remainder
 **  exponentiation
 //  floor division

11
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Precedence

Order in which operations are computed.
** has higher precedence than * / // %
* / // % have a higher precedence than + -

 1 + 3 * 4 is 13
Parentheses can be used to force a certain order of evaluation.
 (1 + 3) * 4 is 16

12

Advice: Better use parentheses if you have more than one 
operators of multiple precedence

Multiple operators of same precedence
** right to left associativity
* / // % + -left to right associativity
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Expressions

Python can also manipulate real numbers.
 Examples: 6.022 -15.9997 42.0 2.143e17

The operators + - * / // % **  ( ) all work for real numbers.
Example for / 15.0 / 2.0 is 7.5
Example for // : 15.0 / 2.0 is 7
The % produces an exact answer: 7.5 / 2.0 is 1.5

The same rules of precedence also apply to real numbers:
Evaluate  ( )  before  * / %  before  + -

When integers and reals are mixed, the result is a real number.
 Example:  1 / 2.0  is  0.5

13
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Math Methods

Method Description

abs(value) absolute value

ceil(value) rounds up

cos(value) cosine, in radians

floor(value) rounds down

log(value) logarithm, base e

log10(value) logarithm, base 10

max(value1, value2) larger of two values

min(value1, value2) smaller of two values

round(value) nearest whole number

sin(value) sine, in radians

sqrt(value) square root

Constant Description

e 2.7182818...

pi 3.1415926...

tau (2*pi) 6.2831853...

◼ To use many of these Methods, you must write the following 
at the top of your Python program:

◼ import math
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Reserved Words

and,   assert,   break,   class,   continue,   

def,   del,   elif, else,   except,   exec,   

finally,   for,   from,   global,   if, import,   

in,   is,   lambda,   not,   or,   pass,   print,   

raise, return,   try,   while

Names  are  case  sensitive  and  cannot  start  with  a  number.  

They  can  contain  letters,  numbers,  and  underscores.

bob      Bob      _bob      _2_bob_      bob_2      BoB

15



Assignment: What goes on 
behind the scene
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Assignment statement

◼ Assignment Statement: Stores a value into a variable.
◼ Syntax:
  name = value
◼ Examples: x = 5
    gpa = 3.14

    x, y = 2,3

◼ A variable that has been given a value can be used in 
expressions.

  x + 4 is 9

◼ Exercise: Evaluate the quadratic equation for a given a, b, and c.
◼ 𝑎𝑥2 + 𝑏𝑥 + 𝑐

17
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Assignment statement

◼ Assignment  manipulates  references.
◼ x  =  y  does  not  make  a  copy  of  the  object  y  references
◼ x  =  y  makes  x  reference  the  object  y  references
  name = value
◼ Examples: a = [1,2,3] # a now references the list [1,2,3] 

   b = a          # b now references what a references

    a.append(4)   # this changes the list a references

    print(b)    # if we print b

    [1,2,3,4]    # SURPRISED!?  

18
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Assignment statement

◼ There  is  a  lot  going  on  when  we  type a = 3
◼ First,  an  integer  3  is  created  and  stored  in  memory
◼ A name a  is  created

◼ A  reference  to  the  memory  location  storing  the  3  is  the assigned  
to  the  name  a

◼ So:    When  we  say  that  the  value  of  a is 3
◼ we  mean  that  a  now  refers  to  the  integer  3

Type: Integer

Data: 3
Name: a
Ref: <address1>

name list memory
19
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Assignment statement

❖ The  data  3  we  created  is  of  type  integer.    In  Python,  the datatypes  integer,  float,  
and  string  (and  tuple)  are “immutable.”

❖ This  doesn’t  mean  we  can’t  change  the  value  of  x,  i.e.  Change what  x  refers  to  …
❖ For  example,  we  could  increment  x

>>> x = 5

>>> x = x + 1

>>> print(x)

6

        

20
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Assignment statement

➢ If  we  increment  x,  then  what’s  really  happening  is:
➢ The  reference  of  name  x  is  looked  up.
➢ The  value  at  that  reference  is  retrieved 
➢ The  3+1  calculation  occurs,  producing  a  new  data  element  4  which  is 

assigned  to  a  fresh  memory  location  with  a  new  reference.
➢ The  name  x  is  changed  to  point  to  this  new  reference.
➢ The old data 3  is  garbage  collected  if  no  name  still  refers  to  it       

>>> x = x + 1

Type: Integer

Data: 3Name: x
Ref: <address1>

Type: Integer

Data: 4

21
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Assignment statement

>>>   x   =   3                     #   Creates   3,   name   x   refers   to   3

>>>   y   =   x                     #   Creates   name   y,   refers   to   3.

>>>   y   =   4                     #   Creates   ref   for   4.   Changes   y.

>>>   print(x)               #   No   effect   on   x,   still   ref   3.

3

Type: Integer

Data: 3

Name: x
Ref: <address1>
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Assignment statement

>>>   x   =   3                     #   Creates   3,   name   x   refers   to   3

>>>   y   =   x                     #   Creates   name   y,   refers   to   3.

>>>   y   =   4                     #   Creates   ref   for   4.   Changes   y.

>>>   print(x)               #   No   effect   on   x,   still   ref   3.

3

Type: Integer

Data: 3

Name: x
Ref: <address1>

Name: y
Ref: <address1>
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Assignment statement

>>>   x   =   3                     #   Creates   3,   name   x   refers   to   3

>>>   y   =   x                     #   Creates   name   y,   refers   to   3.

>>>   y   =   4                     #   Creates   ref   for   4.   Changes   y.

>>>   print(x)               #   No   effect   on   x,   still   ref   3.

3

Type: Integer

Data: 3

Name: x
Ref: <address1> Type: Integer

Data: 3

Name: x
Ref: <address1>

Name: y
Ref: <address1>

Type: Integer

Data: 3

Name: x
Ref: <address1>

Type: Integer

Data: 4

Name: y
Ref: <address1>
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Assignment statement

>>>   x   =   3                     #   Creates   3,   name   x   refers   to   3

>>>   y   =   x                     #   Creates   name   y,   refers   to   3.

>>>   y   =   4                     #   Creates   ref   for   4.   Changes   y.

>>>   print(x)               #   No   effect   on   x,   still   ref   3.

3

Type: Integer

Data: 3

Name: x
Ref: <address1>

Name: y
Ref: <address1>

25

Type: Integer

Data: 4
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Assignment statement

❑ For  other  data  types  (lists,  dictionaries,  user-defined  types),  

assignment works  differently.  
❑ These  datatypes  are  “mutable.” 

❑When  we  change  these  data,  we  do  it  in  place.  

❑We  don’t  copy  them  into  a  new  memory  address  each  time.  

❑ If  we  type  y=x  and  then  modify  y,  both  x  and  y  are  changed

immutable

>>>   x   =   3

>>>   y   =   x

>>>   y   =   4

3

>>>   print(x)

x   =   some   mutable   object

y   =   x

make   a   change   to   y

look   at   x

x   will   be   changed   as   well

mutable

26
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Sharing List

a
1 2 3

b

a
1 2 3

b
4

a  =  [1,  2,  3]

a.append(4)

b  =  a

a 1 2 3

27



Print and input
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print

◼ print : Produces text output on the console.

◼ Syntax:
 print("Message“)
 print(Expression)
◼ Prints the given text message or expression value on the 

console, and moves the cursor down to the next line.

 print(Item1, Item2, ..., ItemN)
◼ Prints several messages and/or expressions on the same line.

29
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print

◼ Examples:
 print("Hello, world!")

 age = 45

 print("You have", 65 - age, "years until 
retirement")

Output:

 Hello, world!

 You have 20 years until retirement

30
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input

◼ input : Reads a number from user input.
◼ You can assign (store) the result of input into a variable.
◼ Example:

 age = input("How old are you? ")

 print("Your age is", age)

 print("You have", 65 – int(age), "years 
until retirement")

 Output:

 How old are you? 53

 Your age is 53

 You have 12 years until retirement

31



More on print
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Fancy output
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print

◼ print : Produces text output on the console.

◼ Full Syntax:
 print(*objects, sep=' ', end='\n', 

file=sys.stdout, flush=False)

❑ objects: objects to be printed
❑ sep: object separated by sep
❑ file: with write string method
❑ flush: stream is forcibly flushed

33
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print

◼ Examples:
a,b = 10,5

print("a = ", a, sep='00000', end='\n\n\n')

print(“b = ", a, sep='0', end='')

Output:

 a = 0000010

 a = 05

34
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print

◼ Examples:
fp=open('Testing.txt','w')

print("MA522M-Data Science Programming Laboratory",file=fp)

fp.close()

35
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Formatted string in print

◼ Examples:
import math

print(f'The value of pi is approx {math.pi:.3f}.')

print('There are {}, {}, {}, {} in chess'.format('knights',

'king','queen','horses'))

FirstName='Raja'

LastName='Kumar'

Marks=43.5

print('Student Name {1} {2}. His Mark is {0}'.format(Marks,FirstName, LastName))

print('Student Name {0} {1}. His Mark is {2}'.format(FirstName, LastName,Marks))

print('Student Name {first} {last}. His Mark is 

{mark}'.format(mark=Marks,first=FirstName, last=LastName))

print('Student Name {first} {last}. His Mark is {mark}'.format(first=FirstName,

mark=Marks,last=LastName))

36
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Formatted string in print

◼ Examples:
x=2

print('{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x))

x=3

print('{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x))

x=8

print('{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x))

x=10

print('{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x))

37



More on lists
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List: Key Functions

x=[1,2,3,4,5]

print('First Element: ',x[0]) #indexing

print(‘Second Element: ',x[1])

print('Last Element: ',x[-1]) #indexing from last

print('Slicing: ',x[2:]) #slicing

print('Slicing 2: ',x[-2:]) #slicing

x=x+[2,3,4,5,6] #concatenation

print('Concatenation:',x)

x.append(7) #appending

print('Appended 7: ',x)

x.remove(2) #removing

print('Removed 2: ',x)

x[2]=7 #replacing

print('Replacment: ',x)

39
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List: Key Functions

y=[0,0,0] #nested list

y[0]=[1,2,3] #replacing

y[1]=[3,4,5]

y[2]=[5,6,7]

print('Nested List :',y)

#can be mixture of all data types

A=['a','b','c','d','e','f',0,0.1,"Ram",True,3+4j,[1,2,3,4]] 

print('Mixtures: ',A)

print('Slicing Again: ',A[2:7]) #slicing

#Remove item

A[2:6]=[]

print('Removing again: ',A)

del A[2]

print('Deleting: ',A)

#Remove all

A[:]=[]

print('Removed Everything: ',A)

40
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List: Key Functions

#Length

A=['a','b','c','d','e','f’]

print(‘A*2:’,A*2)

print('New List:',A)

print('Length of List: ',len(A))

A.clear()

print('Cleared Again: ',A)

A=['a','b','c','d','e','f']

A.extend('g')

print('Extended',A)

41

x=x+[2,3,4,5,6]

print(x)

print('Number of occurences of 3: ',x.count(3))

#number of occurences

print('Index of 5 in the list: ',x.index(5))

print('Maximum and Minimum: ',max(x),min(x))

#minimum and maximum

x.reverse()

print('Reversed: ',x)

x.sort()

print('Sorted: ',x)

reversed(x)

print(x)



More on Tuples
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Tuples: Key Functions

heros=('Arthos','Porthos','Aramis','Romeo','Juliet')

print(heros)

print(len(heros))

print(heros[1],heros[2],heros[-1],heros[-

2],heros[2:],heros[-2:],sep=' & ')

print(heros.index('Porthos'))

43



More on SETS
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Sets: Key Functions

emptyset=set()

print(emptyset)

print(x)

numbers=set(x)

print(numbers)

y=list(numbers)

print(y)

45

programming=set(['C','C++','Python','Ruby','Java','S

cala','Swift','Perl'])

print(programming)

programming.add('Python')

print(programming)

programming.add('SQL')

print(programming)

compilers=set(['C','C++','Scala'])

interpreters=set(['Python','Java'])

programming.update(compilers)
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Sets: Key Functions

46

intersect=compilers.intersection(interpreters)

print(intersect)

union=compilers.union(interpreters)

print(union)

union=union.union(programming)

print(union)

diff=programming.difference(compilers)

print(diff)

print(compilers.isdisjoint(interpreters))

print(compilers.issubset(programming))

print(programming.issuperset(compilers))

print(programming^compilers)#symmetric difference

print(programming.symmetric_difference(compilers))



More on Dictionaries
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dict: Key Functions

course={‘MA612L':'PDE',’MA522M’:’Data Science Programming

Laboratory',’MA502L':'DE',’MA633L':'Numerical'}

print(course)

print(course[‘MA612L'])

print(course.get(‘MA522M'))

print(course.keys())

print(course.values())

print(course.items())

48

course['MA101’]=‘EM-1'

print(course)

print(len(course))

course.clear()

print('cleared: ',course)
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dict: Key Functions

49

btechcourse={'MA2021':'Linear Algebra','MA2022':'Complex 

Methods','MA2023':'Probability'}

print(btechcourse)

course.update(btechcourse)

print(course)

herodictionary=dict.fromkeys(heros)

print(herodictionary)

herodictionary=dict.fromkeys(heros,[1,2,3,4,5])

print(herodictionary)
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