
Panchatcharam February 2025

Python Classes

1

Panchatcharam Mariappan

Associate Professor

Department of Mathematics and Statistics,

IIT Tirupati

2/10/2025

Oops concepts

2

Panchatcharam February 2025

OOPS

✓ Programming Paradigms

▪ Procedural
• Modules, Data Structures, Procedures that Operate upon them

▪ Objectural:
• Objects which encapsulate data and behavior

• Messages passed between objects

▪ Functional
• Functions, Closures, Recursion, lists, …

3

Panchatcharam February 2025

OOPS

✓ Python

▪ Procedural
• Yes

▪ Objectural:
• Yes

▪ Functional
• Yes

4

• Python

❑ allows programmer to choose the

paradigm that best suits the

problem

❑Mix of Paradigms

❑ Switching paradigm if necessary

Panchatcharam February 2025

What are Objects

✓ A data type

 Stores Data

 + Operations defined to act on the data

✓ Tangible Entities (Physically exists in real world)

• Person, Student, Locker, Air Ticket, etc

✓ Intangible Entities (Exists logically in real world)

• Bank Account, Email, Reservation

✓ Interactions between objects define the system

operations

5

Panchatcharam February 2025

Abstraction

6

❖ Take a Bank Details or Your Mobile Phone or PC

✓ It is not necessary that everyone should know

everything about your account

✓ Manager/Administrator has a role

✓ Cashier/User has a role

✓ Think: A piece of code as black box

✓ Cannot See

✓ Do not need to see

✓ Do not want to see

✓ High Coding details

Panchatcharam February 2025

What are Objects

✓ Attributes or Data Attributes

✓ Characteristics or properties of an entity in a database table

✓ A named piece of data or variable

✓ Data members (class variables and instance variables)

7

✓ Example 1: Student has

 Name

 Roll Number

 Marks

 Branch/discipline

❖ Example 3: Rectangle has

 Sides/Edges

 Vertices

❖ Example 2: Circle has

 Radius

 Center

Panchatcharam February 2025

What are Objects

✓ Methods or Procedural Attributes

✓ Attributes bound to functions/behavior/operators

8

✓ Example 1: Student has

 Average Marks Calculation

 Decide Grades

❖ Example 3: Rectangle has

 Area

 Circumference

❖ Example 2: Circle has

 Area

 Circumference

Panchatcharam February 2025

Messages

9

✓ A process by which class components interact

 Send data to another object

 Request data from another object

 Request object to perform some behaviour

✓ Implemented as methods (not called functions)

 Functions are process that are object independent
 Methods are dependent on the state of the object

Panchatcharam February 2025

Abstraction

10

✓ Encapsulation implements the concept of abstraction

 Details associated with object

 End user could see the public interface, but
implementation are hidden

Attributes

Methods

Encapsulated

P
u

b
lic In

terface

Panchatcharam February 2025

Encapsulation

11

✓ Attributes and methods are encapsulated within the logical

boundary of the object entity

 In procedural paradigms, data and functions are typically

maintained as separate entities

 In Objectural paradigms, each object has attributes (data)

and methods (functions) that operates upon those
attributes

Glance at a class

12

Panchatcharam February 2025

Class

✓ Classes

 Bundling Data

 + Functionality

13

✓ Classes

 A collection of functions and attributes

 Attached to a specific name to represent an

abstract concept

✓ Classes

 User-defined prototype for an object with

attributes and methods

Panchatcharam February 2025

Classes

✓ A software item that contains variables and methods

✓ Object Oriented Design focuses on
▪ Encapsulation

• dividing the code into a public interface, and a private implementation of

that interface

▪ Polymorphism:
• the ability to overload standard operators so that they have appropriate

behavior based on their context

▪ Inheritance:

• the ability to create subclasses that contain specializations of their

parents

14

Panchatcharam February 2025

Instances

✓ View class/object as factories or templates

✓ An Individual Object of a certain class

✓ Each object instance takes all the properties of the class

from which it was created

15

Abstract
Concept

Circle

Attributes

 Area()

 Circumference()

Methods/Functions

Radius=3

Area()=28.27

Circumference()=18.85

 Radius

Radius=6

Area()=113.1

Circumference()=37.7

Panchatcharam February 2025

Class Vs Instance of a Class

✓ class name is the type
➢ class circle(object)

✓ Defined generically
➢ Use self to refer to some

instance while defining

the class
➢ area=pi*self.r*self.r

➢ self is a parameter to

methods in class

definition

✓ Defines data and methods

common across all

instances
16

✓ Instance is one specific object
➢ mycirc=circle(2)

✓ Data varies between instances
➢ mycirc1=circle(4)

➢ mycirc2=circle(11)

➢ mycirc1.r and mycirc2.r

are different

✓ Instance has the structure of
the class

Panchatcharam February 2025

OOP Terminologies

17

❖ Object

 A unique instance of data structured defined by its class

 Contains Data Members

 Class Variables

 Instance Variables

 Methods

Panchatcharam February 2025

OOP Terminologies

18

❖ Class

 User-defined prototype for an object

 Set of attributes to characterize any object of the class

 Attributes

 Data Members(Class Variables, Instance Variables)

 Methods

 Accessed via dot notation
❖ Instance

 An individual object of a certain class

❖ Instantiation

 Creation of an instance of a class

Panchatcharam February 2025

OOP Terminologies

19

❖ Instance Variable

 Defined inside a method

 Belongs to only to the current instance of the class

❖ Class Variable

 Shared by all instance of a class

 Defined within a class

 Outside any of the class’ methods

 Not use as frequently as instance variable

Panchatcharam February 2025

OOP Terminologies

20

❖ Method

 A special kind of function that is defined in a class

definition

❖ Data Member

 A class variable

 Instance Variable

 Holds data associated with a class and its objects

Panchatcharam February 2025

OOP Terminologies

21

❖ Operator Overloading

 Assignment of more than one function to a particular

operator

❖ Function Overloading

 Assignment of more than one behaviour to a particular

function

❖ Inheritance

 Transfer of the characteristic of a class to other classes

that are derived from it

Panchatcharam February 2025

OOP Terminologies

22

❖ Overriding

 When inheriting from a class, we can alter behaviour of

the parent class by overriding function

 Declaring functions in the subclass with the same name

 More precedence over parent class

❖ Polymorphism

 Two objects of different classes

 Supports same set of functions

 Attributes can be treated identically

 Implementation are different, but appears to be same

Panchatcharam February 2025

Why Use OOP and Classes of Objects

23

❑ Do you know or care how a smartphone or TV or washing

machine or any electrical appliances or your own body??

 No. As long as you are the user of the appliances and the

appliance functions well

Panchatcharam February 2025

Why Use OOP and Classes of Objects

24

❖ Group different object of the same type

 Classes and objects are more like the real world

 Mimic the real world

 Minimize the semantic gap by modelling the real world

❖ Semantic Gap:

 Difference Between the real world and the

representation in a computer

❖ Allow you to define an interface to some object and its

operations

 Use it without knowing the internals

❖ Modularize the program into multiple objects that work

together, each has its own purpose

Python classes

25

Panchatcharam February 2025

Type() function and Python Class

26

❖ Type()

 It returns the data type of the argument passed to it

❖ Python Class:

 Is a template for a data type
 It can be defined using the class keyword

Panchatcharam February 2025

Classes

class name:

 "documentation"

 statements

class name(base1, base2, ...):

 ...

Most, statements are method definitions:

 def name(self, arg1, arg2,

...):

 ...

May also be class variable assignments

27

Panchatcharam February 2025

Classes

class Person(object):

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("John", 36)

print(p1.name)

print(p1.age)

28

Panchatcharam February 2025

How to define a Class

29

class Person(object):

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("John", 36)

Special method to create instance

Variable to an instance of the class

Data corresponding to Person Type

name is a data attribute and it is initialized with it.
If you wish to create an instance without initialization
define self.name=None

Mapped to self.name and
self.age in class def

Panchatcharam February 2025

Class Variable vs Instance Variable

class Person(object):

 address ="Tirupati" #class variable Shared

 def __init__(self, name, age):

 self.name = name #instance variable

(unique to each instance)

 self.age = age

p1 = Person("John", 36)

p2 = Person("Navier", 45)

30

print(p1.address) #Tirupati (Class Variable)

print(p1.name) #John (instance variable)

print(p2.name) #Navier (instance variable)

print(p1.age)

print(p2.address) #Tirupati (Class Variable)

Person.address = "Hyderabad" #Change in

Class variable

print(p1.address)#Hyderabad (Class Variable)

print(p2.address)#Hyderabad (Class Variable)

Panchatcharam February 2025

Methods in Classes

define the Vehicle class

class Vehicle:

def __init__(self,name,kind,color,value):

self.name=name

self.kind=kind

self.color=color

self.value=value

def description(self): # Method

desc_str = "%s is a %s %s worth $%.2f."

% (self.name, self.color, self.kind, self.value)

return desc_str

car1=Vehicle("Ford",'car','red',50000)

car2=Vehicle("BMW",'car','black',50000)

test code

print(car1.description())

print(car2.description())

31

Panchatcharam February 2025

Getters and Setters Methods

32

class Person(object):

def __init__(self, name=None, age=None):

self.name = name

self.age = age

 def get_name(self):

 return self.name

 def get_age(self):

 return self.age

 def set_age(self,age):

 self.age=age

 def set_name(self,name):

 self.name=name

def print_person(self):

print(f"{self.name} is {self.age} years old")

p1 = Person("John", 36)

p1.print_person()

p2=Person()

p2.set_age(44)

p2.set_name("Ramya")

p2.print_person()

print(p2.get_age())

print(p2.get_name())

ge
tt

er

se
tt

er

 Getters and setters must be used outside class to access

data attributes

Panchatcharam February 2025

Instance, Dot Notation and Data Hiding

33

p1 = Person("John", 36)

 Instantiation creates an instance of an object

p2.print_person()

print(p2.get_age())

print(p2.get_name())

print(p2.name,p2.age)

 Dot notation used to access attributes (data and procedural)

 It is better to use getters and setters to access data attributes

 Outside the class use getters and setters

 Use p1.get_name() instead of p1.name

 Easy to maintain, debug and document

Panchatcharam February 2025

Empty Class

34

 It has no attributes or methods

 Use pass to avoid syntax errors

 Purpose
 Placeholder for future development

 For dynamic attributes

 Base class

 For performance test

 Object Tagging

class EmptyClass:

 "Thi is an empty Class"

 pass

A=EmptyClass()

class Book:

 "Thi is an empty Book"

 pass

Rudin=Book()

Panchatcharam February 2025

__main__

35

 __name__=="__main__“ ensures code only runs when executed directly

 Prevents unintended execution when importing a script

 Used for unit testing

define the Vehicle class

class Vehicle:

 def __init__(self,name,kind,color,value):

 self.name=name

 self.kind=kind

 self.color=color

 self.value=value

 def description(self): # Method

 desc_str = "%s is a %s %s worth $%.2f." % (self.name,

self.color, self.kind, self.value)

 return desc_str

if __name__=="__main__":

 print(dir())

 print(dir(Vehicle))

 car1=Vehicle("Ford",'car','red',50000)

 car2=Vehicle("BMW",'car','black',50000)

 print(car1.name) # Ford

 print(car2.name) # BMW

Different Methods

36

Panchatcharam February 2025

__init__ Method

37

 Initialize a newly created object.

 It is called every time when the class is instantiated

define the Vehicle class

class Vehicle:

def __init__(self,name,kind,color,value):

self.name=name

self.kind=kind

self.color=color

self.value=value

car1=Vehicle("Ford",'car','red',50000)

car2=Vehicle("BMW",'car','black',50000)

print(car1.name) # Ford

print(car2.name) # BMW

Panchatcharam February 2025

dir() Method

38

 dir() returns a list of all attributes in the current scope

 dir(objectname) returns all valid object attributes

define the Vehicle class

class Vehicle:

 def __init__(self,name,kind,color,value):

 self.name=name

 self.kind=kind

 self.color=color

 self.value=value

 def description(self): # Method

 desc_str = "%s is a %s %s worth $%.2f." % (self.name,

self.color, self.kind, self.value)

 return desc_str

print(dir())

print(dir(Vehicle))

car1=Vehicle("Ford",'car','red',50000)

car2=Vehicle("BMW",'car','black',50000)

print(car1.name) # Ford

print(car2.name) # BMW

Panchatcharam February 2025

Class Method

39

class ObjectName:

 @classmethod

 def some_class_method(cls, *args, **kwargs):

 # Method Implementation

 pass

 Used to define a method that is bound to the class, not the

instance of the class

Panchatcharam February 2025

Class Method

40

class Institute:

 Institute_name = "IIT Tirupati"

 @classmethod

 def change_insti(cls, new_insti):

 cls.Institute_name = new_insti # Changes class variable

Institute.change_insti("IIT Madras")

print(Institute.Institute_name) # IIT Madras

Panchatcharam February 2025

Static Method

41

class ObjectName:

 @staticethod

 def some_class_method(*args, **kwargs):

 # Method Implementation

 pass

 It does not receive any implicit argument

 Bound to the class, but not the object of the class

 It can’t access or modify the class state

Panchatcharam February 2025

Static Method

42

class MathFunction:

 @staticmethod

 def factorial(n):

 if n==0:

 return 1

 else:

 return n*MathFunction.factorial(n-1)

print(MathFunction.factorial(5))

 If you define a function in a module and don't want it to be associated with an instance
of a class or module, you can use the @staticmethod decorator to declare that

function as static.

 It does not access self

Panchatcharam February 2025

Class vs Static Method

43

Class Method Static Method

Takes cls as the first parameter No specific parameters required

Can access or modify the class state Can’t access or modify the class state

It knows about the class state It does not know anything about the class
state

It must have a class parameter It takes some parameters and work upon
those parameters

@classmethod @staticmethod

Panchatcharam February 2025

Super() Method

44

class Rectangle:

 def print_test(self):

 print(“Parent Class: Opposite Sides Are Equal")

class Square(Rectangle):

 def print_test(self):

 print("Child Class: All Sides are Equal")

 # Calls the parent's version of print_test()

 super().print_test()

 super() allows a subclass to invoke its parent’s version of an overriden method

A = Square()

A.print_test()

Panchatcharam February 2025

Super() Method

45

class Rectangle:

 def print_test(self):

 print(“Parent Class: Opposite Sides Are Equal")

class Square(Rectangle):

 def print_test(self):

 print("Child Class: All Sides are Equal")

 # Calls the parent's version of print_test()

 super().print_test()

 super() allows a subclass to invoke its parent’s version of an overriden method

A = Square()

A.print_test()

Panchatcharam February 2025

issubclass() Method

46

class Rectangle:

 def print_test(self):

 print(“Parent Class: Opposite Sides Are Equal")

class Square(Rectangle):

 def print_test(self):

 print("Child Class: All Sides are Equal")

 # Calls the parent's version of print_test()

print(issubclass(Square,Rectangle))

print(isinstance(Square(),Rectangle))

 built-in function checks if the first argument is a subclass/instance of the second

argument.

True

True

Panchatcharam February 2025

Polymorphism

47

class Rectangle:

 def print_test(self):

 print(“Parent Class: Opposite Sides Are Equal")

class Square(Rectangle):

 def print_test(self):

 print("Child Class: All Sides are Equal")

 Two classes with same print_test()

A = Square()

A.print_test()

B = Rectangle()

B.print_test()

Can we hide data?
Python says “no”

48

Panchatcharam February 2025

Python is not good at data hiding

49

p2.print_person()

print(p2.get_age())

print(p2.get_name())

print(p2.name,p2.age)

 You can access data from outside class definition

 You can write to data from outside class definition
p2.name="Karan"

print(p2.name,p2.age)

 You can create data attributes for an instance from outside

class definition
p2.city="Tirupati"

print(p2.name,p2.age,p2.city)

Panchatcharam February 2025

Hackaround for Data Hiding

50

❖ Python attributes and methods are public by default

 Public attributes means any class or function can see and

change the attribute

 Public method means any other class or function call the

method

 Refer Previous slide

❖ There is a hackaround to make it private

 Add __ (two underscores) to the beginning of the name
 self.__name=name

 self.__age=age

 def __functionname():

Panchatcharam February 2025

Hackaround for Data Hiding

51

class Shape(object):

def __init__(self):

self.color=(0,0,0)

def get_color(self):

return self.color

def set_color(self,color):

self.color=color

def print_color(self):

print(self.color)

import math

class Circle(Shape):

def __init__(self,r=None):

Shape.__init__(self)

self.radius=r

def get_radius(self):

return self.radius

def set_radius(self,r):

self.radius=r

def area(self):

return

math.pi*self.radius*self.radius

def circumference(self):

return 2*math.pi*self.radius
C=Circle()

C.radius=5

print(C.area())

Panchatcharam February 2025

Hackaround for Data Hiding

52

class Shape(object):

def __init__(self):

self.color=(0,0,0)

def get_color(self):

return self.color

def set_color(self,color):

self.color=color

def print_color(self):

print(self.color)

import math

class Circle(Shape):

def __init__(self,r=None):

Shape.__init__(self)

self.__radius=r

def get_radius(self):

return self.__radius

def set_radius(self,r):

self.__radius=r

def area(self):

return

math.pi*self.__radius*self.__radius

def __circumference(self):

return 2*math.pi*self.__radius

C=Circle()

C.__radius=7

print(C.area())

C=Circle()

C.set_radius(5)

print(C.area())

Panchatcharam February 2025

Hackaround of the Hackaround for Data Hiding

53

class Shape(object):

def __init__(self):

self.color=(0,0,0)

def get_color(self):

return self.color

def set_color(self,color):

self.color=color

def print_color(self):

print(self.color)

import math

class Circle(Shape):

def __init__(self,r=None):

Shape.__init__(self)

self.__radius=r

def get_radius(self):

return self.__radius

def set_radius(self,r):

self.__radius=r

def area(self):

return

math.pi*self.__radius*self.__radius

def __circumference(self):

return 2*math.pi*self.__radius
C=Circle()

C._Circle__radius=7

print(C.area())

Panchatcharam February 2025

Hierarchies and Inheritance

54

class Person(object):

def __init__(self, name=None, age=None):

self.name = name

self.age = age

 def get_name(self):

 return self.name

 def get_age(self):

 return self.age

 def set_age(self,age):

 self.age=age

 def set_name(self,name):

 self.name=name

Person

StaffFacultyStudents

M.TechB.Tech M.Sc

MS/PhD

MA CSE

Academics

Admin

Accounts

ME

Panchatcharam February 2025

Instance, Dot Notation and Data Hiding

55

 Parent class (Superclass)

 Child Class (subclass)

 Inherits all data and

procedural attributes of

parent class

 You can add more data

 You can add more functions

 You can override methods

Panchatcharam February 2025

Instance, Dot Notation and Data Hiding

56

class Student(Person):

 def __init__(self, rollno=None, marks=None):

 self.rollno = rollno

 self.marks = marks

 def get_rollno(self):

 return self.rollno

 def get_marks(self):

 return self.marks

 def set_marks(self,marks):

 self.marks=marks

 def set_rollno(self,rollno):

 self.rollno=rollno

New Functionalities Added

Panchatcharam February 2025

Methods Hierarchies

57

 Subclass and superclass can have methods
with same name (print_person)

 First look for the method in current class
 If not found (get_name), go to the parent

class, if not grandparent, and so on

 It stops after finding the least top level (from

backward) and uses the method name

Person
Data: name, age

get_name, set_name
get_age, set_age

print_person

Students
Data: rollno, marks

get_marks, set_marks
get_rollno, set_rollno

print_person

Panchatcharam February 2025

Constructors

58

class Student(Person):

 def __init__(self, rollno=None, marks=None):

 self.rollno = rollno

 self.marks = marks

 def get_rollno(self):

 return self.rollno

Constructor

✓ When an instance of a class is created the class constructor function is
automatically called

✓ Constructor is always named __init__()
✓ A piece of code to initialize a new instance by setting data attributes

(mostly)

Operator overloading

59

Panchatcharam February 2025

Operator Overloading

60

class Complex:

 def __init__(self,x,y) -> None:

 self.real=x

 self.imaginary=y

 def print(self):

 if(self.imaginary<0):

 print(str(self.real)+str(self.imaginary)+"i")

 else:

 print(str(self.real)+"+"+str(self.imaginary)+"i")

 def __add__(self,other):

 return Complex(self.real+other.real,self.imaginary+other.imaginary)

 def __sub__(self,other):

 return Complex(self.real-other.real,self.imaginary-other.imaginary)

A=Complex(2,3)

A.print()

B=Complex(4,5)

B.print()

C=A+B

C.print()

D=A-B

D.print()

Panchatcharam February 2025

Operator Overloading

61

Operator Method Example

+ __add__ A+B

- __sub__ A-B

* __mul__ A*B

/ __truediv__ A/B

// __floordiv__ A//B

% __mod__ A%B

** __pow__ A**B

== __eq__ A==B

!= __ne__ A!=B

< __lt__ A<B

<= __le__ A<=B

> __gt__ A>B

>= __ge__ A>=B

Panchatcharam February 2025

Operator Overloading

62

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def __gt__(self, other):

 return self.age > other.age # Compare by age

people = [Person("Alice", 30), Person("Bob", 25), Person("Charlie", 35)]

people.sort() # Uses __gt__ to sort

for p in people:

 print(p.name, p.age)

End of Python Classes

632/10/2025

	Slide 1: Python Classes
	Slide 2: Oops concepts
	Slide 3: OOPS
	Slide 4: OOPS
	Slide 5: What are Objects
	Slide 6: Abstraction
	Slide 7: What are Objects
	Slide 8: What are Objects
	Slide 9: Messages
	Slide 10: Abstraction
	Slide 11: Encapsulation
	Slide 12: Glance at a class
	Slide 13: Class
	Slide 14: Classes
	Slide 15: Instances
	Slide 16: Class Vs Instance of a Class
	Slide 17: OOP Terminologies
	Slide 18: OOP Terminologies
	Slide 19: OOP Terminologies
	Slide 20: OOP Terminologies
	Slide 21: OOP Terminologies
	Slide 22: OOP Terminologies
	Slide 23: Why Use OOP and Classes of Objects
	Slide 24: Why Use OOP and Classes of Objects
	Slide 25: Python classes
	Slide 26: Type() function and Python Class
	Slide 27: Classes
	Slide 28: Classes
	Slide 29: How to define a Class
	Slide 30: Class Variable vs Instance Variable
	Slide 31: Methods in Classes
	Slide 32: Getters and Setters Methods
	Slide 33: Instance, Dot Notation and Data Hiding
	Slide 34: Empty Class
	Slide 35: __main__
	Slide 36: Different Methods
	Slide 37: __init__ Method
	Slide 38: dir() Method
	Slide 39: Class Method
	Slide 40: Class Method
	Slide 41: Static Method
	Slide 42: Static Method
	Slide 43: Class vs Static Method
	Slide 44: Super() Method
	Slide 45: Super() Method
	Slide 46: issubclass() Method
	Slide 47: Polymorphism
	Slide 48: Can we hide data? Python says “No”
	Slide 49: Python is not good at data hiding
	Slide 50: Hackaround for Data Hiding
	Slide 51: Hackaround for Data Hiding
	Slide 52: Hackaround for Data Hiding
	Slide 53: Hackaround of the Hackaround for Data Hiding
	Slide 54: Hierarchies and Inheritance
	Slide 55: Instance, Dot Notation and Data Hiding
	Slide 56: Instance, Dot Notation and Data Hiding
	Slide 57: Methods Hierarchies
	Slide 58: Constructors
	Slide 59: Operator overloading
	Slide 60: Operator Overloading
	Slide 61: Operator Overloading
	Slide 62: Operator Overloading
	Slide 63: End of Python Classes

