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OOPS

✓ Programming Paradigms

▪ Procedural
• Modules, Data Structures, Procedures that Operate upon them

▪ Objectural:
• Objects which encapsulate data and behavior

• Messages passed between objects

▪ Functional
• Functions, Closures, Recursion, lists, …

3
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OOPS

✓ Python

▪ Procedural
• Yes

▪ Objectural:
• Yes

▪ Functional
• Yes

4

• Python 

❑ allows programmer to choose the 

paradigm that best suits the 

problem

❑Mix of Paradigms

❑ Switching paradigm if necessary
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What are Objects

✓ A data type

 Stores Data

 + Operations defined to act on the data

✓ Tangible Entities (Physically exists in real world)

• Person, Student, Locker, Air Ticket, etc

✓ Intangible Entities (Exists logically in real world)

• Bank Account, Email, Reservation

✓ Interactions between objects define the system 

operations

5
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Abstraction
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❖ Take a Bank Details or Your Mobile Phone or PC

✓ It is not necessary that everyone should know 

everything about your account

✓ Manager/Administrator has a role

✓ Cashier/User has a role

✓ Think: A piece of code as black box

✓ Cannot See

✓ Do not need to see

✓ Do not want to see

✓ High Coding details
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What are Objects

✓ Attributes or Data Attributes

✓ Characteristics or properties of an entity in a database table

✓ A named piece of data or variable

✓ Data members (class variables and instance variables)
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✓ Example 1: Student has

 Name

 Roll Number

 Marks

 Branch/discipline

❖ Example 3: Rectangle has

 Sides/Edges

 Vertices

❖ Example 2: Circle has

 Radius

 Center
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What are Objects

✓ Methods or Procedural Attributes

✓ Attributes bound to functions/behavior/operators
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✓ Example 1: Student has

 Average Marks Calculation

 Decide Grades

❖ Example 3: Rectangle has

 Area

 Circumference

❖ Example 2: Circle has

 Area

 Circumference
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Messages

9

✓ A process by which class components interact

 Send data to another object

 Request data from another object

 Request object to perform some behaviour

✓ Implemented as methods (not called functions)

 Functions are process that are object independent
 Methods are dependent on the state of the object
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Abstraction
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✓ Encapsulation implements the concept of abstraction

 Details associated with object

 End user could see the public interface, but 
implementation are hidden

Attributes

Methods

Encapsulated

P
u

b
lic In

terface
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Encapsulation
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✓ Attributes and methods are encapsulated within the logical 

boundary of the object entity

 In procedural paradigms, data and functions are typically 

maintained as separate entities

 In Objectural paradigms, each object has attributes (data) 

and methods (functions) that operates upon those 
attributes



Glance at a class
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Class

✓ Classes

 Bundling Data 

 + Functionality
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✓ Classes

 A collection of functions and attributes

 Attached to a specific name to represent an 

abstract concept

✓ Classes

 User-defined prototype for an object with 

attributes and methods
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Classes

✓ A  software  item  that  contains  variables  and methods

✓ Object  Oriented  Design  focuses  on
▪ Encapsulation

• dividing  the  code  into  a  public  interface,  and  a  private  implementation of  

that  interface

▪ Polymorphism:
• the  ability  to  overload  standard  operators  so  that  they  have  appropriate 

behavior  based  on  their  context

▪ Inheritance:

• the  ability  to  create  subclasses  that  contain  specializations  of  their 

parents

14
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Instances

✓ View class/object as factories or templates

✓ An Individual Object of a certain class

✓ Each object instance takes all the properties of the class 

from which it was created
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Abstract 
Concept

Circle

Attributes

 Area()

 Circumference()

Methods/Functions

Radius=3

Area()=28.27

Circumference()=18.85

 Radius

Radius=6

Area()=113.1

Circumference()=37.7
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Class Vs Instance of a Class

✓ class name is the type
➢ class circle(object)

✓ Defined generically
➢ Use self to refer to some 

instance while defining 

the class
➢ area=pi*self.r*self.r

➢ self is a parameter to 

methods in class 

definition

✓ Defines data and methods 

common across all 

instances
16

✓ Instance is one specific object
➢ mycirc=circle(2)

✓ Data varies between instances
➢ mycirc1=circle(4)

➢ mycirc2=circle(11)

➢ mycirc1.r and mycirc2.r 

are different

✓ Instance has the structure of 
the class
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OOP Terminologies
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❖ Object

 A unique instance of data structured defined by its class

 Contains Data Members 

 Class Variables

 Instance Variables

 Methods
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OOP Terminologies
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❖ Class

 User-defined prototype for an object 

 Set of attributes to characterize any object of the class

 Attributes 

 Data Members(Class Variables, Instance Variables)

 Methods

 Accessed via dot notation
❖ Instance

 An individual object of a certain class

❖ Instantiation

 Creation of an instance of a class
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OOP Terminologies
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❖ Instance Variable

 Defined inside a method

 Belongs to only to the current instance of the class

❖ Class Variable

 Shared by all instance of a class

 Defined within a class

 Outside any of the class’ methods

 Not use as frequently as instance variable
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OOP Terminologies
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❖ Method

 A special kind of function that is defined in a class 

definition

❖ Data Member

 A class variable

 Instance Variable

 Holds data associated with a class and its objects
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OOP Terminologies
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❖ Operator Overloading

 Assignment of more than one function to a particular 

operator

❖ Function Overloading

 Assignment of more than one behaviour to a particular 

function

❖ Inheritance

 Transfer of the characteristic of a class to other classes 

that are derived from it
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OOP Terminologies
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❖ Overriding

 When inheriting from a class, we can alter behaviour of 

the parent class by overriding function

 Declaring functions in the subclass with the same name

 More precedence over parent class

❖ Polymorphism

 Two objects of different classes 

 Supports same set of functions 

 Attributes can be treated identically

 Implementation are different, but appears to be same
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Why Use OOP and Classes of Objects
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❑ Do you know or care how a smartphone or TV or washing 

machine or any electrical appliances or your own body??

 No. As long as you are the user of the appliances and the 

appliance functions well
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Why Use OOP and Classes of Objects
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❖ Group different object of the same type

 Classes and objects are more like the real world

 Mimic the real world

 Minimize the semantic gap by modelling the real world

❖ Semantic Gap:

 Difference Between the real world and the 

representation in a computer

❖ Allow you to define an interface to some object and its 

operations

 Use it without knowing the internals

❖ Modularize the program into multiple objects that work 

together, each has its own purpose



Python classes
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Type() function and Python Class
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❖ Type()

 It returns the data type of the argument passed to it

❖ Python Class:

 Is a template for a data type
 It can be defined using the class keyword
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Classes

class name:

    "documentation"

    statements

class name(base1, base2, ...):

    ...

Most, statements are method definitions:

    def name(self, arg1, arg2, 

...):

        ...

May also be class variable assignments

27
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Classes

class Person(object):

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("John", 36)

print(p1.name)

print(p1.age) 

28
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How to define a Class
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class Person(object):

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("John", 36)

Special method to create instance

Variable to an instance of the class

Data corresponding to Person Type

name is a data attribute and it is initialized with it.
If you wish to create an instance without initialization
define self.name=None

Mapped to self.name and
self.age  in class def
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Class Variable vs Instance Variable

class Person(object):

 address ="Tirupati" #class variable Shared

 def __init__(self, name, age):

  self.name = name #instance variable 

(unique to each instance)

  self.age = age

p1 = Person("John", 36)

p2 = Person("Navier", 45)

30

print(p1.address) #Tirupati (Class Variable)

print(p1.name) #John (instance variable)

print(p2.name) #Navier (instance variable)

print(p1.age)

print(p2.address) #Tirupati (Class Variable)

Person.address = "Hyderabad" #Change in 

Class variable

print(p1.address)#Hyderabad (Class Variable)

print(p2.address)#Hyderabad (Class Variable)



Panchatcharam February 2025

Methods in Classes

# define the Vehicle class

class Vehicle:

def __init__(self,name,kind,color,value):

self.name=name

self.kind=kind

self.color=color

self.value=value

def description(self): # Method

desc_str = "%s is a %s %s worth $%.2f."

% (self.name, self.color, self.kind, self.value)

return desc_str

car1=Vehicle("Ford",'car','red',50000)

car2=Vehicle("BMW",'car','black',50000)

# test code

print(car1.description())

print(car2.description())

31
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Getters and Setters Methods

32

class Person(object):

def __init__(self, name=None, age=None):

self.name = name

self.age = age

    def get_name(self):

        return self.name

    def get_age(self):

        return self.age

    def set_age(self,age):

        self.age=age

    def set_name(self,name):

        self.name=name

def print_person(self):

print(f"{self.name} is {self.age} years old")

p1 = Person("John", 36)

p1.print_person()

p2=Person()

p2.set_age(44)

p2.set_name("Ramya")

p2.print_person()

print(p2.get_age())

print(p2.get_name())

ge
tt

er

se
tt

er

 Getters and setters must be used outside class to access 

data attributes
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Instance, Dot Notation and Data Hiding
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p1 = Person("John", 36)

 Instantiation creates an instance of an object

p2.print_person()

print(p2.get_age())

print(p2.get_name())

print(p2.name,p2.age)

 Dot notation used to access attributes (data and procedural)

 It is better to use getters and setters to access data attributes

 Outside the class use getters and setters

 Use p1.get_name() instead of p1.name

 Easy to maintain, debug and document
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Empty Class

34

 It has no attributes or methods

 Use pass to avoid syntax errors

 Purpose
 Placeholder for future development

 For dynamic attributes

 Base class

 For performance test

 Object Tagging

class EmptyClass:

 "Thi is an empty Class"

 pass

A=EmptyClass()

class Book:

 "Thi is an empty Book"

 pass

Rudin=Book()
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__main__

35

 __name__=="__main__“ ensures code only runs when executed directly

 Prevents unintended execution when importing a script

 Used for unit testing

# define the Vehicle class

class Vehicle:

  def __init__(self,name,kind,color,value):

    self.name=name

    self.kind=kind

    self.color=color

    self.value=value

  def description(self): # Method

    desc_str = "%s is a %s %s worth $%.2f." % (self.name, 

self.color, self.kind, self.value)

    return desc_str

if __name__=="__main__":

 print(dir())

 print(dir(Vehicle))

 car1=Vehicle("Ford",'car','red',50000)

 car2=Vehicle("BMW",'car','black',50000)

 print(car1.name) # Ford

 print(car2.name) # BMW



Different Methods

36
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__init__ Method

37

 Initialize a newly created object.

 It is called every time when the class is instantiated

# define the Vehicle class

class Vehicle:

def __init__(self,name,kind,color,value):

self.name=name

self.kind=kind

self.color=color

self.value=value

car1=Vehicle("Ford",'car','red',50000)

car2=Vehicle("BMW",'car','black',50000)

print(car1.name) # Ford

print(car2.name) # BMW
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dir() Method

38

 dir() returns a list of all attributes in the current scope

 dir(objectname) returns all valid object attributes

# define the Vehicle class

class Vehicle:

  def __init__(self,name,kind,color,value):

    self.name=name

    self.kind=kind

    self.color=color

    self.value=value

  def description(self): # Method

    desc_str = "%s is a %s %s worth $%.2f." % (self.name, 

self.color, self.kind, self.value)

    return desc_str

print(dir())

print(dir(Vehicle))

car1=Vehicle("Ford",'car','red',50000)

car2=Vehicle("BMW",'car','black',50000)

print(car1.name) # Ford

print(car2.name) # BMW
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Class Method

39

class ObjectName:

  @classmethod

  def some_class_method(cls, *args, **kwargs):

    # Method Implementation

 pass

 Used to define a method that is bound to the class, not the 

instance of the class
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Class Method

40

class Institute:

  Institute_name = "IIT Tirupati"

  @classmethod

  def change_insti(cls, new_insti):

    cls.Institute_name = new_insti # Changes class variable

Institute.change_insti("IIT Madras")

print(Institute.Institute_name) #  IIT Madras
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Static Method

41

class ObjectName:

  @staticethod

  def some_class_method(*args, **kwargs):

    # Method Implementation

 pass

 It does not receive any implicit argument

 Bound to the class, but not the object of the class

 It can’t access or modify the class state
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Static Method

42

class MathFunction:

 @staticmethod

 def factorial(n):

  if n==0:

   return 1

  else:

   return n*MathFunction.factorial(n-1)

print(MathFunction.factorial(5))

 If you define a function in a module and don't want it to be associated with an instance 
of a class or module, you can use the @staticmethod decorator to declare that 

function as static.

 It does not access self 
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Class vs Static Method

43

Class Method Static Method

Takes cls as the first parameter No specific parameters required

Can access or modify the class state Can’t access or modify the class state

It knows about the class state It does not know anything about the class 
state

It must have a class parameter It takes some parameters and work upon 
those parameters

@classmethod @staticmethod



Panchatcharam February 2025

Super() Method

44

class Rectangle:

 def print_test(self):

  print(“Parent Class: Opposite Sides Are Equal")

class Square(Rectangle):

 def print_test(self):

  print("Child Class: All Sides are Equal")

  # Calls the parent's version of print_test()

  super().print_test() 

 super() allows a subclass to invoke its parent’s version of an overriden method

A = Square()

A.print_test()
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Super() Method

45

class Rectangle:

 def print_test(self):

  print(“Parent Class: Opposite Sides Are Equal")

class Square(Rectangle):

 def print_test(self):

  print("Child Class: All Sides are Equal")

  # Calls the parent's version of print_test()

  super().print_test() 

 super() allows a subclass to invoke its parent’s version of an overriden method

A = Square()

A.print_test()
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issubclass() Method

46

class Rectangle:

 def print_test(self):

  print(“Parent Class: Opposite Sides Are Equal")

class Square(Rectangle):

 def print_test(self):

  print("Child Class: All Sides are Equal")

  # Calls the parent's version of print_test()

print(issubclass(Square,Rectangle))

print(isinstance(Square(),Rectangle))

 built-in function checks if the first argument is a subclass/instance of the second 

argument.

True

True
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Polymorphism

47

class Rectangle:

 def print_test(self):

  print(“Parent Class: Opposite Sides Are Equal")

class Square(Rectangle):

 def print_test(self):

  print("Child Class: All Sides are Equal")

 Two classes with same print_test()

A = Square()

A.print_test()

B = Rectangle()

B.print_test()



Can we hide data?
Python says “no”

48
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Python is not good at data hiding

49

p2.print_person()

print(p2.get_age())

print(p2.get_name())

print(p2.name,p2.age)

 You can access data from outside class definition

 You can write to data from outside class definition
p2.name="Karan"

print(p2.name,p2.age)

 You can create data attributes for an instance from outside 

class definition
p2.city="Tirupati"

print(p2.name,p2.age,p2.city)
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Hackaround for Data Hiding

50

❖ Python attributes and methods are public by default

 Public attributes means any class or function can see and 

change the attribute

 Public method means any other class or function call the 

method

 Refer Previous slide

❖ There is a hackaround to make it private

 Add __ (two underscores) to the beginning of the name
 self.__name=name

 self.__age=age

 def __functionname():
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Hackaround for Data Hiding
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class Shape(object):

def __init__(self):

self.color=(0,0,0)

def get_color(self):

return self.color

def set_color(self,color):

self.color=color

def print_color(self):

print(self.color)

import math

class Circle(Shape):

def __init__(self,r=None):

Shape.__init__(self)

self.radius=r

def get_radius(self):

return self.radius

def set_radius(self,r):

self.radius=r

def area(self):

return

math.pi*self.radius*self.radius

def circumference(self):

return 2*math.pi*self.radius
C=Circle()

C.radius=5

print(C.area())
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Hackaround for Data Hiding

52

class Shape(object):

def __init__(self):

self.color=(0,0,0)

def get_color(self):

return self.color

def set_color(self,color):

self.color=color

def print_color(self):

print(self.color)

import math

class Circle(Shape):

def __init__(self,r=None):

Shape.__init__(self)

self.__radius=r

def get_radius(self):

return self.__radius

def set_radius(self,r):

self.__radius=r

def area(self):

return

math.pi*self.__radius*self.__radius

def __circumference(self):

return 2*math.pi*self.__radius

C=Circle()

C.__radius=7

print(C.area())

C=Circle()

C.set_radius(5)

print(C.area())
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Hackaround of the Hackaround for Data Hiding

53

class Shape(object):

def __init__(self):

self.color=(0,0,0)

def get_color(self):

return self.color

def set_color(self,color):

self.color=color

def print_color(self):

print(self.color)

import math

class Circle(Shape):

def __init__(self,r=None):

Shape.__init__(self)

self.__radius=r

def get_radius(self):

return self.__radius

def set_radius(self,r):

self.__radius=r

def area(self):

return

math.pi*self.__radius*self.__radius

def __circumference(self):

return 2*math.pi*self.__radius
C=Circle()

C._Circle__radius=7

print(C.area())
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Hierarchies and Inheritance

54

class Person(object):

def __init__(self, name=None, age=None):

self.name = name

self.age = age

    def get_name(self):

        return self.name

    def get_age(self):

        return self.age

    def set_age(self,age):

        self.age=age

    def set_name(self,name):

        self.name=name

Person

StaffFacultyStudents

M.TechB.Tech M.Sc

MS/PhD

MA CSE

Academics

Admin

Accounts

ME
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Instance, Dot Notation and Data Hiding
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 Parent class (Superclass)

 Child Class (subclass)

 Inherits all data and 

procedural attributes of 

parent class

 You can add more data

 You can add more functions

 You can override methods
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Instance, Dot Notation and Data Hiding
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class Student(Person):

    def __init__(self, rollno=None, marks=None):

        self.rollno = rollno

        self.marks = marks

    def get_rollno(self):

        return self.rollno

    def get_marks(self):

        return self.marks

    def set_marks(self,marks):

        self.marks=marks

    def set_rollno(self,rollno):

        self.rollno=rollno

New Functionalities Added
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Methods Hierarchies

57

 Subclass and superclass can have methods 
with same name (print_person)

 First look for the method in current class
 If not found (get_name), go to the parent 

class, if not grandparent, and so on

 It stops after finding the least top level (from 

backward) and uses the method name

Person
Data: name, age

get_name, set_name
get_age, set_age

print_person

Students
Data: rollno, marks

get_marks, set_marks
get_rollno, set_rollno

print_person
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Constructors

58

class Student(Person):

    def __init__(self, rollno=None, marks=None):

        self.rollno = rollno

        self.marks = marks

    def get_rollno(self):

        return self.rollno

Constructor

✓ When an instance of a class is created the class constructor function is 
automatically called

✓ Constructor is always named __init__()
✓ A piece of code to initialize a new instance by setting data attributes 

(mostly)



Operator overloading

59
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Operator Overloading

60

class Complex:

 def __init__(self,x,y) -> None:

  self.real=x

  self.imaginary=y

 def print(self):

  if(self.imaginary<0):

   print(str(self.real)+str(self.imaginary)+"i")

  else:

   print(str(self.real)+"+"+str(self.imaginary)+"i")

 def __add__(self,other):

  return Complex(self.real+other.real,self.imaginary+other.imaginary)

 def __sub__(self,other):

  return Complex(self.real-other.real,self.imaginary-other.imaginary)

A=Complex(2,3)

A.print()

B=Complex(4,5)

B.print()

C=A+B

C.print()

D=A-B

D.print()
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Operator Overloading

61

Operator Method Example

+ __add__ A+B

- __sub__ A-B

* __mul__ A*B

/ __truediv__ A/B

// __floordiv__ A//B

% __mod__ A%B

** __pow__ A**B

== __eq__ A==B

!= __ne__ A!=B

< __lt__ A<B

<= __le__ A<=B

> __gt__ A>B

>= __ge__ A>=B
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Operator Overloading

62

class Person:

  def __init__(self, name, age):

    self.name = name

    self.age = age

  def __gt__(self, other):

    return self.age > other.age # Compare by age

people = [Person("Alice", 30), Person("Bob", 25), Person("Charlie", 35)]

people.sort() #  Uses __gt__ to sort

for p in people:

  print(p.name, p.age)



End of Python Classes
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