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Course Details



Course Details

Until Mid-Term
® First Order and Second Order PDE
e |VP, BVP Homogeneous, nonhomogeneous
® Fundamental Solution, Green’s Function
® Energy Methods
® Transport, Laplace, Heat and Wave Equations
e D’Alembert’s Solution, Fourier Method, Poisson Integral

® PDE problems in Cartesian and Polar Coordinates on rectangular,
Circular and annular regions




Course Details..

After Mid-Term
® Non-linear PDE
® Complete Integrals, Envelopes
® Characteristic ODE
e Hamilton-Jacobi Equation
e Conservation laws, weak solution, uniqueness, Riemann Problems
e Second order PDEs-Classifications
® Canonical form, Lax Milgram Theorem
¢ Maximum-minimum principles




Marks



Marks

Components | Marks
Test-1 20
Test-2 20

End Semester | 60




Preliminiaries



What is a derivative?

Definition 1 (Derivative (Rudin))
Let f be defined (and real-valued) on [a, b]. For any z € [a, b] form the quotient

o(t) = o (a <t <bt+#x), (M
and define
f'(@) = lim 6(t) 2)

provided this limit exists. We associate with a function f a function f’ whose
domain is the set of points = at which the limit of (2) exists; f’ is called the
derivative of f. If f’ is defined at a point x, we say that f is differentiable at x.
If /" is defined at every = € E C [a, b], we say that f is differentiable on E.




What is a derivative?

What is the pictorial representation? Could you interpret?

y =[x

Secant slope is

f@) = fx)
Pl §

Derivative of fat x is

, . fx+ h) = f(x)
x) = lim ————
f'x h"TIO 7




What is a derivative?

Definition 2 (Derivative (Thomas Calculus))
The derivative of the function f(z) with respect to the variable x is the function
f/ whose value at z is

Fa) — 1im LG = @)

h—0 h

provide the limit exists.




Examples

Examples

fl@)=42" = f'(z) =8

= 65“” —_— @ _ 5651:
dz

Y

d
y:sinx+x2 - d—y:cosx+2x
4




Examples

Failure
z sin % if z #£0
f(@) = {0 ifz=0
f is not differentiable at z = 0, because

1

¢(t) = sin ;

does not tend to any limitas ¢ — 0.




Partial Derivatives

Definition 3 (Partial Derivative (Thomas Calculus))

Let f(z,y) be a real valued function defined on a domain D C R2. Let (a,b) €
D. If C is the curve of intersection of the surface = = f(z,y) with the plane
y = b, then the slope of the tangent line to C at (a,b, f(a,b)) is the partial
derivative of f(x,y) with respect to z at (a, ).




Partial Derivatives

Vertical axis in
~ the plane y = y,

P(xg, 0,/ (x0» ¥0))

z=f(x,y)

The curve z = f
in the plane y = y,

Tangent line

/ (X0» Yo)
(xo + hy yo)

Horizontal axis in the plane y = y,




Partial Derivatives

Definition 4 (Partial Derivative (Thomas Calculus))
The partial derivative of f(x,y) with respect to z at the point (a, b) is

af o df((]?,b) = f(a'+h7b)_f(a7b)

fo(@b) = 3 wp 9 h0 h

r=a

provided the limit exists.




Partial Derivatives

Definition 5 (Partial Derivative (Thomas Calculus))
The partial derivative of f(x,y) with respect to z at the point (a, b) is

_or|  _ df(a,y) fla,b+k) — f(a,b)
fy(a,b) = Wlow .= A5 A

y=

provided the limit exists.




Partial Derivatives

Example
Find 9z/0x and 9z/0y where z = f(x,y) is defined by

w3+y3+z3—6xyz:l

0z x? — 2yz
or 22— 2y

0z y? —2z2

Oy 22— 2y




Partial Derivatives

Example
Find u, + uy and ug, £ uy, if u ="V,

Uy = €*7Y = vy, =Y

Ty _ x—y
by, = =2 — iy =
Wi i Wiy = (U Glilel @l = Gl = 2411

Up — Uy =20 and uyy — Uyy =0
Y vy




History of PDE
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History

NNNNN

® 1694: Leibniz used partial process, not explicitly, om for 9m/ox and ¥m
for 9m/dy, a letter to de I'Hospital.

® 1694: Leibniz used partial differential equations to find envelope of the
circles 22 + y? + b* = 2bx + ab

® 1717: Hermann used PDE in problem of orthogonal trajectories to plane
curves

® 1752: d'Alembert introduced one dimensional wave equation as a model
of vibrating string

® 1759: Euler extended d’Alembert’s work
e 1762: D. Bernoulli extended to 2 and 3 dimensional wave equations
e 1780: Laplace studied gravitational potential fields




History

1755: Euler equation of incompressible flows
1760: Minimal surface equation by Lagrange
1775: Monge-Ampere equation by Monge

1813: Laplace and Poisson equations by Poisson
1828: by Green

1839: by Gauss




History

e Navier-Stokes Equation for fluid flows: 1822-1827 by Navier, 1831 by
Poisson and 1845 by Stokes

® Linear Elasticity, Navier 1821 and Cauchy 1822
o Maxwell's equation: 1864

® Helmholtz equation and Eigenvalue problem for the Laplace operator:
1860

® Plateau problem: 1840
e Korteweg-De Vires equation: 1896




History of Solutions otz

e Method of separation of variables: 1747 by d’Alembert, 1748 by Euler for
wave equation, 1748 by Laplace and Legendre for Laplace equation and
1811-1824 by Fourier for heat equation.

¢ |nfinite series solution in 1870's = Fourier Series and Fourier Integrals

® Real Harmonic and Analytic function of a single complex variable from
Riemann (1851) to C. Neumann, Schwarz, Christoffel (1870)

® Green’s function and special singular solutions for Laplace equation:
1835

® Dirichlet Principle: 1833 - 1851, by Green, Gauss, Kelvin an Riemann



History of Solutions

NNNNN

® Power Series method by Euler, d’Alembert, Laplace and others
® Power series method for nonlinear PDEs: 1840 by Cauchy

e Convergent power series to general systems: 1875 by Kowalewsky and
Simplified by Goursat in 1898

e Existence of Dirichlet principle/integral questioned by Riemann — 23
Problems by Hilbert known as Hilbert Problems (regularity, existence etc)

® Method of integral equations by Neumann 1877, then by Poincare,
Fredholm and Hilbert

® Picard’s successive approximation, 1880's




History: 1900-today

e Hilbert, Levi, Lesbegue, Fubini, Zaremba, Tonelli, Courant

® Ascoli's theorem, Sobolev spaces, Weak solutions, distributions,
well-posedness, ill-posedness, regularity, parametrix method

® | eray-Schauder theory, Singular Integrals, energy methods, Hilbert
transform, Weyl lemma, hypoellipticity, pseudo-differential operator,
Hille-Yosida theory, spectral theories, maximum principle




Preliminaries-l|
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Examples

Let us revisit the ODE example again

Examples

f(z) =422 = f'(z) =8z = f(z) = 422

d
y=e" = d—y:5e5“’ = y=¢
x

d
2 dﬁ:cosx+2x :7> y:sinx+x2
4%

y=sinz +x




Examples

Let us revisit the ODE example again

Examples

f(z) =422 = fl(z) =8z = f(z) =42+
dy

y=e"’ = £:565x = y=e"+0y
d
y =sinz + 22 = d—y:cosx—i-Qx — y=sinz+ 22+ C3
2

What do these C1, Cs and (5 represent? Note that, the derivative measures
the slope of tangent lines of a given curve. However, when you know a
tangent line, you end up with a family of curves or no curve.




Examples

Let us revisit the PDE example again

Examples
o
m=e""" = g duy, =0 — w=c""

_ ? _
=T = gy oF Uy, = U — m=g ¢

Will you get a unique answer?




Examples

In fact, what we will see in our next class

Examples

Ug + Uy =0 = u:f(a:—y)1

Ugzz + Uy = 2u Helmholtz equation* with k% < 0

Will you get a unique answer? ' Using method of characteristics. *Separation
of variable can be used to find solution, however, we need more assumptions
and BCs to solve this problem.
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