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Course Details
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Course Details
Until Mid-Term
• First Order and Second Order PDE
• IVP, BVP Homogeneous, nonhomogeneous
• Fundamental Solution, Green’s Function
• Energy Methods
• Transport, Laplace, Heat and Wave Equations
• D’Alembert’s Solution, Fourier Method, Poisson Integral
• PDE problems in Cartesian and Polar Coordinates on rectangular,

Circular and annular regions
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Course Details..
After Mid-Term
• Non-linear PDE
• Complete Integrals, Envelopes
• Characteristic ODE
• Hamilton-Jacobi Equation
• Conservation laws, weak solution, uniqueness, Riemann Problems
• Second order PDEs-Classifications
• Canonical form, Lax Milgram Theorem
• Maximum-minimum principles
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Marks
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Marks

Components Marks
Test - 1 20
Test - 2 20

End Semester 60
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Preliminiaries
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What is a derivative?

Definition 1 (Derivative (Rudin))
Let f be defined (and real-valued) on [a, b]. For any x ∈ [a, b] form the quotient

ϕ(t) =
f(t)− f(x)

t− x
(a < t < b, t ̸= x), (1)

and define
f ′(x) = lim

t→x
ϕ(t) (2)

provided this limit exists. We associate with a function f a function f ′ whose
domain is the set of points x at which the limit of (2) exists; f ′ is called the
derivative of f . If f ′ is defined at a point x, we say that f is differentiable at x.
If f ′ is defined at every x ∈ E ⊂ [a, b], we say that f is differentiable on E.
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What is a derivative?
What is the pictorial representation? Could you interpret?
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What is a derivative?

Definition 2 (Derivative (Thomas Calculus))
The derivative of the function f(x)with respect to the variable x is the function
f ′ whose value at x is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

provide the limit exists.
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Examples

Examples

f(x) = 4x2 =⇒ f ′(x) = 8x

y = e5x =⇒ dy

dx
= 5e5x

y = sinx+ x2 =⇒ dy

dx
= cosx+ 2x
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Examples

Failure

f(x) =

{
x sin 1

x if x ̸= 0

0 if x = 0

f is not differentiable at x = 0, because

ϕ(t) = sin
1

t

does not tend to any limit as t → 0.
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Partial Derivatives

Definition 3 (Partial Derivative (Thomas Calculus))
Let f(x, y) be a real valued function defined on a domain D ⊆ R2. Let (a, b) ∈
D. If C is the curve of intersection of the surface z = f(x, y) with the plane
y = b, then the slope of the tangent line to C at (a, b, f(a, b)) is the partial
derivative of f(x, y) with respect to x at (a, b).
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Partial Derivatives
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Partial Derivatives

Definition 4 (Partial Derivative (Thomas Calculus))
The partial derivative of f(x, y) with respect to x at the point (a, b) is

fx(a, b) =
∂f

∂x

∣∣∣∣
(a,b)

=
df(x, b)

dx

∣∣∣∣
x=a

= lim
h→0

f(a+ h, b)− f(a, b)

h

provided the limit exists.
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Partial Derivatives

Definition 5 (Partial Derivative (Thomas Calculus))
The partial derivative of f(x, y) with respect to x at the point (a, b) is

fy(a, b) =
∂f

∂y

∣∣∣∣
(a,b)

=
df(a, y)

dy

∣∣∣∣
y=b

= lim
k→0

f(a, b+ k)− f(a, b)

k

provided the limit exists.
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Partial Derivatives

Example
Find ∂z/∂x and ∂z/∂y where z = f(x, y) is defined by

x3 + y3 + z3 − 6xyz = 1

∂z

∂x
= −x2 − 2yz

z2 − 2xy

∂z

∂y
= −y2 − 2xz

z2 − 2xy
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Partial Derivatives

Example
Find ux ± uy and uxx ± uyy if u = ex−y.

ux = ex−y =⇒ uxx = ex−y

uy = −ex−y =⇒ uyy = ex−y

ux + uy = 0 and uxx + uyy = 2u

ux − uy = 2u and uxx − uyy = 0
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History of PDE
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History

• 1694: Leibniz used partial process, not explicitly, δm for ∂m/∂x and ϑm
for ∂m/∂y, a letter to de l’Hospital.

• 1694: Leibniz used partial differential equations to find envelope of the
circles x2 + y2 + b2 = 2bx+ ab

• 1717: Hermann used PDE in problem of orthogonal trajectories to plane
curves

• 1752: d’Alembert introduced one dimensional wave equation as a model
of vibrating string

• 1759: Euler extended d’Alembert’s work
• 1762: D. Bernoulli extended to 2 and 3 dimensional wave equations
• 1780: Laplace studied gravitational potential fields
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History

• 1755: Euler equation of incompressible flows
• 1760: Minimal surface equation by Lagrange
• 1775: Monge-Ampere equation by Monge
• 1813: Laplace and Poisson equations by Poisson
• 1828: by Green
• 1839: by Gauss
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History

• Navier-Stokes Equation for fluid flows: 1822-1827 by Navier, 1831 by
Poisson and 1845 by Stokes

• Linear Elasticity, Navier 1821 and Cauchy 1822
• Maxwell’s equation: 1864
• Helmholtz equation and Eigenvalue problem for the Laplace operator:

1860
• Plateau problem: 1840
• Korteweg-De Vires equation: 1896
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History of Solutions

• Method of separation of variables: 1747 by d’Alembert, 1748 by Euler for
wave equation, 1748 by Laplace and Legendre for Laplace equation and
1811-1824 by Fourier for heat equation.

• Infinite series solution in 1870’s =⇒ Fourier Series and Fourier Integrals
• Real Harmonic and Analytic function of a single complex variable from

Riemann (1851) to C. Neumann, Schwarz, Christoffel (1870)
• Green’s function and special singular solutions for Laplace equation:

1835
• Dirichlet Principle: 1833 - 1851, by Green, Gauss, Kelvin an Riemann
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History of Solutions

• Power Series method by Euler, d’Alembert, Laplace and others
• Power series method for nonlinear PDEs: 1840 by Cauchy
• Convergent power series to general systems: 1875 by Kowalewsky and

Simplified by Goursat in 1898
• Existence of Dirichlet principle/integral questioned by Riemann =⇒ 23

Problems by Hilbert known as Hilbert Problems (regularity, existence etc)
• Method of integral equations by Neumann 1877, then by Poincare,

Fredholm and Hilbert
• Picard’s successive approximation, 1880’s
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History: 1900-today

• Hilbert, Levi, Lesbegue, Fubini, Zaremba, Tonelli, Courant
• Ascoli’s theorem, Sobolev spaces, Weak solutions, distributions,

well-posedness, ill-posedness, regularity, parametrix method
• Leray-Schauder theory, Singular Integrals, energy methods, Hilbert

transform, Weyl lemma, hypoellipticity, pseudo-differential operator,
Hille-Yosida theory, spectral theories, maximum principle
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Preliminaries-II
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Examples
Let us revisit the ODE example again

Examples

f(x) = 4x2 =⇒ f ′(x) = 8x
?

=⇒ f(x) = 4x2

y = e5x =⇒ dy

dx
= 5e5x

?
=⇒ y = e5x

y = sinx+ x2 =⇒ dy

dx
= cosx+ 2x

?
=⇒ y = sinx+ x2
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Examples
Let us revisit the ODE example again

Examples

f(x) = 4x2 =⇒ f ′(x) = 8x =⇒ f(x) = 4x2 + C1

y = e5x =⇒ dy

dx
= 5e5x =⇒ y = e5x + C2

y = sinx+ x2 =⇒ dy

dx
= cosx+ 2x =⇒ y = sinx+ x2 + C3

What do these C1, C2 and C3 represent? Note that, the derivative measures
the slope of tangent lines of a given curve. However, when you know a
tangent line, you end up with a family of curves or no curve.
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Examples
Let us revisit the PDE example again

Examples

u = ex−y =⇒ ux + uy = 0
?

=⇒ u = ex−y

u = ex−y =⇒ uxx + uyy = 2u
?

=⇒ u = ex−y

Will you get a unique answer?
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Examples
In fact, what we will see in our next class

Examples

ux + uy = 0 =⇒ u = f(x− y)1

uxx + uyy = 2u Helmholtz equation* with k2 < 0

Will you get a unique answer? 1 Using method of characteristics. *Separation
of variable can be used to find solution, however, we need more assumptions
and BCs to solve this problem.
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