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Rarefaction - Recap
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Rarefaction

ut + uux = 0, x ∈ R, t > 0

Suppose

u(x, 0) =

{
1 if x < 0

2 if x > 0
(1)

x(t) =

{
t+ x(0) if x(0) < 0

2t+ x(0) if x(0) > 0

Solving for t, we have

t =

{
x− x(0) if x(0) < 0
1
2(x− x(0)) if x(0) > 0

(2)
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Rarefaction
The characteristic lines corresponding to the initial condition (1). These lines
are two families of characteristic lines with different slopes.
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Rarefaction
Imagine that there are infinitely many characteristics originating from the
origin with slopes ranging between 1

2 and 1. The proper way to see this is to
notice that in the case of x(0) = 0 implies that

u =
x

t
if t < x < 2t

This type of waves, which arise from decompression or rarefaction of the
medium due to the increasing gap formed between the wave fronts traveling
at different speeds, are called rarefaction waves. Putting all the pieces
together, we can write the solution of Burger’s equation satisfying the initial
condition as follows

u(x, t) =


1 if x < t
x
t if t < x < 2t

2 if x > 2t

(3)
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Rarefaction

Figure 1: Rarefaction
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Rarefaction
Imagine a highway with cars moving at different speeds:
• To the left of x = 0 (say, before a toll plaza), cars are moving slowly at a

speed of 1 unit.
• To the right of x = 0 (after they leave the toll and accelerate), cars are

moving faster at speed 2 units.
At time t = 0, there’s a sharp boundary: all cars to the left are slower, all cars
to the right are faster.
This is like when a traffic jam clears: cars at the front speed up first, then cars
behind gradually accelerate, causing the jam to “dissolve” into a smooth
transition.
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Shock Waves
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Shock waves

• It is the complete opposite phenomenon of rarefaction.

ut + uux = 0, x ∈ R, t > 0

• Here, it has faster moving from left to right, catching up to a slower wave.
Consider the following initial condition for Burger’s equation

u(x, 0) =

{
2 if x < 0

1 if x > 0
(4)
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Shock waves
The characteristic lines are

x(t) =

{
2t+ x(0) if x(0) < 0

t+ x(0) if x(0) > 0

Solving for t, we have

t =

{
1
2(x− x(0)) if x(0) < 0

x− x(0) if x(0) > 0
(5)
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Shock wave
The characteristic lines corresponding to the initial condition (4). These lines
are two families of characteristic lines with different slopes.

10



Shock wave

Remarks
1. The characteristic lines originating at x(0) < 0 have smaller slope

compared the characteristic lines originating from x(0) > 0

2. Characteristics from two families intersect
3. It leads to a problem as we can’t trace back the correct characteristics to

an initial value
4. At the intersection points, u becomes multivalued
5. This phenomenon is called shock waves
6. The faster-moving wave catches up to the slower-moving wave to form a

multivalued wave.
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Shock wave
Imagine a highway with cars moving at different speeds:
• To the left of x = 0 (after they leave the toll and accelerate), cars are

moving faster at speed 2 units.
• To the right of x = 0 (say, before a toll plaza), cars are moving slowly at a

speed of 1 unit.
At time t = 0, there’s a sharp boundary: there’s a sharp boundary between fast
and slow cars.
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Shock wave

• The fast cars from the left catch up with the slow cars on the right.
• This creates a traffic shock wave: cars pile up, compressing traffic

density.
• Instead of spreading out (like in the rarefaction case), the transition

region sharpens into a shock front that moves over time.
This models a traffic jam forming and moving backward along the road:
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Shock wave
There are several examples of shock waves.

Examples 1
Examples
1. Moving shock - Balloon bursting, Shock tube
2. Detonation wave - TNT explosive or high explosive
3. Bow shock - Space Shuttle return, bullets
4. Attached shock - Supersonic wedges
5. Normal shock (at 90◦) - Oblique Shock - Bow Shock, R-H
6. Supernova, an asteroid hitting Earth’s atmosphere
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Shock wave

u(x, t) =

{
2 if x < 3

2 t

1 if x > 3
2 t

(6)

To derive this, we must discuss scalar conservation laws, weak derivatives,
test functions, entropy conditions, R-H conditions, and Riemann problems in
the latter part of our course. Let us see one more theorem and see nonlinear
PDEs again with Charpit’s methods.
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Shock Wave

Figure 2: Shock Wave
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Exercises

Exercise 1: Shock Waves and Rarefaction (Hard)

Solve Burger’s equation for the following initial data

u(x, 0) =


1 if x < 0

1− x if x ∈ (0, 1)

0 if x > 1

and then for

u(x, 0) =

{
1 if x < 0

0 if x > 0
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General Solutions for
Quasilinear PDEs
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Inverse Function Theorem

Theorem 2 (Inverse Function Theorem (Rudin))
Suppose f is a C1 mapping of an open set E ⊂ Rn into Rn, f ′(a) is invertible
for some a ∈ E and b = f(a). Then
1. there exist open sets U and V in Rn such that a ∈ U,b ∈ V, f is

one-to-one on U and f(U) = V

2. if g is the inverse of f , defined in V by g(f(x)) = x,x ∈ U , then g ∈ C1(V ).

Let us rewrite this theorem for R2. This will be used for the existence and
uniqueness theorem for quasilinear PDE.
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Inverse Function Theorem

Figure 3: Inverse Function Theorem
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Implicit Function Theorem

Theorem 3 (Implicit Function Theorem (Rudin))
(Refer to Class Lecture)

Theorem 4 (Rank Theorem (Rudin))
(Refer to Class Lecture)
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General Solution
Consider the quasilinear PDE

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (7)

Suppose that P (x, y, u) ∈ Ω, v ̸= 0 The characteristic curve

Γ :


x = x(s)

y = y(s)

u = u(s)

can be represented as the intersection of two surfaces

Γ = S1 ∩ S2
S1 : ϕ(x, y, u) = C1 (8)
S2 : ψ(x, y, u) = C2

for which nϕ and nψ are linearly independent at each P . 22



General Solution
Here nϕ = ∇ϕ = (ϕx, ϕy, ϕu) and nψ = ∇ψ = (ψx, ψy, ψu). nϕ and nψ are
simply the normal vectors to the surfaces S1 and S2 at P .

Definition 1 (First Integral)
A continuously differentiable function ϕ(x, y, u) is said to be a first integral of
(7) if it is constant on characteristic curves.

Definition 2 (Functionally Independent)
The first two integrals ϕ(x, y, u) and ψ(x, y, u) of (7) are functionally indepen-
dent if

rank

[
ϕx ϕy ϕu
ψx ψy ψu

]
= 2

that is, if nϕ and nψ are linearly independent.
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Why Linearly Independent
Since the curve Γ is the intersection of two surfaces, its tangent vector T is
given by

T = nϕ × nψ

• T exactly defines the direction of the vector of the characteristic curve.
• If nϕ and nψ are linearly dependent, the two surfaces are tangent to each

other and do not define a unique curve.
• Therefore, linear independence ensures that their intersection is indeed a

well-defined 1D curve through P
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General Solution
Suppose ϕ(x, y, u) and ψ(x, y, u) are functionally independent integrals and

ϕ(x(s), y(s), u(s)) = C1

ψ(x(s), y(s), u(s)) = C2
=⇒

ϕx
dx

ds
+ ϕy

dy

ds
+ ϕu

du

ds
= 0

ψx
dx

ds
+ ψy

dy

ds
+ ψu

du

ds
= 0

=⇒ ϕxa(x, y, u) + ϕyb(x, y, u) + ϕuc(x, y, u) = 0

ψxa(x, y, u) + ψyb(x, y, u) + ψuc(x, y, u) = 0

Therefore, ϕ and ψ are functionally independent first integrals iff

a(x, y, u)∣∣∣∣ϕy ϕu
ψy ψu

∣∣∣∣ =
b(x, y, u)∣∣∣∣ϕu ϕx
ψu ψx

∣∣∣∣ =
c(x, y, u)∣∣∣∣ϕx ϕy
ψx ψy

∣∣∣∣ (9)
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General Solution

Theorem 5 (General Solution)
If ϕ(x, y, u) = C1 andψ(x, y, u) = C2 be two independent solutions of the ODEs

C :


dx
dt = a(x, y, u)
dy
dt = b(x, y, u)
du
dt = c(x, y, u)

and ϕ2u + ψ2
u ̸= 0, then the general solution to (7) is given by

f(ϕ(x, y, u), ψ(x, y, u)) = 0

where f is an arbitrary function.
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General Solution
Proof: Let u = u(x, y) be a function for which

f(ϕ(x, y, u(x, y)), ψ(x, y, u(x, y))) = 0

Differentiating it with respect to x, y, we have

fϕ(ϕx + ϕuux) + fψ(ψx + ψuux) = 0

fϕ(ϕy + ϕuuy) + fψ(ψy + ψuuy) = 0

If (fϕ, fψ) ̸= (0, 0), then ∣∣∣∣ϕx + ϕuux ψx + ψuux
ϕy + ϕuuy ψy + ψuuy

∣∣∣∣ = 0

27



General Solution
Proof (Contd): On simplification,

(ϕuψy − ϕyψu)ux + (ϕxψu − ϕuψx)uy = ϕyψx − ϕxψy (10)

By comparing (10) and (9) we can obtain that

aux + buy = c

Conversely, suppose u = u(x, y) is a solution of (7), ϕ(x, y, u) and ψ(x, y, u)
are functionally independent first integrals of (7). Then, by (9), we obtain (10).
Now, we have functions Φ = ϕ(x, y, u(x, y)) and Ψ = ψ(x, y, u(x, y)).
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General Solution
Proof (Contd):∣∣∣∣Φx Ψx

Φy Ψy

∣∣∣∣ = ∣∣∣∣ϕx + ϕuux ψx + ψuux
ϕy + ϕuuy ψy + ψuuy

∣∣∣∣
= (ϕuψy − ϕyψu)ux + (ϕxψu − ϕuψx)uy − ϕyψx − ϕxψy

= λ(aux + buy − c)

= 0

From the rank theorem of Calculus, it follows that one of the functions Φ and
Ψ can be expressed as a function of the other. That is, there exists a function
g such that

ψ(x, y, u(x, y)) = g(ϕ(x, y, u(x, y)))

=⇒ f(ϕ(x, y, u), ψ(x, y, u)) = 0
29



Examples

Example 6
Show that

(y + 2ux)ux − (x+ 2uy)uy =
1

2
(x2 − y2)

with

Γ :


x = x0(s) = s

y = y0(s) = s

u = u0(s) = 0

has exactly one solution.
Solution: The characteristic equations are

C :


dx
dt = y + 2ux
dy
dt = −(x+ 2uy)
du
dt = 0.5(x2 − y2)
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Examples
Solution (Contd): One First integral we can obtain from

xdx+ ydy

2u(x2 − y2)
=

2du

x2 − y2

=⇒ ϕ(x, y, u) = x2 + y2 − 4u2 = C1

We can obtain another independent first integral from

ydx+ xdy

y2 − x2
=

2du

x2 − y2

=⇒ ψ(x, y, u) = xy + 2u = C2

The general integral solution is given by

x2 + y2 − 4u2 = g(xy + 2u)
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Examples
Solution (Contd): For the given Cauchy data, we have

2s2 = C1, s
2 = C2 =⇒ C1 = 2C2

=⇒ f(ϕ, ψ) = ϕ− 2ψ

=⇒ x2 + y2 − 4u2 = 2(xy + 2u)

=⇒ x2 + y2 − 2xy = 4u2 + 4u

=⇒ u =
1

2

[√
(x− y)2 + 1− 1

]
It is the only solution that satisfies all conditions.
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Examples
Solution (Contd):

Figure 4: Solution
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Examples

Example 7
Find the general solution of the equation

(u− y)ux + yuy = x+ y

with

Γ :


x = x0(s) = s

y = y0(s) = 1

u = u0(s) = 2 + s

has exactly one solution.
Solution: The characteristic equations are

dx

u− y
=
dy

y
=

du

x+ y
34



Examples
Solution (Contd): One First integral we can obtain from

dx+ du

u+ x
=
dy

y

=⇒ ϕ(x, y, u) =
u+ x

y
= C1

We can obtain another independent first integral from
dx+ dy

u
=

du

x+ y

=⇒ ψ(x, y, u) = (x+ y)2 − u2 = C2

The general integral solution is given by

(x+ y)2 − u2 = g

(
u+ x

y

)
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Examples
Solution (Contd): For the given Cauchy data, we have

2s+ 2

1
= C1, (s+ 1)2 − (s+ 2)2 = C2

2s+ 2 = C1,−2s− 3 = C2 =⇒ C1 + C2 + 1 = 0

=⇒ f(ϕ, ψ) = ϕ+ ψ + 1

(x+ y)2 − u2 + 1 +
u+ x

y
= 0, y ̸= 0

(u+ x+ y)

y
(−uy + xy + y2 + 1) = 0, y ̸= 0
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Examples
Solution (Contd): Either

u = −x− y

or
u = x+ y +

1

y
, y ̸= 0

u = −x− y =⇒ , u(s) = −s− 1 ̸= s+ 2 =⇒ ⇐=

u = x+ y +
1

y
=⇒ , u(s) = s+ 2

Therefore,u = x+ y + 1
y , y ̸= 0 is the solution. Further y = et =⇒ y > 0
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Examples
Solution (Contd):

Figure 5: Solution
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Exercise

Exercise 2: General Solution

Find the general solution of the following equations
1. (x− y)y2ux − (x− y)x2uy − (x2 + y2)u = 0

2. (y − u)ux + (u− x)uy = x− y

3. x(y − u)ux + y(u− x)uy = (x− y)u

4. uux + (u2 − x2)uy + x = 0

5. uy −
( y
xu

)
x
= 0

Let us wrap the first-order linear and quasilinear PDEs for the moment and
solve the big three PDEs. Let us begin with the Heat Equation and the
separation of variables first.
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Thanks
Doubts and Suggestions

panch.m@iittp.ac.in
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