
MA612L-Partial Differential Equations
Lecture 11 : Variable Separable

Panchatcharam Mariappan1

1Associate Professor
Department of Mathematics and Statistics

IIT Tirupati, Tirupati

September 2, 2025



Separation of Variables
In general, the method described for Heat equations can be applied to linear
homogeneous PDEs. Let us derive the Heat equation later. For the time being,
let us solve the 1D Heat equation without a source term. Consider the
following:

ut = c2uxx on x ∈ (0, L), t > 0 (1)
u(x, 0) = f(x), x ∈ [0, L] (2)
u(0, t) = 0, t ≥ 0 (3)
u(L, t) = 0, t ≥ 0 (4)

In general, the method described for Heat equations can be applied to linear
homogeneous PDEs. Again, our aim here is to convert the PDE to an ODE or
system of ODEs
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Product Solution

Definition 1
Given a PDE in u = u(x, y), we say that u is a product solution if

u(x, y) = G(x)H(y) (5)

for functionsG andH . More generally, u = u(x1, x2, · · · , xn) is a product solu-
tion of a PDE

F (u,Du,D2u, · · · , Dmu) = 0

if
u(x1, x2, · · · , xn) = G1(x1)G2(x2) · · ·Gn(xn) (6)
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Simple Example

Example 1
Find all product solutions of the PDE ux + uy = 0
Solution: Let u(x, y) = X(x)Y (y). Then

ux = X ′Y, uy = XY ′ =⇒ X ′Y +XY ′ = 0

Let us assume that X ̸= 0, Y ̸= 0 (valid??) and divide by XY to obtain

X ′

X
= −Y ′

Y
= ν(Why??) =⇒ X ′ − νX = 0 and Y ′ + νY = 0

=⇒ X(x) = eνx, Y (y) = e−νy =⇒ u(x, y) = eν(x−y)

Since ν is any real constant, any linear combination of these solutions is again
a solution.
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Simple Example

Example 2
Using separation of variables, obtain the ODEs for the following PDE 3uyy −
5uxxxy + 7uxxy = 0
Solution: Let u(x, y) = X(x)Y (y). Then

uyy = XY ′′, uxxxy = X ′′′Y ′, uxxy = X ′′Y ′ =⇒ 3XY ′′−5X ′′′Y ′+7X ′′Y ′ = 0

3Y ′′

Y ′ =
5X ′′′ − 7X ′′

X
= ν =⇒ 3Y ′′ − νY ′ = 0 and 5X ′′′ − 7X ′′ − νX = 0

One can solve this using ODE theory.
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Heat Equation
Let us obtain a similar one for the Heat equation with initial and boundary
conditions (1)-(4). Let u(x, t) = X(x)T (t), then we obtain

ut = X(x)T ′(t) uxx = X ′′(x)T (t)

We obtain that

X(x)T ′(t) = c2X ′′(x)T (t) =⇒ T ′

c2T
=

X ′′

X
= µ(constant)

Therefore, we have

dT

dt
− c2µT = 0,

d2X

dx2
− µX = 0

where µ is any real constant. (Can it be complex?!)
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Heat Equation
Let us look at the boundary conditions.

u(0, t) = 0 =⇒ X(0)T (t) = 0

If T ≡ 0, then u(x, t) ≡ 0, which is a trivial solution, and we are not interested
in this solution. Therefore, T (t) ̸≡ 0, consequently, X(0) = 0. Similarly,

u(L, t) = 0 =⇒ X(L)T (t) = 0

If T ≡ 0, then u(x, t) ≡ 0, which is a trivial solution, and we are not interested
in this solution. Therefore, T (t) ̸≡ 0, consequently, X(L) = 0.
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Heat Equation
So, let us consider the following problem,

X ′′ − µX = 0, x ∈ [0, L]

X(0) = 0

X(L) = 0

Now, let us consider three cases, µ > 0,= 0, < 0.
Case 1: µ = 0
Then

X ′′ = 0 =⇒ X ′ = a =⇒ X = ax+ b

X(0) = 0 =⇒ b = 0

X(L) = 0 =⇒ aL = 0, L ̸= 0 =⇒ a = 0

X(x) ≡ 0 =⇒ u(x, t) = X(x)T (t) = 0 =⇒ u ≡ 0
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Heat Equation
We are not interested in the solution u ≡ 0
Case 2: µ > 0, let µ = ν2

Then
X ′′ − ν2X =⇒ m2 − ν2 = 0 ( auxiliary equation )

=⇒ m = ±ν =⇒ X(x) = Aeνx +Be−νx

X(0) = 0 =⇒ A+B = 0 =⇒ A = −B =⇒ X(x) = A(eνx − e−νx)

X(L) = 0 =⇒ A(eνL − e−νL) = 0

=⇒ eνL = e−νL or A = 0

=⇒ L = 0 or ν = 0 or A = 0

L ̸= 0, ν = 0 =⇒ µ = 0 (Case 1, discussed) =⇒ A = 0

X(x) ≡ 0 =⇒ u(x, t) = X(x)T (t) = 0 =⇒ u ≡ 0
8



Heat Equation
Again, we are not interested in the solution u ≡ 0
Case 3: µ < 0, let µ = −ν2

Then
X ′′ + ν2X =⇒ m2 + ν2 = 0 ( auxiliary equation )

=⇒ m = ±νi =⇒ X(x) = A cos(νx) +B sin(νx)

X(0) = 0 =⇒ A+ 0 = 0 =⇒ A = 0 =⇒ X(x) = B sin(νx)

X(L) = 0 =⇒ B sin(νL) = 0 =⇒ νn =
nπ

L
, n ∈ Z

Let
Xn(x) = Bn sin

(nπ
L

x
)
, n ∈ Z
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Heat Equation
Observe that

Xn(x) = −Bn sin

(
|n|π
L

x

)
, n < 0

=⇒ Xn(x) = Cn sin
(nπ
L

x
)
, n > 0

and we are not interested in

Xn(x) = 0, n = 0

Therefore,
Xn(x) = Bn sin

(nπ
L

x
)
, n ∈ N
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Heat Equation
Therefore, we have only case 3 with a non-trivial solution. That is, when
µ = −ν2n = −

(
nπ
L

)2. Since for each n, we obtain a different ν. We have,

dTn

dt
+
(cnπ

L

)2
Tn = 0, t > 0, n ∈ N

=⇒ Tn(t) = Kne
−λ2

nt, n ∈ N, λn =
cnπ

L

Therefore, we have

un(x, t) = Xn(x)Tn(t) = Cne
−λ2

nt sin
(nπ
L

x
)
, n ∈ N

These are called eigenfunctions of the heat equation corresponding to the
eigenvalue λn = cnπ

L
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Heat Equation
Now, the linear combination of these is again a solution (Proof??
Convergence??). Therefore,

u(x, t) =

∞∑
n=1

un(x, t) =

∞∑
n=1

Cne
−λ2

nt sin
(nπ
L

x
)

(7)

Now, let us apply the initial condition to obtain the solution of the problem
(1)-(4)

u(x, 0) =
∞∑
n=1

Cn sin
(nπ
L

x
)
= f(x)
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Fourier Series History
This is how the Fourier Series history started. Fourier developed the
trigonometric series during a war in Egypt and later.
• Joseph Fourier introduced his series idea while studying heat

conduction.
• His work came right after he served as an engineer in Napoleon’s

Egyptian campaign (1798–1801).
• During that expedition, Fourier was tasked with military logistics:

planning fortifications, managing supplies, and analyzing terrain.
• The Egyptian heat inspired him to model how heat spreads in metal and

stone, leading to his mathematical breakthrough.
“Every function hides a symphony — Fourier teaches us how to listen.”
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Heat Equation
The coefficients Cn are obtained by integrating on both sides by exploiting
the orthogonality properties of the set {sinmx : m ∈ N}. It is known that∫ π

−π
sinnx sinmxdx = 0, if n ̸= m

From the analogy of the Fourier Series, we can obtain that

Cn =
2

L

∫ L

0
f(x) sin

(nπx
L

)
dx, n ∈ N

The solution can be obtained by assuming that f(x) is piecewise continuous
on the interval [0, L] and has one-sided derivatives ∀x ∈ (0, L). Since (7) has
exponential factor with time, as t → ∞, all terms in u(x, t), that is,
un(x, t) → 0. The rate of decay increases with n.
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Exercise

Exercise 1: Insulated Bar

Find the temperature u(x, t) in a laterally insulated copper bar 80cm long
if the initial temperature is 100 sin

(
πx
80

)◦
C and the ends are kept at 0◦C.

How long will it take for the maximum temperature in the bar to drop to
50◦C? Assume that c2 = 1.158cm2/sec.

Exercise 2: Initial Conditions

Find the temperature u(x, t) in a laterally insulated bar with L = π, c = 1
and f(x) = 1− x

π
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Exercise

Exercise 3: With Heat Generation

Find the temperature u(x, t) in a laterally insulated bar with heat gener-
ation H which is modelled by

ut = c2uxx +H

where H > 0, L = π, c = 1 and f(x) = 1− x
π

Exercise 4: With Heat Generation

Derive the solution of the heat equation similarly for the following initial
and boundary conditions

u(x, 0) = f(x), ux(0, t) = 0, ux(L, t) = 0 16



Separation of Variables
Wave Equation
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Wave Equation
Let us consider and solve the 1D Wave equation in a similar fashion

utt = c2uxx on x ∈ (0, L), t > 0 (8)
u(x, 0) = f(x), x ∈ [0, L] (9)
ut(x, 0) = g(x), x ∈ [0, L] (10)
u(0, t) = 0, t ≥ 0 (11)
u(L, t) = 0, t ≥ 0 (12)
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Wave Equation
Let us obtain a similar one for the wave equation with initial and boundary
conditions (8)-(12). Let u(x, t) = X(x)T (t), then we obtain

ut = X(x)T ′′(t) uxx = X ′′(x)T (t)

We obtain that

X(x)T ′′(t) = c2X ′′(x)T (t) =⇒ T ′

c2T
=

X ′′

X
= µ(constant)

Therefore, we have

d2T

dt2
− c2µT = 0,

d2X

dx2
− µX = 0

where µ is any real constant. (Can it be complex?!)
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Wave Equation
Let us look at the boundary conditions.

u(0, t) = 0 =⇒ X(0)T (t) = 0

If T ≡ 0, then u(x, t) ≡ 0, which is a trivial solution, and we are not interested
in this solution. Therefore, T (t) ̸≡ 0, consequently, X(0) = 0. Similarly,

u(L, t) = 0 =⇒ X(L)T (t) = 0

If T ≡ 0, then u(x, t) ≡ 0, which is a trivial solution, and we are not interested
in this solution. Therefore, T (t) ̸≡ 0, consequently, X(L) = 0.
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Wave Equation
So, let us consider the following problem,

X ′′ − µX = 0, x ∈ [0, L]

X(0) = 0

X(L) = 0

Now, let us consider three cases, µ > 0,= 0, < 0.
Case 1: µ = 0
Then

X ′′ = 0 =⇒ X ′ = a =⇒ X = ax+ b

X(0) = 0 =⇒ b = 0

X(L) = 0 =⇒ aL = 0, L ̸= 0 =⇒ a = 0

X(x) ≡ 0 =⇒ u(x, t) = X(x)T (t) = 0 =⇒ u ≡ 0
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Wave Equation
We are not interested in the solution u ≡ 0
Case 2: µ > 0, let µ = ν2

Then
X ′′ − ν2X =⇒ m2 − ν2 = 0 ( auxiliary equation )

=⇒ m = ±ν =⇒ X(x) = Aeνx +Be−νx

X(0) = 0 =⇒ A+B = 0 =⇒ A = −B =⇒ X(x) = A(eνx − e−νx)

X(L) = 0 =⇒ A(eνL − e−νL) = 0

=⇒ eνL = e−νL or A = 0

=⇒ L = 0 or ν = 0 or A = 0

L ̸= 0, ν = 0 =⇒ µ = 0 (Case 1, discussed) =⇒ A = 0

X(x) ≡ 0 =⇒ u(x, t) = X(x)T (t) = 0 =⇒ u ≡ 0
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Wave Equation
Again, we are not interested in the solution u ≡ 0
Case 3: µ < 0, let µ = −ν2

Then
X ′′ + ν2X =⇒ m2 + ν2 = 0 ( auxiliary equation )

=⇒ m = ±νi =⇒ X(x) = A cos(νx) +B sin(νx)

X(0) = 0 =⇒ A+ 0 = 0 =⇒ A = 0 =⇒ X(x) = B sin(νx)

X(L) = 0 =⇒ B sin(νL) = 0 =⇒ νn =
nπ

L
, n ∈ Z

Let
Xn(x) = Bn sin

(nπ
L

x
)
, n ∈ Z
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Wave Equation
Observe that

Xn(x) = −Bn sin

(
|n|π
L

x

)
, n < 0

=⇒ Xn(x) = Cn sin
(nπ
L

x
)
, n > 0

and we are not interested in

Xn(x) = 0, n = 0

Therefore,
Xn(x) = Bn sin

(nπ
L

x
)
, n ∈ N
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Wave Equation
Therefore, we have only case 3 with a non-trivial solution. That is, when
µ = −ν2n = −

(
nπ
L

)2. Since for each n, we obtain a different ν. We have,

d2Tn

dt2
+
(cnπ

L

)2
Tn = 0, t > 0, n ∈ N

=⇒ Tn(t) = An cosλnt+Bn sinλnt, n ∈ N, λn =
nπ

L

Note: There are notation abuses for An and Bn. Therefore, we have

un(x, t) = Xn(x)Tn(t) = (An cosλnt+Bn sinλnt) sin
(nπ
L

x
)
, n ∈ N

These are called eigenfunctions of the heat equation corresponding to the
eigenvalue λn = cnπ

L . The set {λi, i ∈ N} is called the spectrum.
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Wave Equation
Now, the linear combination of these is again a solution (Proof??
Convergence??). Therefore,

u(x, t) =

∞∑
n=1

un(x, t) =

∞∑
n=1

(An cosλnt+Bn sinλnt) sin
(nπ
L

x
)

(13)

Now, let us apply the initial condition to obtain the solution of the problem
(8)-(12)

u(x, 0) =
∞∑
n=1

An sin
(nπ
L

x
)
= f(x)

ut(x, 0) =
∞∑
n=1

Bnλn sin
(nπ
L

x
)
= g(x)
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Wave Equation
The coefficients An and Bn are obtained by integrating on both sides by
exploiting the orthogonality properties of the set {sinmx : m ∈ N}. The
solution of the wave equation is given by

u(x, t) =

∞∑
n=1

(An cosλnt+Bn sinλnt) sin
(nπ
L

x
)

(14)

An =
2

L

∫ L

0
f(x) sin

(nπx
L

)
dx, n ∈ N

Bn =
2

cnπ

∫ L

0
g(x) sin

(nπx
L

)
dx, n ∈ N
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Separation of Variables
Laplace Equation
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Laplace Equation
Let us consider and solve the 1D Wave equation in a similar fashion

uxx + uyy = 0 on x ∈ (0, a), y ∈ (0, b) (15)
u(x, 0) = 0, x ∈ [0, a] (16)
u(x, b) = f(x), x ∈ [0, a] (17)
u(0, y) = 0, y ∈ [0, b] (18)
u(a, y) = 0, y ∈ [0, b] (19)

This is a boundary value problem. Here, we have given only Dirichlet boundary
conditions.
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Laplace Equation
Let us obtain a similar one for the Laplace equation with boundary conditions
(15)-(19). Let u(x, y) = X(x)Y (y), then we obtain

uxx = X ′′(x)Y (y) uyy = X(x)Y ′′(y)

We obtain that

X ′′(x)Y (y) = −X(x)Y ′′(y) =⇒ X ′′

X
= −Y ′′

Y
= µ(constant)

Therefore, we have

d2X

dx2
− µX = 0,

d2Y

dy2
+ µY = 0

where µ is any real constant.
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Laplace Equation
Let us look at the left and right boundary conditions.

u(0, y) = 0 =⇒ X(0)Y (y) = 0

If Y ≡ 0, then u(x, y) ≡ 0, which is a trivial solution, and we are not interested
in this solution. Therefore, Y (y) ̸≡ 0, consequently, X(0) = 0. Similarly,

u(a, y) = 0 =⇒ X(a)Y (y) = 0

If Y ≡ 0, then u(x, t) ≡ 0, which is a trivial solution, and we are not interested
in this solution. Therefore, Y (y) ̸≡ 0, consequently, X(a) = 0.
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Laplace Equation
So, let us consider the following problem,

X ′′ − µX = 0, x ∈ [0, a]

X(0) = 0

X(a) = 0

Now, let us consider three cases, µ > 0,= 0, < 0.
Case 1: µ = 0
Then

X ′′ = 0 =⇒ X ′ = c =⇒ X = cx+ b

X(0) = 0 =⇒ b = 0

X(a) = 0 =⇒ ca = 0, a ̸= 0 =⇒ c = 0

X(x) ≡ 0 =⇒ u(x, t) = X(x)T (t) = 0 =⇒ u ≡ 0
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Laplace Equation
We are not interested in the solution u ≡ 0
Case 2: µ > 0, let µ = ν2

Then
X ′′ − ν2X =⇒ m2 − ν2 = 0 ( auxiliary equation )

=⇒ m = ±ν =⇒ X(x) = Aeνx +Be−νx

X(0) = 0 =⇒ A+B = 0 =⇒ A = −B =⇒ X(x) = A(eνx − e−νx)

X(a) = 0 =⇒ A(eνa − e−νa) = 0

=⇒ eνa = e−νa or A = 0

=⇒ a = 0 or ν = 0 or A = 0

a ̸= 0, ν = 0 =⇒ µ = 0 (Case 1, discussed) =⇒ A = 0

X(x) ≡ 0 =⇒ u(x, t) = X(x)T (t) = 0 =⇒ u ≡ 0
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Laplace Equation
Again, we are not interested in the solution u ≡ 0
Case 3: µ < 0, let µ = −ν2

Then
X ′′ + ν2X =⇒ m2 + ν2 = 0 ( auxiliary equation )

=⇒ m = ±νi =⇒ X(x) = A cos(νx) +B sin(νx)

X(0) = 0 =⇒ A+ 0 = 0 =⇒ A = 0 =⇒ X(x) = B sin(νx)

X(a) = 0 =⇒ B sin(νa) = 0 =⇒ νn =
nπ

a
, n ∈ Z

Let
Xn(x) = Bn sin

(nπ
a
x
)
, n ∈ Z
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Laplace Equation
Observe that

Xn(x) = −Bn sin

(
|n|π
a

x

)
, n < 0

=⇒ Xn(x) = Cn sin
(nπ

a
x
)
, n > 0

and we are not interested in

Xn(x) = 0, n = 0

Therefore,
Xn(x) = Bn sin

(nπ
a
x
)
, n ∈ N
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Laplace Equation
Therefore, we have only case 3 with a non-trivial solution. That is, when
µ = −ν2n = −

(
nπ
a

)2. Since for each n, we obtain a different ν. We have,

d2Yn
dy2

− ν2nYn = 0, t > 0, n ∈ N

=⇒ Yn(y) = Ane
νny +Bne

−νny, n ∈ N

Note: There are notation abuses for An and Bn. Therefore, we have

un(x, y) = Xn(x)Yn(y) = (Ane
νny +Bne

−νny) sin(νnx), n ∈ N

These are called eigenfunctions of the heat equation corresponding to the
eigenvalue νn = nπ

a . The set {λi, i ∈ N} is called the spectrum.
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Laplace Equation
Now, the linear combination of these is again a solution (Proof??
Convergence??). Therefore,

u(x, y) =

∞∑
n=1

un(x, y) =

∞∑
n=1

(Ane
νny +Bne

−νny) sin(νnx) (20)

Now, let us apply the bottom boundary condition u(x, 0) = 0

u(x, 0) =

∞∑
n=1

(An +Bn) sin(νnx) = 0 =⇒ An = −Bn

u(x, y) =

∞∑
n=1

An(e
νny − e−νny) sin(νnx) =

∞∑
n=1

An sin(νnx) sinh(νny)
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Laplace Equation
Now, let us apply the top boundary condition u(x, b) = f(x) to obtain the
solution of the problem (15)-(19)

u(x, b) =

∞∑
n=1

An sin(νnx) sinh(νnb) = f(x)

The coefficients An are obtained by integrating on both sides by exploiting
the orthogonality properties of the set {sinmx : m ∈ N}. The solution of the
Laplace equation is given by

u(x, y) =

∞∑
n=1

An sin(νnx) sinh(νny) (21)

An =
2

a sinh(νnb)

∫ a

0
f(x) sin(νnx)dx, n ∈ N, νn =

nπ

a
38



Laplace Equation

Figure 1: Laplace Equation
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Exercise

Exercise 5: Top Boundary

Solve the Laplace equation with f(x) = 110, a = 20, b = 40

Exercise 6: Top Boundary

Solve the Laplace equation with f(x) = 1000 sin(πx/2), a = b = 2.

Exercise 7: Top Boundary

Solve the Wave equation for L = 1, c = 1, f(x) = 0 and
1. g(x) = sin(3πx)

2. g(x) = x2(1− x)
40
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