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Conservation Law

1. Many PDEs involve in physical phenomena studies about how certain
quantity changes with time and space

2. These changes usually obey the conservation laws
3. Conservation of Mass, Momentum, and Energy
4. We will prove the Transport theorem for n− dimensional space later.

Let us quantify a certain quantity as u(x, t), that is, u(x, t) denotes the density
of a certain quantity (mass, energy, momentum). Note that density is
measured in the amount of the quantity per unit volume or unit length.
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Conservation Law

Let us consider a thin tube as our domain. Its cross-sectional area is denoted
by A.
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Assumptions

1. Lateral sides are insulated so that the quantity being studied only varies
in the x−direction and in time.

2. x, u(x, t) does not vary within the cross section at x.
3. The domain has a constant cross-sectional area A.
4. ϕ = ϕ(x, t) denotes the flux of the quantity at x at time t. It measures the

amount of the quantity crossing the section at x at time t.
5. ϕ is positive if the flow is to the right and negative if the flow is to the left.
6. f(x, t) denotes the rate at which the quantity is created or destroyed per

unit volume within the section at x at time t.
7. f is called source if it is positive, sink if it is negative.
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Conservation Law

• The amount of the quantity at time t in a small section of width dx is
u(x, t)Adx for each x.

• The amount of the quantity in arbitrary section [a, b] will be∫ b

a
u(x, t)Adx

• ϕ is the amount of quantity per unit area per unit time. The actual amount
of the quantity crossing the section at x, at time t, is given by Aϕ(x, t).

• f is measured in the amount of the quantity per unit volume per unit time.
• The amount of the quantity being created in a small section of width dx

for each x is f(x, t)Adx per unit time.
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Conservation Law

• The amount of the quantity being created within the arbitrary section
[a, b] will be ∫ b

a
f(x, t)Adx

• As per the conservation law, the rate of change of the amount of the
quantity in the section [a, b] must be equal to the rate at which the
quantity flows in at x = a minus at which it flows out at b plus the rate at
which it is created within [a, b].

Therefore,

d

dt

∫ b

a
u(x, t)Adx = Aϕ(a, t)−Aϕ(b, t) +

∫ b

a
f(x, t)Adx (1)
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Conservation Law
Since A is constant, we can obtain the following fundamental conservation
law.

d

dt

∫ b

a
u(x, t)dx = ϕ(a, t)− ϕ(b, t) +

∫ b

a
f(x, t)dx (2)

It shows a balance between how much goes in, how much goes out, and how
much is changed.

Theorem 1 (Leibniz Rule)
If a(t), b(t) and F (x, t) are continuously differentiable then

d

dt

∫ b(t)

a(t)
F (y, t)dy = F (b(t), t)b′(t)− F (a(t), t)a′(t) +

∫ b(t)

a(t)
Ft(y, t)dy (3)

Taking the derivative inside the integral.
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Conservation Laws
From (2) and if we assume u has continuous partial derivatives, then by the
Leibniz Rule, we obtain that

d

dt

∫ b

a
u(x, t)dx =

∫ b

a
ut(x, t)dx

If we further assume that ϕ has continuous partial derivatives, then using the
fundamental theorem of calculus, we can get that

ϕ(a, t)− ϕ(b, t) = −
∫ b

a
ϕx(x, t)dx (4)
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Conservation Laws
Therefore (2) becomes∫ b

a
[ut(x, t) + ϕx(x, t)− f(x, t)]dx = 0

Since a and b are arbitrary, the integrand must be 0. Since the integrand is
continuous, we have

ut(x, t) + ϕx(x, t) = f(x, t) (5)

This is called the fundamental conservation law in differential form.

8



Conservation Laws
Generally, the conservation law can be written as

ut + ϕx = f (6)

where ϕ and f are function of x, t, u. When ϕ and f are functions of u, it will
lead to a nonlinear model. As an example, we can obtain the advection or
transport equation and Burger’s equation.
Suppose

ϕ = cu

then we get the transport equation where c is the speed of the fluid, when
f(x, t) = 0, it is called advection equation with no source

ut + cux = 0 (7)
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General Advection Equation
Advection usually refers to the transport of a certain substance. A model
where the flux is proportional to the density is called an advection model.
The most general form of the advection equation is given by

ut + cux + αu = f(x, t) (8)

where α and c are constants. Here, cux is the term related to the flux. αu and
f(x, t) are correpsonding to the source term.
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Diffusion
Diffusion is the transport of a material by molecular motion. This
phenomenon can be explained as follows:
Suppose you are standing in a row to buy a ticket to watch a film or cricket.
When the person at the back pushes, this will impact everyone. When a
person in the middle of the row is strong enough to produce an opposite
force, then the rest of the row ahead of him may not get any disturbance.
Similarly, if there is a discontinuity at one place, there is a chance that it may
not get disturbed.
In the same way, when a fluid moves at a high speed, it will cause a
disturbance to the adjacent fluid that moves at a slow speed. If the
high-speed fluid is "stronger enough" (like a Tsunami or a Flood) than the
adjacent fluid or materials, it can even swallow or sweep away materials on
its way. However, if the object adjacent is strong enough (like a dam wall), it
can’t be swept away, and equilibrium can be formed. Both advection and
diffusion processes can occur. 11



Diffusion Equation
Now, let us consider the heat equation in the same way. When one end of the
rod is heated, the molecules get agitated, which causes their adjacent
molecules to be agitated. The flow is always from more agitated molecules
to less agitated molecules to agitate. Therefore, the heat flows from the hot
end to the cold end. Agitation of molecules depends on the temperature,
density, and many other physical parameters. The higher the temperature or
density, the higher the agitation. That is, a higher density gradient leads to
more flow. Mathematically, the flux (a measure of the flow) ϕ is proportional
to the gradient of the concentration of the substance. In the 1D case, the
gradient is the derivative with respect to x. Hence

ϕ(x, t) = −Kux

Here K > 0 is a proportionality or diffusion constant, so usually denoted by
k2. 12



Diffusion Equation

1. If ux > 0, then the density increases from left to right. Therefore, the flow
should be from right to left, that is, negative.

2. If ux < 0, then the density decreases from right to left. Therefore, the flux
is from left to right, that is, positive.
The heat equation is given by

ut − k2uxx = f(x, t)

If f = 0, we obtain the general diffusion equation or Fick’s Law

ut − k2uxx = 0
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Advection-Diffusion Equation
If there is advection and diffusion in a process, it can be modelled as

ut + cux − k2uxx = 0

For example, consider the ant story or the pollutant in a river. Advection
occurs due to the river flow with speed c. Since pollutants are flowing, they
can also diffuse depending on the flow speed.
If the pollutant also decays at a rate λ > 0, then the advection-diffusion-decay
equation is given by

ut + cux − k2uxx = −λu
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Heat Equation
The heat equation is similar to the diffusion model. If we consider ρ as
density, C as specific heat, T as temperature and u as energy density, then

u(x, t) = ρCT (x, t)

Hence, by the diffusion equation, we have

ρCT (x, t)− k2Txx = 0

or
dT

dt
= k2

d2T

dx2

(Warning! Abuse of notations)
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Heat Equation in n-dimension
How do we obtain it in n−dimension? Let Ωs represent any smooth subregion
of Ω. Then the rate of change of the total quantity (say temperature) within Ωs

is the negative of the flux through ∂Ωs:

d

dt

∫
Ωs

udx = −
∫
∂Ωs

F.νdS

where F denotes the flux density. Therefore, we have∫
Ωs

utdx = −
∫
∂Ωs

F.νdS = −
∫
Ωs

divFdx

(Gauss divergence theorem)
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Heat Equation in n-dimension

ut = −divF

In many cases, F is proportional to the gradient Du, but points in the opposite
direction as flow is from hot to cold. Hence,

ut = −divF(Du)

For small Du, we have F(Du) ≈ −c2Du and we obtain

ut = c2∆u

Let us derive the fundamental solution of the heat equation later.
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From Fundamental Conservation Law

• In the case of the heat equation, we have considered u(x, t) as the energy
density.

• Now, for the wave equation, we consider u as the momentum density.
• This is natural because waves in a medium are driven by forces that

transmit momentum.
Therefore, let

u(x, t) = wt(x, t)

where w(x, t) is the displacement of the medium and wt is the velocity.
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From Fundamental Conservation Law

• Flux represents how momentum is transported.
• Momentum flows because of internal forces (like tension in a string or

stress in a solid).
• These forces are related to spatial derivatives of displacement.
• From Hooke’s law–type reasoning, the restoring force is proportional to

−wxx, that is, momentum flux occurs as forces are transmitted spatially,
which is proportional to −wxx.
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From Fundamental Conservation Law
Hence, the momentum flux is proportional to the negative gradient of
displacement

ϕ = −c2wx

where c is the wave speed.
This means momentum flows from regions of high slope in w toward low
slope, consistent with how tension forces act.
Hence, the wave equation is given by

wtt = c2wxx or abusively utt = c2uxx
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Wave Equation: Alternative Derivation

• Consider a thin string of length l. For example, a string on a guitar.
• Disturb the string so that it undergoes relatively small transverse

vibrations
• Let ρ denote the density of the string (unit mass per unit length)
• Assume that ρ is constant.
• Due to disturbance, the string displaces, which we denote by v(x, t).
• Let T (x, t) denote the magnitude of the tension force and T(x, t) denote

the tension force.
• Consider the arbitrary interval [a, b], a small portion of the string
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Wave Equation: Alternative Derivation
From Newton’s second law of motion,

F = ma

Since v is the displacement and m = ρ× Volume = ρ(b− a), we have

F = ρ(b− a)vtt

Let us ignore the gravity, air resistance, and other external forces, except the
tension force. Further, let us assume that the string is perfectly flexible and
the tension force has the direction of the tangent vector along the string.
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Wave Equation: Alternate Derivation
If we represent the position of the string at a fixed time by parametric
equations, then we have (x as a parameter)

x = x(t), v = v(x, t)

The tangent vector is given by
(1, vx)

and the unit tangent vector is given by(
1√

1 + v2x
,

vx√
1 + v2x

)
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Wave Equation
Hence, the tension force can be written as

T(x, t) = T (x, t)

(
1√

1 + v2x
,

vx√
1 + v2x

)
=

1√
1 + v2x

(T, Tvx)

Since vibrations are small, we can consider vx is small and hence by Taylor
series, we have

√
1 + v2x ≈ 1. Hence

T(x, t) = (T, Tvx)

Since there is no motion along the x−axis, we get that

T (b, t)− T (a, t) = 0
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Wave Equation
Therefore,

F = T (b, t)vx(b, t)− T (a, t)vx(a, t)

Hence,
ρ(b− a)vtt = T (b, t)vx(b, t)− T (a, t)vx(a, t)

=⇒ ρvtt =
T (b, t)vx(b, t)− T (a, t)vx(a, t)

b− a

Since b and a are arbitrary, allowing b → a yields

ρvtt = Tvxx or abusively utt = c2uxx

where c2 = T/ρ.
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Wave Equation
The Wave Equation with air resistance is given by

utt + rut = c2uxx, r > 0

The Wave Equation with transverse elastic force (force proportional to the
displacement) is given by

utt + ku = c2uxx, k > 0

The Wave Equation with an external force is given by

utt = c2uxx + f(x, t)
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Wave Equation
The general wave equation is given by

utt + ku+ rut = c2uxx + f(x, t)

The wave equation in three dimensions is given by

utt = c2(uxx + uyy + uzz)

In n−dimension
utt = c2∆u+ f,x ∈ Rn, t > 0

where u : Ω ∪ ∂Ω× [0,∞) → R, f : Ω× [0,∞) → R
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Wave Equation in n-dimension
How do we obtain it in n−dimension? Let Ωs represent any smooth subregion
of Ω. Then the acceleration within Ωs is given by

d2

dt2

∫
Ωs

udx =

∫
Ωs

uttdx

The net contact force is given by

−
∫
∂Ωs

F.νdS

where F denotes the force acting on Ωs through ∂Ωs and the mass density is
taken to be unity.
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Wave Equation in n-dimension
Therefore, we have ∫

Ωs

uttdx = −
∫
∂Ωs

F.νdS

By Gauss’s divergence theorem, we have

utt = −divF

For elastic bodies, F is a function of the displacement gradient Du. Hence,

utt = −divF(Du)

For small Du, we have F(Du) ≈ −c2Du and we obtain

utt = c2∆u
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Laplace Equation in n-dimension
Mostly Laplace equation arrives as a particular case of the heat or wave
equation when u is stationary or time independent. Researchers study how
the wave equation or heat equation reaches a stationary state by setting
ut = 0 or utt = 0.
The Laplace equation in n-dimension is given by

∆u = 0

The Poisson equation is given by

∆u = f

Definition 1
A C2 function u satisfying the Laplace equation is called a harmonic function.
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