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Conservation Law
Fundamental conservation law in differential form.

ut(x, t) + ϕx(x, t) = f(x, t) (1)

ϕ(x, t) = −Kux =⇒ ut = c2uxx (Heat Equation)

u(x, t) = wt(x, t) =⇒ utt = c2uxx (Wave Equation)

2



Leibniz-Reynolds
Transport Theorem
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Eulerian Coordinates
Lagrangian vs Eulerian
Eulerian Coordinates: This is also called spatial description. In this, the
continuum is described in terms of fields defined at fixed spatial locations. A
field such as velocity is expressed as

v = v(x, t), x ∈ Ωt

where x is the spatial coordinate at time t.
Properties are described as functions of the current position and time,
without explicit reference to individual material particles.
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Eulerian Coordinates (key Idea)

• Fix attention on specific locations in space, and observe how
fluid/material flows through those points.

• Place cameras or sensors at fixed points in a river and measure how
water flows past.

v = v(x, t)

where x is a fixed spatial coordinate and velocity (or other quantity) is what a
probe at that point measures as time passes.
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Eulerian Coordinates
Lagrangian Coordinates: This is also called the material or particle
description. In this, each material particle of the continuum is identified by its
position in a reference configuration (initial coordinates)X. The motion is
described by a mapping

x = ψ(X, t), X ∈ Ω0

where ψ is the motion function,X is the material coordinate and x is the
current position at time t.
Properties such as velocity, acceleration, and stress are expressed as
functions of (X, t)
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Lagrangian Coordinates (key Idea)

• Track individual fluid (or material) particles as they move through space
and time.

• Think of attaching a GPS to each water droplet and recording where it
goes.

• Each particle is “tagged” by its initial position (say at t = 0)
• Particle motion is given by its trajectory x = ψ(X, t)

X : material coordinates (reference/initial position), x : current position at
time t

v(x, t) =
∂χ(X, t)

∂t
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Eulerian vs Lagrangian
The Eulerian and Lagrangian views are related through the material derivative:

Dϕ

Dt
=
∂ϕ

∂t
+ (v · ∇)ϕ

which gives the rate of change of a field ϕ (Eulerian) as experienced by a
moving particle (Lagrangian).
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Eulerian vs Lagrangian
Aspect Lagrangian Description Eulerian Description
Viewpoint Follows individual material particles

(particle-based view).
Observes fields at fixed spatial
points (field-based view).

Coordinates Material coordinates X (initial
position of particle).

Spatial coordinates x (current
position in space).

Motion
Mapping

x = χ(X, t) where χ is the motion
function.

v = v(x, t), velocity field at location
x.

Velocity v(X, t) =
∂x(X, t)

∂t
v(x, t) measured at fixed point in
space.

Acceleration a(X, t) =
∂2x(X, t)

∂t2
Dv

Dt
=

∂v

∂t
+ (v · ∇)v.

Analogy GPS tracker on each car to follow its
path.

Traffic camera at an intersection
measuring passing cars.
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Eulerian vs Lagrangian

Figure 1: Source:Lagrangian approach in Computational Fluid Dynamics, Alex Tall
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Eulerian vs Lagrangian

Figure 2: Source: http://www.flowillustrator.com/fluid-dynamics/basics/lagrangian-
eulerian-viewpoints.php

11



Reynolds Transport Theorem

Theorem 1 (Leibniz Rule)
If a(t), b(t) and F (x, t) are continuously differentiable then

d

dt

∫ b(t)

a(t)
F (x, t)dx = F (b(t), t)

db(t)

dt
− F (a(t), t)

da(t)

dt
+

∫ b(t)

a(t)

∂F (x, t)

∂t
dx (2)

1. Taking the derivative inside the integral or differentiation under the
integral sign

2. Reynolds Transport theorem or Reynolds Theorem is a three-dimensional
generalization of the Leibniz Integral rule.
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Reynolds Transport Theorem
Consider the integration of f = f(x, t) over a time-dependent region Ω(t) with
boundary ∂Ω(t), then the Reynolds Transport theorem relates taking the
derivative with respect to time as follows.

Theorem 2 (Reynolds Transport Theorem)
Let Ω(t) ⊂ R3 and f : Ω(t)× [0,∞) → U , then

D

Dt

(∫
Ω(t)

fdV

)
=

∫
Ω(t)

∂f

∂t
dV +

∫
∂Ω(t)

(v.n)fdS (3)

Here x(t) is the position of the points inΩ(t). n(x, t) is the outward unit normal
vector to ∂Ω(t). dV and dS are volume and surface elements at x. v(x, t)
denotes the velocity of the area element. The function f may be scalar-valued
or vector-valued, or tensor-valued. D

Dt is usually called as total derivative or
material derivative.
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Reynolds Transport Theorem: Interpretation
The rate of change of any quantity of interest for a system equals the rate of
change within the control volume plus the net flow across the boundaries.
1. What is happening to the property inside the control volume?
2. What is flowing in/out of the control surface flux?
3. The LHS is the Lagrangian view
4. The RHS is an Eulerian view
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Reynolds Transport Theorem (Proof)
With the help of Gauss’s divergence theorem, we can write (3) as follows:

D

Dt

(∫
Ω(t)

fdV

)
=

∫
Ω(t)

(
∂f

∂t
+∇f .v + f∇.v

)
dV (4)

Proof: Let Ω0 be reference configuration of the region Ω(t). Let The motion
and the deformation gradient are given by:

x = φ(X, t) ; =⇒ F (X, t) = ∇◦φ

Let J(X, t) = det[F (X, t)]. Then, integrals in the current and the reference
configurations are related by∫

Ω(t)
f(x, t) dV =

∫
Ω0

f [φ(X, t), t] J(X, t) dV0 =

∫
Ω0

f̂(X, t) J(X, t) dV0
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Reynolds Transport Theorem (Proof)
The time derivative of an integral over a volume is defined as :

D

Dt

(∫
Ω(t)

f(x, t) dV

)
= lim

∆t→0

1

∆t

(∫
Ω(t+∆t)

f(x, t+∆t) dV−
∫
Ω(t)

f(x, t) dV

)

= lim
∆t→0

1

∆t

(∫
Ω0

f̂(X, t+∆t) J(X, t+∆t) dV0

)
−
(∫

Ω0

f̂(X, t) J(X, t) dV0

)
=

∫
Ω0

[
lim
∆t→0

f̂(X, t+∆t) J(X, t+∆t)− f̂(X, t) J(X, t)

∆t

]
dV0

=

∫
Ω0

∂

∂t
[f̂(X, t) J(X, t)] dV0
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Reynolds Transport Theorem (Proof)
Since Ω0 is independent of time, we have

D

Dt

(∫
Ω(t)

f(x, t) dV

)
=

∫
Ω0

(
∂

∂t
[f̂(X, t)] J(X, t) + f̂(X, t)

∂

∂t
[J(X, t)]

)
dV0

Now, the time derivative of detF is given by

∂J(X, t)

∂t
=

∂

∂t
(detF ) = (detF )(∇ · v)

= J(X, t)∇ · v(φ(X, t), t)
= J(X, t)∇ · v(x, t)
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Reynolds Transport Theorem (Proof)
Therefore,

D

Dt

(∫
Ω(t)

f(x, t) dV

)
=

∫
Ω0

(
∂

∂t
[f̂(X, t)] J(X, t) + f̂(X, t) J(X, t)∇ · v

)
dV0

=

∫
Ω0

(
∂

∂t
[f̂(X, t)] + f̂(X, t)∇ · v

)
J(X, t) dV0

=

∫
Ω(t)

(
Df

Dt
+ f ∇ · v

)
dV

Now, the material derivative is given by

Df

Dt
=
∂f

∂t
+∇f · v
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Reynolds Transport Theorem (Proof)
Therefore,

D

Dt

(∫
Ω(t)

f dV

)
=

∫
Ω(t)

(
∂f

∂t
+∇f · v + f ∇ · v

)
dV

Using the identity
∇ · (v ⊗w) = v(∇ ·w) +∇v ·w

We then have

D

Dt

(∫
Ω(t)

f dV

)
=

∫
Ω(t)

(
∂f

∂t
+∇ · (f ⊗ v)

)
dV
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Reynolds Transport Theorem (Proof)
Using the divergence theorem and the identity

(a⊗ b) · n = (b · n)a

we have

D

Dt

(∫
Ω(t)

f dV

)
=

∫
Ω(t)

∂f

∂t
dV+

∫
∂Ω(t)

(f ⊗ v) · n dS (5)

=

∫
Ω(t)

∂f

∂t
dV+

∫
∂Ω(t)

(v · n)f dS (6)

Hence the proof.
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Reynolds Transport Theorem
In fluid dynamics or continuum mechanics, this can be written as follows:
Let B be any property of the fluid and β = dB

dm be the intensive value of B
(amount of B per unit mass) in any small element of the fluid, then(

dB

dt

)
Ω(t)

=

∫
Ω(t)

[
∂

∂t
(ρβ) + v.∇(ρβ) + ρβ∇.v

]
dV (7)

For the Pictorial Proof using fluid dynamics continuum mechanics approach,
refer to the lecture notes of Hyunse Yoon, University of Iowa.
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Conservation Laws
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Conservation of Mass
Use B = m in (7) then (

dm

dt

)
Ω(t)

= 0, β =

(
dm

dm

)
= 1

(
dm

dt

)
Ω(t)

=

∫
Ω(t)

[
∂

∂t
(ρβ) + v.∇(ρβ) + ρβ∇.v

]
dV

=⇒ 0 =

∫
Ω(t)

[
∂ρ

∂t
+ v.∇(ρ) + ρ∇.v

]
dV

Hence
∂ρ

∂t
+∇.(ρv) = 0 (8)
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Conservation of Momentum
Use B = mv in (7) then(

dmv

dt

)
Ω(t)

=

∫
Ω(t)

fdV, β =

(
dmv

dm

)
= v

Here f is an external force.∫
Ω(t)

fdV =

∫
Ω(t)

[
∂

∂t
(ρv) + v.∇(ρv) + ρv∇.v

]
dV

∂

∂t
(ρv) +∇.(ρvv) = ∇.Ts + fb (9)

Here Ts = [(−p+ λ∇.v)I + 2µD], D = 1
2(∇v +∇vT ), p is the pressure, fb is

the body force and Ts is the stress tensor. 24



Navier Stokes Equation

∂

∂t
(ρv) +∇.(ρv ⊗ v) = −∇p+ µ∇2v +

1

3
µ∇(∇.v) + ρg (10)

The incompressible Navier-Stokes equation is given by

Inertia (per volume)︷ ︸︸ ︷
∂v

∂t︸︷︷︸
Variation

+ (v · ∇)v︸ ︷︷ ︸
Convection

Divergence of stress︷ ︸︸ ︷
− ν∇2v︸ ︷︷ ︸

Diffusion

= −∇w︸ ︷︷ ︸
Internal
source

+ g︸︷︷︸
External
source

(11)
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Conservation of Energy
Use B = E = m

(
u+ 1

2v.v
)
in (7) then(

dE

dt

)
Ω(t)

= Q̇− Ẇ , β =

(
dE

dm

)
= e

∂

∂t
(ρe) +∇.(ρve) = −∇.q̇s − p∇.v +∇.(τ .v) + fb.v + q̇v (12)

Here p: pressure, q̇s: rate of heat transfer per unit area across the surface
area, q̇v: rate of heat source or sink within material volume per unit volume, Q̇:
net rate of heat transferred to the material element, Ẇ : net rate of work done
by the material volume, τ : viscous stress tensor
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Heat Equation
The conservation of total internal energy can be written as

∂

∂t

(
ρ

[
e+

1

2
v2
])

︸ ︷︷ ︸
Rate of increase
of Energy per
unit volume

+∇.

[
ρv

(
e+

1

2
v2
)]

︸ ︷︷ ︸
Convection
energy into
point by flow

= − ∇.q︸︷︷︸
net heat

flux

+∇.(σ.v)︸ ︷︷ ︸
Work of
Surface
forces

+ ρv.F︸ ︷︷ ︸
Work of
body
forces

(13)

∂

∂t
(ρcpT ) + v.∇T (Tv) = ∇.(k∇T ) + βT

(
∂p

∂t
+ v.∇p

)
+ τ : ∇v +Q

(14)
Here cp: specific heat capacity, k: thermal conductivity
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Thanks
Doubts and Suggestions

panch.m@iittp.ac.in
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