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Recap



Reynolds Transport Theorem

Consider the integration of f = f(x, t) over a time-dependent region €(¢) with
boundary 99(t), then the Reynolds Transport theorem relates taking the
derivative with respect to time as follows.

Theorem 1 (Reynolds Transport Theorem)
Let Q(t) c R*and f : Q(t) x [0,00) — U, then

D / of /
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Here x(¢) is the position of the points in Q(¢). n(x, t) is the outward unit normal
vector to 99(t). dV and dS are volume and surface elements at x. v(x,t)
denotes the velocity of the area element. The function f may be scalar-valued
or vector-valued, or tensor-valued. % is usually called as total derivative or
material derivative.



Reynolds Transport Theorem

In fluid dynamics or continuum mechanics, this can be written as follows:
Let B be any property of the fluid and 5 = 9B be the intensive value of B

dm

(amount of B per unit mass) in any small element of the fluid, then

dB P
dt = = V. vld 9
(dt >Q(t) /Q(t) [at(pﬁ) +v.V(pB) + pBV.v | dV )

For the Pictorial Proof using fluid dynamics continuum mechanics approach,
refer to the lecture notes of Hyunse Yoon, University of lowa.


http://user.engineering.uiowa.edu/~fluids/posting/Lecture_Notes/Control%20Volume%20and%20Reynolds%20Transport%20Theorem_10-11-2013_Final.pdf

Conservation Laws



Conservation of Mass

Use B = m in (2) then

(dm> :0,5:<dm>:1
dt Q) dm
dm

(&)m -/ [;(MHV-V(M)HBV-V] av

Q(t)

— 0= / [gf +v.V(p) + pV.v] av

Q(t)

Hence
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Conservation of Momentum
Use B = mv in (2) then
dmv dmv
(ms)m) :Q/ fav. o= () =

Here f is an external force.

/ fdv = / [gt(pv) +v.V(pv) + va.v] av
Q) Q)

%(pv) + V.(pvv) =V.I,+1, (4)

Here T, = [(—p + AV.v)I + 2uD], D = L(Vv + VvT), pis the pressure, f; is
the body force and Ty is the stress tensor.




Navier Stokes Equation

0 1
a(pv) +V.(pvev)=—-Vp+uViv + guV(V.v) + g

The incompressible Navier-Stokes equation is given by

Inertia (per volume)

Divergence of stress
7\
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Conservation of Energy

uuuuuu

Use B =FE =m (u+ 3v.v) in(2) then
dE . . dE
(0 )y =07 2= () =

0 . :

a(pe) + V.(pve) = =V.¢s — pV.v+ V. (T.v) + §.v + ¢ 7)
Here p: pressure, ¢s: rate of heat transfer per unit area across the surface
area, g, rate of heat source or sink within material volume per unit volume, ¢:
net rate of heat transferred to the material element, W: net rate of work done
by the material volume, 7: viscous stress tensor




Heat Equation

The conservation of total internal energy can be written as

0 1 1
—(ple+z0?| )+ V. |pv|e+20v*)| == V.q +V.(o.v)+ pv.F
ot 2 2 N~~~ —— N——
~~ net heat Work of Work of
Rate of increase Convection flux Surface body
of Energy per energy into forces forces
unit volume point by flow
o) dp
a(pcpT) +v.VT(I'v) =V.(kVT)+ BT a5 +v.Vp|+7:Vv+Q

Here ¢,,: specific heat capacity, k: thermal conductivity




d’Alembert’'s Formula
for Wave Equation
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Recall: Transport Equation in R" x (0, co)

Consider the following inhomogeneous problem

ur+b.Du=fxeR" t>0
u(x,0) = g(x),z € R”

Then

¢
u(x,t) = g(x — bt) —I—/fx—l— (s —t)b,s)ds,z € R",t >0
0

solves the IVP (10).




d’Alembert’'s Formulan = 1

Consider the following one-dimensional wave equation

Ugg — gy = 0 in R x (0,00)
u=f on Rx (t=0)
up =g on R x (t=0)

Let us try to find the solution of the wave equation in terms of f and g.
Let us rewrite the wave equation as follows:

9 L ON(2 L O —u—0
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d’Alembert’s Formula

Let

Then the wave equation can be written as
ve(x,t) + cvg(z,t) =0 in R x (0,00)

This is a simple transport equation. We know the solution to this problem,
which is given by
v(z,t) = a(x — ct)

where
v(z,0) = a(x)




d’Alembert’s Formula

Therefore, we have
ug(x,t) — cug(x,t) = a(z — ct) in R x (0,00)

This is once again the transport equation. Therefore,

¢
u(x,t) :f(:z:+ct)—i—/a(:z:—cs—c(s—t))ds,xER,tZ0
0

u(z,t) = f(x+ct) + [ a(x —2¢cs +ct))ds,x € R, t >0

o _




d’Alembert’s Formula

Usey =z — 2cs + ct,thendy = —2cds, s =0 — y = x + ct,
s=1t = y=xz—ct

Now,

1 r+ct
u(z,t) = f(x +ct) + % / a(y)dy,z € R,t >0

r—ct

a(z) = v(x,0) = uy(x,0) — cuz(x,0) = g(x) — cf' ()

x+ct x+-ct x+-ct

:>2ic a(y)dyzéc / g(y)dy—% / f'(y)dy

r—ct x—ct r—ct
x+-ct

:_/ dy——fx+ct)+ f(a:—ct)

x—ct




d’Alembert’s Formula

x+ct

u(w,t) = 3fla+ o) + fla =) + 5 [ gy

r—ct

is called d’Alembert’s formula. This can be written as
u(x,t) = F(x +ct) + Gz — ct)

for appropriate F' and G. Conversely, any function of this form solves

uy — c*ug, = 0. Observe the beauty of this equation, the general solution of
the one-dimensional wave equation is a sum of the general solution of the
transport equations

ur+cu, =0 and wu; —cuy =0




Wave Equation: Separation Variables

Recollect the solution obtained from the Separation of Variables. (Of course,
this was on domain [0, L] x (0, 00))

u(w,t) = i [An Ccos (chTrt> + By, sin <ch7Tt)} sin (%x) (12)

n=1

Using sin(A + B) = sin A cos B £ cos Asin B and
cos(A £+ B) = cos A cos B F sin Asin B, we can rewrite this as

;i [A sm( :c—{—ct)) + A, sin (n%(:v—ct))]

n=

+;§: [B cos( (x — ct)) — B, cos (%(vact))]

n=1

[y



d’Alembert's Formula
Again, you can see that
u(z,t) = Fx+ct) + G(x — ct)
When ¢ = 1, g is an odd function and f is an even function, then

U(O, t) - f(t)

When ¢ = 1, g is an an even function and f is an odd function, then

u(0,t) = [ g(y)dy
/

When g = 0, you can observe that the initial displacement splits into two parts,
one moving to the right with speed ¢ and the other to the left with speed c.



d’Alembert’s Formula

Theorem 2
Assume f € C2%(R), g € C'(R), c = 1 and define u by d'Alembert’s. Then,
1. u € C?(R x [0,00))
2. upy — gy =0 in R x [0, 00)
3. i 1) = f(a
o u(z,t) = f(27)
t>0

4. i 1) = g(z°
i ) =
t>0

In (3) and (4) for each point z° € R
The proof follows immediately from the above discussion and is left as an
exercise.




Exercise

Exercise 1: CSIR-June-2019

Let u be the solution of (11) where c = 1, f, g are in C?(R) and satisfy the
following conditions:
(M f(z) =g(x)=0forz <0 (2)0< f(z)<1lforz>0

(3) g(x)>0forz >0 (4) /g(a:)dm < oo

Then, which of the foIIowingostatements are true? Justify your answer
1. u(z,t) =0forallz <0andt >0
2. wis bounded on R x (0, c0)
3. u(z,t) = 0wheneverz +¢t <0
4. u(x,t) = 0for some (z,t) satisfyingz +¢ > 0




d’Alembert’s Formula in the half-line

Let us consider the following wave equation on the half-line R, . Note c = 1
here.
Ut — Uz = 0 iN Ry x (0, 00)
u=f on Ry x {t =0}
ug =g on Ry x {t =0}
u=20 on {z =0} x (0,00)

(13)

where f and g are given, with f(0) = ¢(0) = 0.



d’Alembert’s Formula in the half-line

Let us convert (13) by extending u, g, h to all R by odd reflection. That is, we
set

(e, t) = {“(”fvt) (z>0,t>0)
—u(~z,t) (z<0,t>0)

@ @20
J): {—f—x) (<0




d’Alembert’s Formula in the half-line

Then (13) becomes

@=f on Rx {t=0}

U — Uge = 00N RX(0,00)
=g on R x {t =0}

Hence d’Alembert’s formula becomes

-+t

ie.t) = 5 Fe+ 1)+ fo -0+ 5 [ sy

r—1




d’Alembert’s Formula in the half-line

The solution obtained from the reflection method for (13) becomes

( x4+t

s+ sw=ol+; [ gy, it oztzo
u(z,t) = z_,f+t (16)
et =se-a)+y [ g fo<a<s
—x+t

1. If g = 0, we can understand the formula (16) as saying that an initial
displacement f splits into two parts. One moving to the right with speed
one and another moving to the left with speed one

2. The latter reflects off the point 2z = 0, where the vibrating string is held
fixed.
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