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Reynolds Transport Theorem
Consider the integration of f = f(x, t) over a time-dependent region Ω(t) with
boundary ∂Ω(t), then the Reynolds Transport theorem relates taking the
derivative with respect to time as follows.

Theorem 1 (Reynolds Transport Theorem)
Let Ω(t) ⊂ R3 and f : Ω(t)× [0,∞) → U , then

D

Dt

(∫
Ω(t)

fdV

)
=

∫
Ω(t)

∂f

∂t
dV +

∫
∂Ω(t)

(v.n)fdS (1)

Here x(t) is the position of the points inΩ(t). n(x, t) is the outward unit normal
vector to ∂Ω(t). dV and dS are volume and surface elements at x. v(x, t)
denotes the velocity of the area element. The function f may be scalar-valued
or vector-valued, or tensor-valued. D

Dt is usually called as total derivative or
material derivative.
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Reynolds Transport Theorem
In fluid dynamics or continuum mechanics, this can be written as follows:
Let B be any property of the fluid and β = dB

dm be the intensive value of B
(amount of B per unit mass) in any small element of the fluid, then(

dB

dt

)
Ω(t)

=

∫
Ω(t)

[
∂

∂t
(ρβ) + v.∇(ρβ) + ρβ∇.v

]
dV (2)

For the Pictorial Proof using fluid dynamics continuum mechanics approach,
refer to the lecture notes of Hyunse Yoon, University of Iowa.
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http://user.engineering.uiowa.edu/~fluids/posting/Lecture_Notes/Control%20Volume%20and%20Reynolds%20Transport%20Theorem_10-11-2013_Final.pdf


Conservation Laws
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Conservation of Mass
Use B = m in (2) then (

dm

dt

)
Ω(t)

= 0, β =

(
dm

dm

)
= 1

(
dm

dt

)
Ω(t)

=

∫
Ω(t)

[
∂

∂t
(ρβ) + v.∇(ρβ) + ρβ∇.v

]
dV

=⇒ 0 =

∫
Ω(t)

[
∂ρ

∂t
+ v.∇(ρ) + ρ∇.v

]
dV

Hence
∂ρ

∂t
+∇.(ρv) = 0 (3)
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Conservation of Momentum
Use B = mv in (2) then(

dmv

dt

)
Ω(t)

=

∫
Ω(t)

fdV, β =

(
dmv

dm

)
= v

Here f is an external force.∫
Ω(t)

fdV =

∫
Ω(t)

[
∂

∂t
(ρv) + v.∇(ρv) + ρv∇.v

]
dV

∂

∂t
(ρv) +∇.(ρvv) = ∇.Ts + fb (4)

Here Ts = [(−p+ λ∇.v)I + 2µD], D = 1
2(∇v +∇vT ), p is the pressure, fb is

the body force and Ts is the stress tensor. 6



Navier Stokes Equation

∂

∂t
(ρv) +∇.(ρv ⊗ v) = −∇p+ µ∇2v +

1

3
µ∇(∇.v) + ρg (5)

The incompressible Navier-Stokes equation is given by

Inertia (per volume)︷ ︸︸ ︷
∂v

∂t︸︷︷︸
Variation

+ (v · ∇)v︸ ︷︷ ︸
Convection

Divergence of stress︷ ︸︸ ︷
− ν∇2v︸ ︷︷ ︸

Diffusion

= −∇w︸ ︷︷ ︸
Internal
source

+ g︸︷︷︸
External
source

(6)
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Conservation of Energy
Use B = E = m

(
u+ 1

2v.v
)
in (2) then(

dE

dt

)
Ω(t)

= Q̇− Ẇ , β =

(
dE

dm

)
= e

∂

∂t
(ρe) +∇.(ρve) = −∇.q̇s − p∇.v +∇.(τ .v) + fb.v + q̇v (7)

Here p: pressure, q̇s: rate of heat transfer per unit area across the surface
area, q̇v: rate of heat source or sink within material volume per unit volume, Q̇:
net rate of heat transferred to the material element, Ẇ : net rate of work done
by the material volume, τ : viscous stress tensor
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Heat Equation
The conservation of total internal energy can be written as

∂

∂t

(
ρ

[
e+

1

2
v2
])

︸ ︷︷ ︸
Rate of increase
of Energy per
unit volume

+∇.

[
ρv

(
e+

1

2
v2
)]

︸ ︷︷ ︸
Convection
energy into
point by flow

= − ∇.q︸︷︷︸
net heat

flux

+∇.(σ.v)︸ ︷︷ ︸
Work of
Surface
forces

+ ρv.F︸ ︷︷ ︸
Work of
body
forces

(8)

∂

∂t
(ρcpT ) + v.∇T (Tv) = ∇.(k∇T ) + βT

(
∂p

∂t
+ v.∇p

)
+ τ : ∇v +Q (9)

Here cp: specific heat capacity, k: thermal conductivity
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d’Alembert’s Formula
for Wave Equation
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Recall: Transport Equation in Rn × (0,∞)

Consider the following inhomogeneous problem{
ut + b.Du = f,x ∈ Rn, t > 0

u(x, 0) = g(x), x ∈ Rn
(10)

Then

u(x, t) = g(x− bt) +

t∫
0

f(x+ (s− t)b, s)ds, x ∈ Rn, t ≥ 0

solves the IVP (10).
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d’Alembert’s Formula n = 1

Consider the following one-dimensional wave equation
utt − c2uxx = 0 in R× (0,∞)

u = f on R× (t = 0)

ut = g on R× (t = 0)

(11)

Let us try to find the solution of the wave equation in terms of f and g.
Let us rewrite the wave equation as follows:(

∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
u = utt − uxx = 0
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d’Alembert’s Formula
Let

v(x, t) =

(
∂

∂t
− c

∂

∂x

)
u(x, t)

Then the wave equation can be written as

vt(x, t) + cvx(x, t) = 0 in R× (0,∞)

This is a simple transport equation. We know the solution to this problem,
which is given by

v(x, t) = a(x− ct)

where
v(x, 0) = a(x)

13



d’Alembert’s Formula
Therefore, we have

ut(x, t)− cux(x, t) = a(x− ct) in R× (0,∞)

This is once again the transport equation. Therefore,

u(x, t) = f(x+ ct) +

t∫
0

a(x− cs− c(s− t))ds, x ∈ R, t ≥ 0

u(x, t) = f(x+ ct) +

t∫
0

a(x− 2cs+ ct))ds, x ∈ R, t ≥ 0
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d’Alembert’s Formula
Use y = x− 2cs+ ct, then dy = −2cds, s = 0 =⇒ y = x+ ct,
s = t =⇒ y = x− ct

u(x, t) = f(x+ ct) +
1

2c

x+ct∫
x−ct

a(y)dy, x ∈ R, t ≥ 0

Now,
a(x) = v(x, 0) = ut(x, 0)− cux(x, 0) = g(x)− cf ′(x)

=⇒ 1

2c

x+ct∫
x−ct

a(y)dy =
1

2c

x+ct∫
x−ct

g(y)dy − 1

2

x+ct∫
x−ct

f ′(y)dy

=
1

2c

x+ct∫
x−ct

g(y)dy − 1

2
f(x+ ct) +

1

2
f(x− ct)

Note that, this won’t work on higher dimensions. We need to work with even
and odd dimensions to obtain the solution.
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d’Alembert’s Formula

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

x+ct∫
x−ct

g(y)dy

is called d’Alembert’s formula. This can be written as

u(x, t) = F (x+ ct) +G(x− ct)

for appropriate F and G. Conversely, any function of this form solves
utt − c2uxx = 0. Observe the beauty of this equation, the general solution of
the one-dimensional wave equation is a sum of the general solution of the
transport equations

ut + cux = 0 and ut − cux = 0
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Wave Equation: Separation Variables
Recollect the solution obtained from the Separation of Variables. (Of course,
this was on domain [0, L]× (0,∞))

u(x, t) =

∞∑
n=1

[
An cos

(cnπ
L

t
)
+Bn sin

(cnπ
L

t
)]

sin
(nπ
L

x
)

(12)

Using sin(A±B) = sinA cosB ± cosA sinB and
cos(A±B) = cosA cosB ∓ sinA sinB, we can rewrite this as

u(x, t) =
1

2

∞∑
n=1

[
An sin

(nπ
L

(x+ ct)
)
+An sin

(nπ
L

(x− ct)
)]

+
1

2

∞∑
n=1

[
Bn cos

(nπ
L

(x− ct)
)
−Bn cos

(nπ
L

(x+ ct)
)]
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d’Alembert’s Formula
Again, you can see that

u(x, t) = F (x+ ct) +G(x− ct)

When c = 1, g is an odd function and f is an even function, then

u(0, t) = f(t)

When c = 1, g is an an even function and f is an odd function, then

u(0, t) =

t∫
0

g(y)dy

When g = 0, you can observe that the initial displacement splits into two parts,
one moving to the right with speed c and the other to the left with speed c. 18



d’Alembert’s Formula

Theorem 2
Assume f ∈ C2(R), g ∈ C1(R), c = 1 and define u by d’Alembert’s. Then,
1. u ∈ C2(R× [0,∞))

2. utt − uxx = 0 in R× [0,∞)

3. lim
(x,t)→(x0,0)

t>0

u(x, t) = f(x0)

4. lim
(x,t)→(x0,0)

t>0

ut(x, t) = g(x0)

In (3) and (4) for each point x0 ∈ R
The proof follows immediately from the above discussion and is left as an
exercise.
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Exercise

Exercise 1: CSIR-June-2019

Let u be the solution of (11) where c = 1, f, g are inC2(R) and satisfy the
following conditions:
(1) f(x) = g(x) = 0 for x ≤ 0 (2) 0 < f(x) ≤ 1 for x > 0

(3) g(x) > 0 for x > 0 (4)
∞∫
0

g(x)dx < ∞

Then, which of the following statements are true? Justify your answer
1. u(x, t) = 0 for all x ≤ 0 and t > 0

2. u is bounded on R× (0,∞)

3. u(x, t) = 0 whenever x+ t < 0

4. u(x, t) = 0 for some (x, t) satisfying x+ t > 0
20



d’Alembert’s Formula in the half-line
Let us consider the following wave equation on the half-line R+. Note c = 1
here. 

utt − uxx = 0 in R+ × (0,∞)

u = f on R+ × {t = 0}
ut = g on R+ × {t = 0}
u = 0 on {x = 0} × (0,∞)

(13)

where f and g are given, with f(0) = g(0) = 0.
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d’Alembert’s Formula in the half-line
Let us convert (13) by extending u, g, h to all R by odd reflection. That is, we
set

ũ(x, t) :=

{
u(x, t) (x ≥ 0, t ≥ 0)

−u(−x, t) (x ≤ 0, t ≥ 0)

f̃(x) :=

{
f(x) (x ≥ 0)

−f(−x) (x ≤ 0)

g̃(x) :=

{
g(x) (x ≥ 0)

−g(−x) (x ≤ 0)
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d’Alembert’s Formula in the half-line
Then (13) becomes 

ũtt − ũxx = 0 in R× (0,∞)

ũ = f̃ on R× {t = 0}
ũt = g̃ on R× {t = 0}

(14)

Hence d’Alembert’s formula becomes

ũ(x, t) =
1

2
[f̃(x+ t) + f̃(x− t)] +

1

2

x+t∫
x−t

g̃(y)dy (15)
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d’Alembert’s Formula in the half-line
The solution obtained from the reflection method for (13) becomes

u(x, t) =



1

2
[f(x+ t) + f(x− t)] +

1

2

x+t∫
x−t

g(y)dy, if x ≥ t ≥ 0

1

2
[f(x+ t)− f(t− x)] +

1

2

x+t∫
−x+t

g(y)dy, if 0 ≤ x ≤ t

(16)

1. If g ≡ 0, we can understand the formula (16) as saying that an initial
displacement f splits into two parts. One moving to the right with speed
one and another moving to the left with speed one

2. The latter reflects off the point x = 0, where the vibrating string is held
fixed. 24
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Doubts and Suggestions

panch.m@iittp.ac.in
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