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d’Alembert’s Formula
for Wave Equation
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Recall: Transport Equation in Rn × (0,∞)

Consider the following inhomogeneous problem{
ut + b.Du = f,x ∈ Rn, t > 0

u(x, 0) = g(x), x ∈ Rn
(1)

Then

u(x, t) = g(x− bt) +

tˆ

0

f(x+ (s− t)b, s)ds, x ∈ Rn, t ≥ 0

solves the IVP (1).
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d’Alembert’s Formula n = 1

Consider the following one-dimensional wave equation
utt − c2uxx = 0 in R× (0,∞)

u = f on R× (t = 0)

ut = g on R× (t = 0)

(2)

Let us try to find the solution of the wave equation in terms of f and g.
Let us rewrite the wave equation as follows:(

∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
u = utt − uxx = 0

3



d’Alembert’s Formula
Let

v(x, t) =

(
∂

∂t
− c

∂

∂x

)
u(x, t)

Then the wave equation can be written as

vt(x, t) + cvx(x, t) = 0 in R× (0,∞)

This is a simple transport equation. We know the solution to this problem,
which is given by

v(x, t) = a(x− ct)

where
v(x, 0) = a(x)
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d’Alembert’s Formula
Therefore, we have

ut(x, t)− cux(x, t) = a(x− ct) in R× (0,∞)

This is once again the transport equation. Therefore,

u(x, t) = f(x+ ct) +

tˆ

0

a(x− cs− c(s− t))ds, x ∈ R, t ≥ 0

u(x, t) = f(x+ ct) +

tˆ

0

a(x− 2cs+ ct))ds, x ∈ R, t ≥ 0
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d’Alembert’s Formula
Use y = x− 2cs+ ct, then dy = −2cds, s = 0 =⇒ y = x+ ct,
s = t =⇒ y = x− ct

u(x, t) = f(x+ ct) +
1

2c

x+ctˆ

x−ct

a(y)dy, x ∈ R, t ≥ 0

Now,
a(x) = v(x, 0) = ut(x, 0)− cux(x, 0) = g(x)− cf ′(x)

=⇒ 1

2c

x+ctˆ

x−ct

a(y)dy =
1

2c

x+ctˆ

x−ct

g(y)dy − 1

2

x+ctˆ

x−ct

f ′(y)dy

=
1

2c

x+ctˆ

x−ct

g(y)dy − 1

2
f(x+ ct) +

1

2
f(x− ct)

Note that this won’t work on higher dimensions. We need to work with even
and odd dimensions to obtain the solution.
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d’Alembert’s Formula

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

x+ctˆ

x−ct

g(y)dy

is called d’Alembert’s formula. This can be written as

u(x, t) = F (x+ ct) +G(x− ct)

for appropriate F and G. Conversely, any function of this form solves
utt − c2uxx = 0. Observe the beauty of this equation, the general solution of
the one-dimensional wave equation is a sum of the general solution of the
transport equations

ut + cux = 0 and ut − cux = 0
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Wave Equation: Separation Variables
Recollect the solution obtained from the Separation of Variables. (Of course,
this was on domain [0, L]× (0,∞))

u(x, t) =

∞∑
n=1

[
An cos

(cnπ
L

t
)
+Bn sin

(cnπ
L

t
)]

sin
(nπ
L

x
)

(3)

Using sin(A±B) = sinA cosB ± cosA sinB and
cos(A±B) = cosA cosB ∓ sinA sinB, we can rewrite this as

u(x, t) =
1

2

∞∑
n=1

[
An sin

(nπ
L

(x+ ct)
)
+An sin

(nπ
L

(x− ct)
)]

+
1

2

∞∑
n=1

[
Bn cos

(nπ
L

(x− ct)
)
−Bn cos

(nπ
L

(x+ ct)
)]
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d’Alembert’s Formula
Again, you can see that

u(x, t) = F (x+ ct) +G(x− ct)

When c = 1, g is an odd function and f is an even function, then

u(0, t) = f(t)

When c = 1, g is an an even function and f is an odd function, then

u(0, t) =

tˆ

0

g(y)dy

When g = 0, you can observe that the initial displacement splits into two parts,
one moving to the right with speed c and the other to the left with speed c. 9



d’Alembert’s Formula

Theorem 1
Assume f ∈ C2(R), g ∈ C1(R), c = 1 and define u by d’Alembert’s. Then,
1. u ∈ C2(R× [0,∞))

2. utt − uxx = 0 in R× [0,∞)

3. lim
(x,t)→(x0,0)

t>0

u(x, t) = f(x0)

4. lim
(x,t)→(x0,0)

t>0

ut(x, t) = g(x0)

In (3) and (4) for each point x0 ∈ R
The proof follows immediately from the above discussion and is left as an
exercise.
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Exercise

Exercise 1: CSIR-June-2019

Let u be the solution of (2) where c = 1, f, g are in C2(R) and satisfy the
following conditions:
(1) f(x) = g(x) = 0 for x ≤ 0 (2) 0 < f(x) ≤ 1 for x > 0

(3) g(x) > 0 for x > 0 (4)
∞̂

0

g(x)dx < ∞

Then, which of the following statements are true? Justify your answer
1. u(x, t) = 0 for all x ≤ 0 and t > 0

2. u is bounded on R× (0,∞)

3. u(x, t) = 0 whenever x+ t < 0

4. u(x, t) = 0 for some (x, t) satisfying x+ t > 0
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d’Alembert’s Formula in the half-line
Let us consider the following wave equation on the half-line R+. Note c = 1
here. 

utt − uxx = 0 in R+ × (0,∞)

u = f on R+ × {t = 0}
ut = g on R+ × {t = 0}
u = 0 on {x = 0} × (0,∞)

(4)

where f and g are given, with f(0) = g(0) = 0.
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d’Alembert’s Formula in the half-line
Let us convert (4) by extending u, g, h to all R by odd reflection. That is, we set

ũ(x, t) :=

{
u(x, t) (x ≥ 0, t ≥ 0)

−u(−x, t) (x ≤ 0, t ≥ 0)

f̃(x) :=

{
f(x) (x ≥ 0)

−f(−x) (x ≤ 0)

g̃(x) :=

{
g(x) (x ≥ 0)

−g(−x) (x ≤ 0)
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d’Alembert’s Formula in the half-line
Then (4) becomes 

ũtt − ũxx = 0 in R× (0,∞)

ũ = f̃ on R× {t = 0}
ũt = g̃ on R× {t = 0}

(5)

Hence, d’Alembert’s formula becomes

ũ(x, t) =
1

2
[f̃(x+ t) + f̃(x− t)] +

1

2

x+tˆ

x−t

g̃(y)dy (6)
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d’Alembert’s Formula in the half-line
The solution obtained from the reflection method for (4) becomes

u(x, t) =



1

2
[f(x+ t) + f(x− t)] +

1

2

x+tˆ

x−t

g(y)dy, if x ≥ t ≥ 0

1

2
[f(x+ t)− f(t− x)] +

1

2

x+tˆ

−x+t

g(y)dy, if 0 ≤ x ≤ t

(7)

1. If g ≡ 0, we can understand the formula (7) as saying that an initial
displacement f splits into two parts. One moving to the right with speed
one and another moving to the left with speed one

2. The latter reflects off the point x = 0, where the vibrating string is held
fixed. 15
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