MA612L-Partial Differential Equations

Lecture 16: Spherical Means

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

September 19, 2025

Spherical Means

- $B(\mathbf{x},r)$ = the closed ball with center \mathbf{x} and radius r>0
- $\alpha(n)$ = Volume of unit ball $B(\mathbf{0},1)$ in $\mathbb{R}^n=\frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}$ [Proof]
- $n\alpha(n)$ = Surface area of unit Sphere $B(\mathbf{0},1)$ in \mathbb{R}^n
- $\oint\limits_{B(\mathbf{x},r)} f d\mathbf{y} = \frac{1}{\alpha(n)r^n} \int\limits_{B(\mathbf{x},r)} f d\mathbf{y} \text{ = average of } f \text{ over the ball } B(\mathbf{x},r)$
- $\oint\limits_{\partial B(\mathbf{x},r)} f dS = \frac{1}{n\alpha(n)r^{n-1}} \int\limits_{\partial B(\mathbf{x},r)} f dS \text{ = avg of } f \text{ over the sphere } \partial B(\mathbf{x},r)$

Definition 1

Let $\Omega \subset \mathbb{R}^n$ be open and bounded. We say $\partial \Omega$ is C^k if for each $\mathbf{x}^0 \in \partial \Omega$ there exist r>0 and a C^k function $\gamma:\mathbb{R}^{n-1}\to\mathbb{R}$ such that upon relabeling and reorienting the coordinate axes if necessary we have

$$\partial\Omega\cap B(\mathbf{x}^0,r) = \{x \in B(\mathbf{x}^0,r) : x_n > \gamma(x_1,x_2,\cdots,x_{n-1})\}\$$

The normal derivative is $\dfrac{\partial u}{\partial \nu}=\nu.Du$, where $u\in C^1(\overline{\Omega})$, $\partial\Omega$ is C^1 and $\nu=(\nu^1,\nu^2,\cdots,\nu^n)$ is a unit normal vector pointing outward.

(1)

Theorem 1 (Gauss-Green Theorem)

Suppose $u \in C^1(\overline{\Omega})$. Then

$$\int_{\Omega} u_{x_i} dx = \int_{\partial \Omega} u \nu^i dS$$

where $i = 1, 2, \dots, n$.

By the divergence theorem,

$$\int_{\Omega} \operatorname{div} F \, dx = \int_{\partial \Omega} F \cdot \nu \, dS.$$

Define a vector field $F: \overline{\Omega} \to \mathbb{R}^n$ by

$$F(x) = (0, \dots, 0, \underbrace{u(x)}_{i\text{-th component}}, 0, \dots, 0),$$

that is,

$$F^{j}(x) = \begin{cases} u(x), & j = i, \\ 0, & j \neq i. \end{cases}$$

Since $u \in C^1(\overline{\Omega})$, the components of F are continuously differentiable. The divergence of F is

$$\operatorname{div} F = \sum_{i=1}^{n} \frac{\partial F^{j}}{\partial x_{j}} = \frac{\partial F^{i}}{\partial x_{i}} = u_{x_{i}}.$$

On the left-hand side, we have

$$\int_{\Omega} \operatorname{div} F \, dx = \int_{\Omega} u_{x_i} \, dx,$$

and on the right-hand side,

$$\int_{\partial\Omega} F \cdot \nu \, dS = \int_{\partial\Omega} \sum_{i=1}^n F^j \nu^j \, dS = \int_{\partial\Omega} F^i \nu^i \, dS = \int_{\partial\Omega} u \, \nu^i \, dS.$$

Hence,

$$\int_{\Omega} u_{x_i} \, dx = \int_{\partial \Omega} u \, \nu^i \, dS.$$

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

