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Preliminaries

• B(x, r) = the closed ball with center x and radius r > 0

• α(n) = Volume of unit ball B(0, 1) in Rn =
πn/2

Γ(n2 + 1)

• nα(n) = Surface area of unit Sphere B(0, 1) in Rn

•
 

B(x,r)

fdy =
1

α(n)rn

ˆ

B(x,r)

fdy = average of f over the ball B(x, r)

•
 

∂B(x,r)

fdS =
1

nα(n)rn−1

ˆ

∂B(x,r)

fdS = avg of f over the sphere ∂B(x, r)
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Preliminaries

Definition 1
Let Ω ⊂ Rn be open and bounded. We say ∂Ω is Ck if for each x0 ∈ ∂Ω there
exist r > 0 and a Ck function γ : Rn−1 → R such that upon relabeling and
reorienting the coordinate axes if necessary we have

∂Ω ∩B(x0, r) = {x ∈ B(x0, r) : xn > γ(x1, x2, · · · , xn−1)}

Theorem 1 (Gauss-Green Theorem)
Suppose u ∈ C1(Ω). Then

ˆ

Ω

uxidx =

ˆ

∂Ω

uνidS (1)

where i = 1, 2, · · · , n.
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Preliminaries
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Preliminaries

Theorem 2 (Integration by Parts)
Suppose u, v ∈ C1(Ω). Then

ˆ

Ω

uxivdx = −
ˆ

Ω

uvxidx+

ˆ

∂Ω

uvνidS (2)

where i = 1, 2, · · · , n.
By the divergence theorem,

ˆ
Ω
divF dx =

ˆ
∂Ω

F · ν dS.
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Preliminaries
Define the vector field F : Ω → Rn by

F (x) = (0, . . . , 0, u(x)v(x)︸ ︷︷ ︸
i-th component

, 0, . . . , 0),

Since u, v ∈ C1(Ω), we have F ∈ C1(Ω;Rn) and

divF =
∂

∂xi
(uv) = uxi v + u vxi .

Applying the divergence theorem (Gauss–Ostrogradsky), the left-hand side
becomes ˆ

Ω
(uxi v + u vxi) dx,

and the right-hand side reduces toˆ
∂Ω

F · ν dS =

ˆ
∂Ω

F iνi dS =

ˆ
∂Ω

uv νi dS.
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Preliminaries
Hence ˆ

Ω
uxi v dx+

ˆ
Ω
u vxi dx =

ˆ
∂Ω

uv νi dS,

and rearranging gives the desired identity
ˆ
Ω
uxi v dx = −

ˆ
Ω
u vxi dx+

ˆ
∂Ω

uv νi dS.

In vector form,
ˆ
Ω
(∇u) v dx = −

ˆ
Ω
u∇v dx+

ˆ
∂Ω

uv ν dS.
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Preliminaries

Theorem 3 (Green’s Formulas)
Suppose u, v ∈ C2(Ω). Then

1.
ˆ

Ω

∆udx =

ˆ

∂Ω

∂u

∂ν
dS

2.
ˆ

Ω

Du.Dvdx = −
ˆ

Ω

u∆vdx+

ˆ

∂Ω

∂v

∂ν
udS

3.
ˆ

Ω

(u∆v − v∆u)dx =

ˆ

∂Ω

(
u
∂v

∂ν
− v

∂u

∂ν

)
dS

Proof: Exercise
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Hints
(1) Take F = ∇u. Then divF = div(∇u) = ∆u, and

ˆ
Ω
∆u dx =

ˆ
Ω
div(∇u) dx =

ˆ
∂Ω

∇u · ν dS =

ˆ
∂Ω

∂u

∂ν
dS.

(2) Use the product rule

div(u∇v) = ∇u · ∇v + u∆v.

Integrate over Ω and apply the divergence theorem:
ˆ
Ω
div(u∇v) dx =

ˆ
∂Ω

u∇v · ν dS =

ˆ
∂Ω

u
∂v

∂ν
dS.
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Hints
(3) Observe the product-rule identity

div
(
u∇v − v∇u

)
= u∆v − v∆u,

since the mixed gradient terms cancel. Applying the divergence theorem
gives

ˆ
Ω

(
u∆v − v∆u

)
dx =

ˆ
∂Ω

(
u∇v − v∇u

)
· ν dS =

ˆ
∂Ω

(
u
∂v

∂ν
− v

∂u

∂ν

)
dS,
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Preliminaries
From the above theorem, if we take Ω = B(x, r) you can observe that

ˆ

B(x,r)

∆udx =

ˆ

∂B(x,r)

∂u

∂ν
dS

 

∂B(x,r)

∂u

∂ν
dS =

1

nα(n)rn−1

ˆ

∂B(x,r)

∂u

∂ν
dS =

1

nα(n)rn−1

ˆ

B(x,r)

∆udx

=
r

n

 1

α(n)rn

ˆ

B(x,r)

∆udx

 =
r

n

 

B(x,r)

∆udx
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Preliminaries

Let r = |x| =
√∑n

i=1 x
2
i ,x ̸= 0 and u(x) = v(r). Then

∂r

∂xi
=

1

2
√∑n

i=1 x
2
i

2xi =
xi
r

=⇒ uxi =
∂u

∂xi
=

∂v

∂r

∂r

∂xi
= v′(r)

xi
r

∂2r

∂x2i
=

∂

∂xi

(xi
r

)
=

r − xi
∂r
xi

r2
=

1

r
− x2i

r3

=⇒ uxixi =
∂2u

∂x2i
=

∂

∂xi

(
∂v

∂r

∂r

∂xi

)
=

∂

∂xi

(
∂v

∂r

)
∂r

∂xi
+

∂v

∂r

∂2r

∂x2i

uxixi =
∂v′(r)

∂r

(xi
r

)2
+ v′(r)

∂2r

∂x2i
= v′′(r)

(xi
r

)2
+ v′(r)

(
1

r
− x2i

r3

)
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Preliminaries

Du = (ux1 , ux2 , · · ·uxn) =
v′(r)

r
(x1, x2, · · · , xn) =

v′(r)

r
x

∆u =

n∑
i=1

uxixi = v′′(r)

n∑
i=1

(xi
r

)2
+ v′(r)

n∑
i=1

1

r
− v′(r)

n∑
i=1

x2i
r3

∆u = v′′(r) +
n− 1

r
v′(r)
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Spherical Means
Now suppose n ≥ 2,m ≥ 2 and u ∈ Cm(R)× [0,∞) solves the initial value
problem 

utt −∆u = 0 in Rn × (0,∞)

u = f on Rn × {t = 0}
ut = g on Rn × {t = 0}

(3)

The general idea of spherical means is as follows:
1. First understand the average of u over a sphere radius r

2. Obtain the Euler-Poisson-Darboux equation and solve it
3. For odd n, convert the wave equation to a one-dimensional wave

equation
4. Apply d’Alembert’s formula or its variants to obtain the solution.
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Spherical Means

Definition 2
Let x ∈ Rn, t > 0, r > 0. Define

U(x; r, t) :=

 

∂B(x,r)

u(y, t)dS(y) (4)

the average of u(x, t) over the sphere ∂B(x, r).
Similarly 

F (x; r, t) :=

 

∂B(x,r)

f(y, t)dS(y)

G(x; r, t) :=

 

∂B(x,r)

g(y, t)dS(y)
(5)
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Spherical Means
(4) can also be written as

U(x; r, t) =

 

∂B(x,r)

u(y, t)dS(y) =

 

∂B(0,1)

u(x+ rz, t)dS(z)

Differentiating it w.r.t r, we obtain the following:

Ur(x; r, t) =

 

∂B(0,1)

Du(x+ rz, t).zdS(z)

=

 

∂B(x,r)

Du(y, t).
y − x

r
dS(y)

=

 

∂B(x,r)

∂u

∂ν
dS(y) =

r

n

 

B(x,r)

∆udy
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Spherical Means
Since

Ur(x; r, t) =
r

n

 

B(x,r)

∆udy =⇒ lim
r→0+

Ur(x; r, t) = 0

Exercise 1: Simple

Prove the following:

Urr(x; r, t) =

 

∂B(x,r)

∆udS +

(
1

n
− 1

)  

B(x,r)

∆udy

lim
r→0+

Urr(x; r, t) =
1

n
∆u(x, t)
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Euler-Poisson-Darboux
Equation
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Euler-Poisson-Darboux Equation

Theorem 4 (Euler-Poisson-Darboux Equation)
Fix x ∈ Rn and let u satisfy (3). Then U ∈ Cm(R+ × [0,∞]) and

Utt − Urr − n−1
r Ur = 0 in R+ × (0,∞)

U = F on R+ × {t = 0}
Ut = G on R+ × {t = 0}

(6)

Here Urr +
n−1
r Ur represents the radial part of the Laplacian∆ in polar coordi-

nates.
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Euler-Poisson-Darboux Equation
Proof: We have already proved that

lim
r→0+

Ur(x; r, t) = 0

Also, from the exercise, you can get that

lim
r→0+

Urr(x; r, t) =
1

n
∆u(x, t)

By computing through Urrr, Urrrr , etc., we can obtain that
U ∈ Cm(R+ × [0,∞]) Now,

Ur(x; r, t) =
r

n

 

B(x,r)

∆udy =
r

n

 

B(x,r)

uttdy
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Euler-Poisson-Darboux Equation
Proof (continued):

Ur(x; r, t) =
r

n

1

α(n)rn

ˆ

B(x,r)

uttdy =
1

nα(n)rn−1

ˆ

B(x,r)

uttdy

=⇒ rn−1Ur =
1

nα(n)

ˆ

B(x,r)

uttdy

Now differentiating w.r.t r, we obtain

(rn−1Ur)r =
1

nα(n)

ˆ

∂B(x,r)

uttdS
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Euler-Poisson-Darboux Equation
Proof (continued):

(n− 1)rn−2Ur + rn−1Urr = rn−1

 1

nα(n)rn−1

ˆ

∂B(x,r)

uttdS


(n− 1)rn−2Ur + rn−1Urr = rn−1

 

∂B(x,r)

utt = rn−1Utt

Hence
Utt − Urr −

n− 1

r
Ur = 0

22



Spherical Means

Exercise 2: Some Identities

Let ϕ : R → R and ϕ ∈ Ck+1(R). Then prove that for k = 1, 2, · · · ,(
d2

dr2

)(
1

r

d

dr

)k−1 (
r2k−1ϕ(r)

)
=

(
1

r

d

dr

)k (
r2k

dϕ(r)

dr

)
(
1

r

d

dr

)k−1 (
r2k−1ϕ(r)

)
=

k−1∑
j=0

βk
j r

j+1d
jϕ(r)

drj

where βk
j are independent of ϕ and βk

0 =

k∏
j=1

(2j − 1)
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Kirchhoff’s Formula
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Wave Equation Solution for odd n
Now, let us transform the Euler-Poisson-Darboux equation into the usual
one-dimensional wave equation. Let us find a solution for n = 3. Let
u ∈ C2(R3 × [0,∞))

U := rU, F := rF,G := rG,

Let us prove that U solves
U tt − U rr = 0 in R+ × (0,∞)

U = F on R+ × {t = 0}
U t = G on R+ × {t = 0}
U = 0 on {r = 0} × (0,∞)

(7)

25



Kirchhoff’s Formula
Claim: U tt − U rr = 0

U tt = rUtt

= r[Urr +
2

r
Ur]

= rUrr + 2Ur

= (U + rUr)r

= U rr

Therefore, the solution is given by for 0 ≤ r ≤ t

U(x; r, t) =
1

2
[F (r + t)− F (t− r)] +

1

2

r+tˆ

−r+t

G(y)dy
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Kirchhoff’s Formula
Since

U(x; r, t) :=

 

∂B(x,r)

u(y, t)dS(y)

we have lim
r→0+

U(x; r, t) = u(x, t)

=⇒ u(x, t) =
U(x; r, t)

r

= lim
r→0+

 1

2r
[F (r + t)− F (t− r)] +

1

2r

r+tˆ

−r+t

G(y)dy


= F

′
(t) +G(t)
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Kirchhoff’s Formula

u(x, t) =
∂

∂t

t

 

∂B(x,t)

fdS

+ t

 

∂B(x,t)

gdS

Now,  

∂B(x,t)

f(y)dS(y) =

 

∂B(0,1)

f(x+ tz)dS(z)

=⇒ ∂

∂t

  

∂B(x,t)

fdS

 =

 

∂B(0,1)

Df(x+tz).zdS(z) =

 

∂B(x,t)

Df(y).

(
y − x

t

)
dS(y)
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Kirchhoff’s Formula

∂

∂t

t

 

∂B(x,t)

fdS

 =

 

∂B(x,t)

fdS + t
∂

∂t

  

∂B(x,t)

fdS



=⇒ ∂

∂t

t

 

∂B(x,t)

fdS

 =

 

∂B(x,t)

fdS + t

 

∂B(x,t)

Df(y).

(
y − x

t

)
dS(y)

=⇒ ∂

∂t

t

 

∂B(x,t)

f(y)dS(y)

 =

 

∂B(x,t)

fdS +

 

∂B(x,t)

Df(y). (y − x) dS(y)
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Kirchhoff’s Formula

u(x, t) =

 

∂B(x,t)

tg(y) + f(y) +Df(y).(y − x)dS(y), (x ∈ R3, t > 0)

This is Kirchhoff’s formula for the solution of the initial-value problem
utt −∆u = 0 in Rn × (0,∞)

u = f on Rn × {t = 0}
ut = g on Rn × {t = 0}

(8)

Note for n = 2, this transformation will not work to convert the
Euler-Poisson-Darboux equation into a one-dimensional equation. However,
we will try to use x = (x1, x2, 0) ∈ R3.
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Wave Equation Solution for odd n
Now, let us transform the Euler-Poisson-Darboux equation into the usual
one-dimensional wave equation. Let us find a solution for n = 2k + 1. Let
u ∈ Ck+1(Rn × [0,∞)) solves the initial-value problem. For r > 0, t ≥ 0 write

U(r, t) :=

(
1

r

d

dr

)k−1 (
r2k−1U(x; r, t)

)

F (r) :=

(
1

r

d

dr

)k−1 (
r2k−1F (x; r)

)
G(r) :=

(
1

r

d

dr

)k−1 (
r2k−1G(x; r)

)
Then

U(r, 0) = F (r), U t(r, 0) = G(r)
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Wave Equation Solution for odd n
Let us prove that U solves

U tt − U rr = 0 in R+ × (0,∞)

U = F on R+ × {t = 0}
U t = G on R+ × {t = 0}
U = 0 on {r = 0} × (0,∞)

(9)

U rr =

(
d2

dr2

)(
1

r

d

dr

)k−1 (
r2k−1U

)
=

(
1

r

d

dr

)k (
r2kUr

)
=

(
1

r

d

dr

)k−1 (
r2k−1Urr + 2kr2k−2Ur

)
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Wave Equation Solution for odd n

U rr =

(
1

r

d

dr

)k−1 [
r2k−1

(
Urr +

n− 1

r
Ur

)]
=

(
1

r

d

dr

)k−1

(r2k−1Utt) = U tt

From the Euler-Poisson-Darboux equation, it follows that

U = F ,U t = G

Also, (
1

r

d

dr

)k−1 (
r2k−1U(r)

)
=

j−1∑
k=0

βk
j r

j+1∂
jU(r)

∂rj
= 0

when r = 0
=⇒ U(r, 0) = F (r), U t(r, 0) = G(r)
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Wave Equation Solution for odd n
Therefore, the solution is given by

U r,t =
1

2
[F (r + t)− F (t− r)] +

1

2

r+tˆ

−r+t

G(y)dy

Recall, u(x, t) = lim
r→0+

U(x; r, t). Also,

U(r, t) =

(
1

r

d

dr

)k−1 (
r2k−1U(x; r, t)

)
=

k−1∑
j=0

βk
j r

j+1∂
jU(r)

∂rj
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Wave Equation Solution for odd n

u(x, t) = lim
r→0+

U(x; r, t) = lim
r→0+

U(r, t)

βk
0r

= lim
r→0+

1

βk
0

F (r + t)− F (t− r)

2r
+

1

2r

r+tˆ

−r+t

G(y)dy


=

1

βk
0

[F
′
(t) +G(t)]

35



Wave Equation Solution for odd n

u(x, t) =
1

γn

[(
∂

∂t

)(
∂

∂t

)n−3
2

(
tn−2

 
∂B(x,t)

fdS

)
(10)

+

(
∂

∂t

)n−3
2

(
tn−2

 
∂B(x,t)

gdS

)]

here n is odd, n = 2k + 1 and γn =

k∏
j=1

(2k − 1)
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Wave Equation Solution for odd n

Theorem 5
Assume n is an odd integer, n ≥ 3,m = n+1

2 , f ∈ Cm+1(Rn), g ∈ Cm(Rn) and
define u by above. Then
1. u ∈ C2(Rn × [0,∞))

2. utt −∆u = 0 in Rn × [0,∞)

3. lim
(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = f(x0)

4. lim
(x,t)→(x0,0)
x∈Rn,t>0

ut(x, t) = g(x0)

In (3) and (4) for each point x0 ∈ Rn

Proof: Exercise.
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Thanks
Doubts and Suggestions

panch.m@iittp.ac.in
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