MA612L-Partial Differential Equations

Lecture 17: Spherical Means

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

September 22, 2025

Recap

- $B(\mathbf{x},r)$ = the closed ball with center \mathbf{x} and radius r>0
- $\alpha(n)$ = Volume of unit ball $B(\mathbf{0},1)$ in $\mathbb{R}^n = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}$
- $n\alpha(n)$ = Surface area of unit Sphere $B(\mathbf{0},1)$ in \mathbb{R}^n
- $\int_{B(\mathbf{x},r)} f d\mathbf{y} = \frac{1}{\alpha(n)r^n} \int_{B(\mathbf{x},r)} f d\mathbf{y}$ = average of f over the ball $B(\mathbf{x},r)$
- $\oint\limits_{\partial B(\mathbf{x},r)} f dS = \frac{1}{n\alpha(n)r^{n-1}} \int\limits_{\partial B(\mathbf{x},r)} f dS \text{ = avg of } f \text{ over the sphere } \partial B(\mathbf{x},r)$

Definition 1

Let $\Omega\subset\mathbb{R}^n$ be open and bounded. We say $\partial\Omega$ is C^k if for each $\mathbf{x}^0\in\partial\Omega$ there exist r>0 and a C^k function $\gamma:\mathbb{R}^{n-1}\to\mathbb{R}$ such that upon relabeling and reorienting the coordinate axes if necessary we have

$$\partial\Omega\cap B(\mathbf{x}^0,r) = \{x \in B(\mathbf{x}^0,r) : x_n > \gamma(x_1,x_2,\cdots,x_{n-1})\}$$

Theorem 1 (Gauss-Green Theorem)

Suppose $u \in C^1(\overline{\Omega})$. Then

$$\int_{\Omega} u_{x_i} dx = \int_{\partial \Omega} u \nu^i dS \tag{1}$$

where $i = 1, 2, \cdots, n$.

Theorem 2 (Integration by Parts)

Suppose $u, v \in C^1(\overline{\Omega})$. Then

$$\int_{\Omega} u_{x_i} v d\mathbf{x} = -\int_{\Omega} u v_{x_i} d\mathbf{x} + \int_{\partial \Omega} u v \nu^i dS \tag{2}$$

where $i = 1, 2, \dots, n$.

By the divergence theorem,

$$\int_{\Omega} \operatorname{div} F \, dx = \int_{\partial \Omega} F \cdot \nu \, dS.$$

Define the vector field $F: \overline{\Omega} \to \mathbb{R}^n$ by

$$F(x) = (0, \dots, 0, \underbrace{u(x)v(x)}_{i\text{-th component}}, 0, \dots, 0),$$

Since $u,v\in C^1(\overline{\Omega})$, we have $F\in C^1(\overline{\Omega};\mathbb{R}^n)$ and

$$\operatorname{div} F = \frac{\partial}{\partial x_i}(uv) = u_{x_i} v + u v_{x_i}.$$

Applying the divergence theorem (Gauss-Ostrogradsky), the left-hand side becomes

$$\int_{\Omega} (u_{x_i} v + u v_{x_i}) d\mathbf{x},$$

and the right-hand side reduces to

$$\int_{\partial\Omega} F \cdot \nu \, dS = \int_{\partial\Omega} F^i \nu^i \, dS = \int_{\partial\Omega} u v \, \nu^i \, dS.$$

Hence

$$\int_{\Omega} u_{x_i} \, v \, d\mathbf{x} + \int_{\Omega} u \, v_{x_i} \, d\mathbf{x} = \int_{\partial \Omega} u v \, \nu^i \, dS,$$

and rearranging gives the desired identity

$$\int_{\Omega} u_{x_i} v \, d\mathbf{x} = -\int_{\Omega} u \, v_{x_i} \, d\mathbf{x} + \int_{\partial \Omega} u v \, \nu^i \, dS.$$

In vector form,

$$\int_{\Omega} (\nabla u) \, v \, d\mathbf{x} = -\int_{\Omega} u \, \nabla v \, d\mathbf{x} + \int_{\partial \Omega} u v \, \nu \, dS.$$

Theorem 3 (Green's Formulas)

Suppose $u, v \in C^2(\overline{\Omega})$. Then

1.
$$\int_{\Omega} \Delta u d\mathbf{x} = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} dS$$

2.
$$\int_{\Omega} Du.Dv d\mathbf{x} = -\int_{\Omega} u \Delta v d\mathbf{x} + \int_{\partial \Omega} \frac{\partial v}{\partial \nu} u dS$$

3.
$$\int_{\Omega} (u\Delta v - v\Delta u) d\mathbf{x} = \int_{\partial \Omega} \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \right) dS$$

Proof: Exercise

Hints

(1) Take $F = \nabla u$. Then $\operatorname{div} F = \operatorname{div}(\nabla u) = \Delta u$, and

$$\int_{\Omega} \Delta u \, d\mathbf{x} = \int_{\Omega} \operatorname{div}(\nabla u) \, d\mathbf{x} = \int_{\partial \Omega} \nabla u \cdot \nu \, dS = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} \, dS.$$

(2) Use the product rule

$$\operatorname{div}(u\nabla v) = \nabla u \cdot \nabla v + u \,\Delta v.$$

Integrate over Ω and apply the divergence theorem:

$$\int_{\Omega} \operatorname{div}(u\nabla v) \, d\mathbf{x} = \int_{\partial\Omega} u\nabla v \cdot \nu \, dS = \int_{\partial\Omega} u \, \frac{\partial v}{\partial \nu} \, dS.$$

Hints

(3) Observe the product-rule identity

$$\operatorname{div}\left(u\nabla v - v\nabla u\right) = u\,\Delta v - v\,\Delta u,$$

since the mixed gradient terms cancel. Applying the divergence theorem gives

$$\int_{\Omega} \left(u \, \Delta v - v \, \Delta u \right) d\mathbf{x} = \int_{\partial \Omega} \left(u \nabla v - v \nabla u \right) \cdot \nu \, dS = \int_{\partial \Omega} \left(u \, \frac{\partial v}{\partial \nu} - v \, \frac{\partial u}{\partial \nu} \right) dS,$$

From the above theorem, if we take $\Omega = B(\mathbf{x}, r)$ you can observe that

$$\int_{B(\mathbf{x},r)} \Delta u d\mathbf{x} = \int_{\partial B(\mathbf{x},r)} \frac{\partial u}{\partial \nu} dS$$

$$\int_{\partial B(\mathbf{x},r)} \frac{\partial u}{\partial \nu} dS = \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B(\mathbf{x},r)} \frac{\partial u}{\partial \nu} dS = \frac{1}{n\alpha(n)r^{n-1}} \int_{B(\mathbf{x},r)} \Delta u d\mathbf{x}$$

$$= \frac{r}{n} \left(\frac{1}{\alpha(n)r^n} \int_{B(\mathbf{x},r)} \Delta u d\mathbf{x} \right) = \frac{r}{n} \int_{B(\mathbf{x},r)} \Delta u d\mathbf{x}$$

Let
$$r = |\mathbf{x}| = \sqrt{\sum_{i=1}^n x_i^2}, \mathbf{x} \neq 0$$
 and $u(x) = v(r)$. Then

$$\frac{\partial r}{\partial x_i} = \frac{1}{2\sqrt{\sum_{i=1}^n x_i^2}} 2x_i = \frac{x_i}{r} \implies u_{x_i} = \frac{\partial u}{\partial x_i} = \frac{\partial v}{\partial r} \frac{\partial r}{\partial x_i} = v'(r) \frac{x_i}{r}$$

$$\frac{\partial^2 r}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\frac{x_i}{r} \right) = \frac{r - x_i \frac{\partial r}{\partial x_i}}{r^2} = \frac{1}{r} - \frac{x_i^2}{r^3}$$

$$\implies u_{x_i x_i} = \frac{\partial^2 u}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\frac{\partial v}{\partial r} \frac{\partial r}{\partial x_i} \right) = \frac{\partial}{\partial x_i} \left(\frac{\partial v}{\partial r} \right) \frac{\partial r}{\partial x_i} + \frac{\partial v}{\partial r} \frac{\partial^2 r}{\partial x_i^2}$$

$$u_{x_i x_i} = \frac{\partial v'(r)}{\partial r} \left(\frac{x_i}{r} \right)^2 + v'(r) \frac{\partial^2 r}{\partial x_i^2} = v''(r) \left(\frac{x_i}{r} \right)^2 + v'(r) \left(\frac{1}{r} - \frac{x_i^2}{r^3} \right)$$

$$Du = (u_{x_1}, u_{x_2}, \dots u_{x_n}) = \frac{v'(r)}{r} (x_1, x_2, \dots, x_n) = \frac{v'(r)}{r} \mathbf{x}$$

$$\Delta u = \sum_{i=1}^n u_{x_i x_i} = v''(r) \sum_{i=1}^n \left(\frac{x_i}{r}\right)^2 + v'(r) \sum_{i=1}^n \frac{1}{r} - v'(r) \sum_{i=1}^n \frac{x_i^2}{r^3}$$

$$\Delta u = v''(r) + \frac{n-1}{r} v'(r)$$

Now suppose $n \geq 2, m \geq 2$ and $u \in C^m(\mathbb{R}) \times [0, \infty)$ solves the initial value problem

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = f & \text{on } \mathbb{R}^n \times \{t = 0\} \\ u_t = g & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$
(3)

The general idea of spherical means is as follows:

- 1. First understand the average of u over a sphere radius r
- 2. Obtain the Euler-Poisson-Darboux equation and solve it
- 3. For odd n, convert the wave equation to a one-dimensional wave equation
- 4. Apply d'Alembert's formula or its variants to obtain the solution.

Definition 2

Let $x \in \mathbb{R}^n$, t > 0, r > 0. Define

$$U(x; r, t) := \int_{\partial B(\mathbf{x}, r)} u(\mathbf{y}, t) dS(\mathbf{y})$$
(4)

the average of $u(\mathbf{x},t)$ over the sphere $\partial B(\mathbf{x},r)$.

Similarly

$$\begin{cases} F(x; r, t) := \int_{\partial B(\mathbf{x}, r)} f(\mathbf{y}, t) dS(\mathbf{y}) \\ G(x; r, t) := \int_{\partial B(\mathbf{x}, r)} g(\mathbf{y}, t) dS(\mathbf{y}) \end{cases}$$

(5)

(4) can also be written as

$$U(x; r, t) = \int_{\partial B(\mathbf{x}, r)} u(\mathbf{y}, t) dS(\mathbf{y}) = \int_{\partial B(\mathbf{0}, 1)} u(\mathbf{x} + r\mathbf{z}, t) dS(\mathbf{z})$$

Differentiating it w.r.t r, we obtain the following:

$$U_r(x; r, t) = \int_{\partial B(\mathbf{0}, 1)} Du(\mathbf{x} + r\mathbf{z}, t) \cdot \mathbf{z} dS(\mathbf{z})$$

$$= \int_{\partial B(\mathbf{x}, r)} Du(\mathbf{y}, t) \cdot \frac{\mathbf{y} - \mathbf{x}}{r} dS(\mathbf{y})$$

$$= \int_{\partial B(\mathbf{x}, r)} \frac{\partial u}{\partial \nu} dS(\mathbf{y}) = \frac{r}{n} \int_{B(\mathbf{x}, r)} \Delta u d\mathbf{y}$$

Since

$$U_r(x; r, t) = \frac{r}{n} \int_{B(\mathbf{x}, r)} \Delta u d\mathbf{y} \implies \lim_{r \to 0^+} U_r(x; r, t) = 0$$

Exercise 1: Simple

Prove the following:

$$U_{rr}(x; r, t) = \int_{\partial B(\mathbf{x}, r)} \Delta u dS + \left(\frac{1}{n} - 1\right) \int_{B(\mathbf{x}, r)} \Delta u d\mathbf{y}$$

$$\lim_{r \to 0^+} U_{rr}(x; r, t) = \frac{1}{n} \Delta u(x, t)$$

Theorem 4 (Euler-Poisson-Darboux Equation)

Fix $x\in\mathbb{R}^n$ and let u satisfy (3). Then $U\in C^m(\overline{\mathbb{R}}_+\times[0,\infty])$ and

$$\begin{cases} U_{tt} - U_{rr} - \frac{n-1}{r} U_r = 0 & \text{in } \mathbb{R}_+ \times (0, \infty) \\ U = F & \text{on } \mathbb{R}_+ \times \{t = 0\} \\ U_t = G & \text{on } \mathbb{R}_+ \times \{t = 0\} \end{cases}$$

$$\tag{6}$$

Here $U_{rr}+\frac{n-1}{r}U_r$ represents the radial part of the Laplacian Δ in polar coordinates.

Proof: We have already proved that

$$\lim_{r \to 0^+} U_r(x; r, t) = 0$$

Also, from the exercise, you can get that

$$\lim_{r \to 0^+} U_{rr}(x; r, t) = \frac{1}{n} \Delta u(x, t)$$

By computing through U_{rrr}, U_{rrrr} , etc., we can obtain that $U \in C^m(\overline{\mathbb{R}}_+ \times [0,\infty])$ Now,

$$U_r(x; r, t) = \frac{r}{n} \int_{B(\mathbf{x}, r)} \Delta u d\mathbf{y} = \frac{r}{n} \int_{B(\mathbf{x}, r)} u_{tt} d\mathbf{y}$$

Proof (continued):

$$U_r(x; r, t) = \frac{r}{n} \frac{1}{\alpha(n)r^n} \int_{B(\mathbf{x}, r)} u_{tt} d\mathbf{y} = \frac{1}{n\alpha(n)r^{n-1}} \int_{B(\mathbf{x}, r)} u_{tt} d\mathbf{y}$$

$$\implies r^{n-1} U_r = \frac{1}{n\alpha(n)} \int_{B(\mathbf{x}, r)} u_{tt} d\mathbf{y}$$

Now differentiating w.r.t r, we obtain

$$(r^{n-1}U_r)_r = \frac{1}{n\alpha(n)} \int_{\partial B(\mathbf{x},r)} u_{tt} dS$$

Proof (continued):

$$(n-1)r^{n-2}U_r + r^{n-1}U_{rr} = r^{n-1} \left(\frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B(\mathbf{x},r)} u_{tt} dS \right)$$

$$(n-1)r^{n-2}U_r + r^{n-1}U_{rr} = r^{n-1} \oint_{\partial B(\mathbf{x},r)} u_{tt} = r^{n-1}U_{tt}$$

Hence

$$U_{tt} - U_{rr} - \frac{n-1}{r}U_r = 0$$

Exercise 2: Some Identities

Let $\phi: \mathbb{R} \to \mathbb{R}$ and $\phi \in C^{k+1}(\mathbb{R})$. Then prove that for $k = 1, 2, \cdots$,

$$\left(\frac{d^2}{dr^2}\right)\left(\frac{1}{r}\frac{d}{dr}\right)^{k-1}\left(r^{2k-1}\phi(r)\right) = \left(\frac{1}{r}\frac{d}{dr}\right)^k\left(r^{2k}\frac{d\phi(r)}{dr}\right)$$

$$\left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left(r^{2k-1}\phi(r)\right) = \sum_{j=0}^{k-1} \beta_j^k r^{j+1} \frac{d^j \phi(r)}{dr^j}$$

where β_j^k are independent of ϕ and $\beta_0^k = \prod_{j=1}^n (2j-1)$

Now, let us transform the Euler-Poisson-Darboux equation into the usual one-dimensional wave equation. Let us find a solution for n=3. Let $u\in C^2(\mathbb{R}^3\times[0,\infty))$

$$\overline{U} := rU, \overline{F} := rF, \overline{G} := rG,$$

Let us prove that \overline{U} solves

$$\begin{cases} \overline{U}_{tt} - \overline{U}_{rr} = 0 \text{ in } \mathbb{R}_+ \times (0, \infty) \\ \overline{U} = \overline{F} \text{ on } \mathbb{R}_+ \times \{t = 0\} \\ \overline{U}_t = \overline{G} \text{ on } \mathbb{R}_+ \times \{t = 0\} \\ \overline{U} = 0 \text{ on } \{r = 0\} \times (0, \infty) \end{cases}$$

Claim: $\overline{U}_{tt} - \overline{U}_{rr} = 0$

$$\begin{split} \overline{U}_{tt} &= rU_{tt} \\ &= r[U_{rr} + \frac{2}{r}U_r] \\ &= rU_{rr} + 2U_r \\ &= (U + rU_r)_r \\ &= \overline{U}_{rr} \end{split}$$

Therefore, the solution is given by for $0 \le r \le t$

$$\overline{U}(x;r,t) = \frac{1}{2} [\overline{F}(r+t) - \overline{F}(t-r)] + \frac{1}{2} \int_{-r+t}^{r+t} \overline{G}(y) dy$$

Since

$$U(x; r, t) := \int_{\partial B(\mathbf{x}, r)} u(\mathbf{y}, t) dS(\mathbf{y})$$

we have $\lim_{r\to 0^+} U(x;r,t) = u(x,t)$

$$\implies u(x,t) = \frac{\overline{U}(x;r,t)}{r}$$

$$= \lim_{r \to 0^+} \left[\frac{1}{2r} [\overline{F}(r+t) - \overline{F}(t-r)] + \frac{1}{2r} \int_{-r+t}^{r+t} \overline{G}(y) dy \right]$$

$$= \overline{F}'(t) + \overline{G}(t)$$

$$u(x,t) = \frac{\partial}{\partial t} \left(t \int_{\partial B(\mathbf{x},t)} f dS \right) + t \int_{\partial B(\mathbf{x},t)} g dS$$

Now,

$$\oint_{\partial B(\mathbf{x},t)} f(y)dS(y) = \oint_{\partial B(\mathbf{0},1)} f(\mathbf{x} + t\mathbf{z})dS(\mathbf{z})$$

$$\implies \frac{\partial}{\partial t} \left(\oint_{\partial B(\mathbf{x},t)} f dS \right) = \oint_{\partial B(\mathbf{0},1)} Df(\mathbf{x} + t\mathbf{z}) \cdot \mathbf{z} dS(\mathbf{z}) = \oint_{\partial B(\mathbf{x},t)} Df(\mathbf{y}) \cdot \left(\frac{\mathbf{y} - \mathbf{x}}{t} \right) dS(\mathbf{y})$$

$$\frac{\partial}{\partial t} \left(t \int_{\partial B(\mathbf{x},t)} f dS \right) = \int_{\partial B(\mathbf{x},t)} f dS + t \frac{\partial}{\partial t} \left(\int_{\partial B(\mathbf{x},t)} f dS \right)$$

$$\implies \frac{\partial}{\partial t} \left(t \int_{\partial B(\mathbf{x},t)} f dS \right) = \int_{\partial B(\mathbf{x},t)} f dS + t \int_{\partial B(\mathbf{x},t)} Df(\mathbf{y}) \cdot \left(\frac{\mathbf{y} - \mathbf{x}}{t} \right) dS(\mathbf{y})$$

$$\implies \frac{\partial}{\partial t} \left(t \int_{\partial B(\mathbf{x},t)} f(y) dS(y) \right) = \int_{\partial B(\mathbf{x},t)} f dS + \int_{\partial B(\mathbf{x},t)} Df(\mathbf{y}) \cdot (\mathbf{y} - \mathbf{x}) dS(\mathbf{y})$$

$$u(x,t) = \int_{\partial B(\mathbf{x},t)} tg(\mathbf{y}) + f(\mathbf{y}) + Df(\mathbf{y}).(\mathbf{y} - \mathbf{x})dS(\mathbf{y}), (\mathbf{x} \in \mathbb{R}^3, t > 0)$$

This is Kirchhoff's formula for the solution of the initial-value problem

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = f & \text{on } \mathbb{R}^n \times \{t = 0\} \\ u_t = g & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$
(8)

Note for n=2, this transformation will not work to convert the Euler-Poisson-Darboux equation into a one-dimensional equation. However, we will try to use $\mathbf{x}=(x_1,x_2,0)\in\mathbb{R}^3$.

Now, let us transform the Euler-Poisson-Darboux equation into the usual one-dimensional wave equation. Let us find a solution for n=2k+1. Let $u\in C^{k+1}(\mathbb{R}^n\times [0,\infty))$ solves the initial-value problem. For $r>0, t\geq 0$ write

$$\overline{U}(r,t) := \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left(r^{2k-1}U(x;r,t)\right)$$

$$\overline{F}(r) := \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left(r^{2k-1}F(x;r)\right)$$

$$\overline{G}(r) := \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left(r^{2k-1}G(x;r)\right)$$

Then

$$\overline{U}(r,0) = \overline{F}(r), \overline{U}_t(r,0) = \overline{G}(r)$$

Let us prove that \overline{U} solves

$$\begin{cases} \overline{U}_{tt} - \overline{U}_{rr} = 0 \text{ in } \mathbb{R}_+ \times (0, \infty) \\ \overline{U} = \overline{F} \text{ on } \mathbb{R}_+ \times \{t = 0\} \\ \overline{U}_t = \overline{G} \text{ on } \mathbb{R}_+ \times \{t = 0\} \\ \overline{U} = 0 \text{ on } \{r = 0\} \times (0, \infty) \end{cases}$$

$$\overline{U}_{rr} = \left(\frac{d^2}{dr^2}\right) \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left(r^{2k-1}U\right)
= \left(\frac{1}{r}\frac{d}{dr}\right)^k \left(r^{2k}U_r\right) = \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left(r^{2k-1}U_{rr} + 2kr^{2k-2}U_r\right)$$

$$\overline{U}_{rr} = \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left[r^{2k-1}\left(U_{rr} + \frac{n-1}{r}U_r\right)\right] = \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} (r^{2k-1}U_{tt}) = \overline{U}_{tt}$$

From the Euler-Poisson-Darboux equation, it follows that

$$\overline{U} = \overline{F}, \overline{U}_t = \overline{G}$$

Also,

$$\left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left(r^{2k-1}U(r)\right) = \sum_{k=0}^{j-1} \beta_j^k r^{j+1} \frac{\partial^j U(r)}{\partial r^j} = 0$$

when r = 0

$$\implies \overline{U}(r,0) = \overline{F}(r), \overline{U}_t(r,0) = \overline{G}(r)$$

Therefore, the solution is given by

$$\overline{U}_{r,t} = \frac{1}{2} [\overline{F}(r+t) - \overline{F}(t-r)] + \frac{1}{2} \int_{-\infty}^{\infty} \overline{G}(y) dy$$

Recall, $u(x,t) = \lim_{r \to 0^+} U(x;r,t)$. Also,

$$\overline{U}(r,t) = \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left(r^{2k-1}U(x;r,t)\right)$$
$$= \sum_{j=0}^{k-1} \beta_j^k r^{j+1} \frac{\partial^j U(r)}{\partial r^j}$$

$$u(x,t) = \lim_{r \to 0^+} U(x;r,t) = \lim_{r \to 0^+} \frac{U(r,t)}{\beta_0^k r}$$

$$= \lim_{r \to 0^+} \frac{1}{\beta_0^k} \left[\frac{\overline{F}(r+t) - \overline{F}(t-r)}{2r} + \frac{1}{2r} \int_{-r+t}^{r+t} \overline{G}(y) dy \right]$$

$$= \frac{1}{\beta_0^k} [\overline{F}'(t) + \overline{G}(t)]$$

(10)

$$u(x,t) = \frac{1}{\gamma_n} \left[\left(\frac{\partial}{\partial t} \right) \left(\frac{\partial}{\partial t} \right)^{\frac{n-3}{2}} \left(t^{n-2} \oint_{\partial B(\mathbf{x},t)} f dS \right) + \left(\frac{\partial}{\partial t} \right)^{\frac{n-3}{2}} \left(t^{n-2} \oint_{\partial B(\mathbf{x},t)} g dS \right) \right]$$

here n is odd, n=2k+1 and $\gamma_n=\prod_{i=1}(2k-1)$

Theorem 5

Assume n is an odd integer, $n\geq 3, m=\frac{n+1}{2}, f\in C^{m+1}(\mathbb{R}^n), g\in C^m(\mathbb{R}^n)$ and define u by above. Then

- 1. $u \in C^2(\mathbb{R}^n \times [0,\infty))$
- 2. $u_{tt} \Delta u = 0$ in $\mathbb{R}^n \times [0, \infty)$
- 3. $\lim_{\substack{(\mathbf{x},t)\to(\mathbf{x}^0,0)\\\mathbf{x}\in\mathbb{R}^n,t>0}}u(\mathbf{x},t)=f(\mathbf{x}^0)$
- 4. $\lim_{\substack{(\mathbf{x},t)\to(\mathbf{x}^0,0)\\\mathbf{x}\in\mathbb{R}^n,t>0}} u_t(\mathbf{x},t) = g(\mathbf{x}^0)$

In (3) and (4) for each point $\mathbf{x}^0 \in \mathbb{R}^n$

Proof: Exercise.

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

