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Preliminaries

® B(x,r) =the closed ball with center x and radius » > 0

7.[.n/2

NEESY
® na(n) = Surface area of unit Sphere B(0,1) in R”

° ][ fdy = ! / fdy = average of f over the ball B(x, )
a(n)rm
B(x,r) B(x,r)
° ][ fds = % / fdS =avg of f over the sphere 0B(x, )
na(n)rr—1

dB(x,r) OB(x,r)

® «(n) = Volume of unit ball B(0,1) in R™ =




Preliminaries

Definition 1

Let Q ¢ R™ be open and bounded. We say 992 is C* if for each x° € 99 there
exist > 0 and a C* function v : R*! — R such that upon relabeling and
reorienting the coordinate axes if necessary we have

INNBE’r)={zeBE"r):z, > y(x1, 22, ,Zn_1)}
Theorem 1 (Gauss-Green Theorem)

Suppose u € C1(Q2). Then
/uxidx:/uyidS (M

Q o0

wherei=1,2,--- ,n.
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Preliminaries

Theorem 2 (Integration by Parts)
Suppose u,v € C1(Q). Then

/umivdX: —/uvxidx—i—/uvl/ids

Q Q o0

wherei=1,2,--- ,n.
By the divergence theorem,

/didex:/ F-vdS.
Q o0

)




Preliminaries

Define the vector field F : Q — R by
F(x)=(0,...,0, u(z)v(z) ,0,...,0),
—
i-th component
Since u,v € C1(2), we have F € C*(Q; R") and
0
P
div oz,
Applying the divergence theorem (Gauss—0Ostrogradsky), the left-hand side
becomes

(uv) = Ugp, v+ UV,

/ (Ug; U + uvy,) dx,
Q

and the right-hand side reduces to

/ F-vdS = FividS = wv vt dS.
o0 o0 o0



Preliminaries

/umivdx—i—/uvmidX:/ uv v ds,
Q Q o0

and rearranging gives the desired identity

/umivdx:—/uvxidij/ uv v dsS.
Q Q a0

/(Vu)vdx:—/qudx—i—/ wvvdsS.
Q Q o0

Hence

In vector form,




Preliminaries

Theorem 3 (Green's Formulas)
Suppose u, v € 02(7) Then

/Audx = —dS

2. /Du.Dvdx:—/uAvdx+/— udS
Q

Q

Ov ou
3. /(uAv — vAu)dx = / (uay 81/) ds
Q o0

Proof: Exercise




Hints

(1) Take F = Vu. Then div F' = div(Vu) = Aw, and

/Audx—/div(Vu)dx—/ Vu-vdS = @dS.
Q Q o0 o0 Ov

(2) Use the product rule
div(uVv) = Vu - Vo 4+ u Av.

Integrate over 2 and apply the divergence theorem:

/ div(uVv) dx = / uVv-vdS = u ov ds.
Q oQ o oV




Hints

(3) Observe the product-rule identity
div (qu — UVU) =uAv —vAu,

since the mixed gradient terms cancel. Applying the divergence theorem
gives

ov ou
Av —vAu)dx = Vv —ovVu) -vdS = — —v—)dS,
/Q(u v —v u) x /89 (u v —v u) v /m(u 5 v 81/)




Preliminaries

From the above theorem, if we take 2 = B(x, ) you can observe that

/ Audx = %dS
v
B(x,r) OB(x,r)
ou 1 ou 1
— = - — = - A
Guds na(n)rn—1 / 81/d5 na(n)rn—1 / udx
OB(x,r) OB(x,r) B(x,r)
r 1
= — / Audx | = — ][ Audx
n | a(n)r®
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Letr = |x| = />, 22, x # 0and u(z) = v(r). Then
i=1"1

du  Ov dr ’(r)ﬂ

Or ! 2 i - u v
i g feer o m O '
A W
or? Oz \r r2 ro s

Pu 0 Quary 9 (v 8r+@872r
ordz; ) Ox; \Or ) dx;  Or Ox?

= Uy.,p. = =
T 0 Oy

-0 (2 2= (2) v (2 )




Preliminaries

v (r v (r
Du_(uxluuxgy uxn): (Lfl,ﬂfg, 7xn): ,E' )X
Au — 1" (J) / Ly €
u Zuxm v (r) . +'(r) Z -~ v (r) .
=1 =1 =1 =1
" n—1 /
Au = v"(r) v'(r)




Spherical Means

Now suppose n > 2, m > 2and u € C"™(R) x [0, c0) solves the initial value
problem
ugg — Au =0 in R™ x (0,00)
u=f on R" x {t =0}
up =g on R™ x {t =0}
The general idea of spherical means is as follows:
1. First understand the average of u over a sphere radius r
2. Obtain the Euler-Poisson-Darboux equation and solve it

3. For odd n, convert the wave equation to a one-dimensional wave
equation
4. Apply d’Alembert’s formula or its variants to obtain the solution.




Spherical Means

Definition 2
Letz € R™, ¢t > 0,7 > 0. Define

U(z;rt) = ][ u(y, t)dS(y)
0B(x,r)

the average of u(x, t) over the sphere 9B(x, ).
Similarly
F(x;rt) ][ fly, )dS(y

OB(x,r)

G(x;r,t) = f 9(y,t)dS(y)

OB(x,r)

(4)




Spherical Means

(4) can also be written as

U(z;r,t) = ][ u(y,t)dS(y) = ][ u(x +rz,t)dS(z)

OB(x,r) 0B(0,1)

Differentiating it w.r.t », we obtain the following:

Up(z;7,t) = ][ Du(x + rz,t).zdS(z)

(¥)

8B(x,r) B(x r




Spherical Means

NNNNN

Since
U (571, t) :% ][ Audy = lim U,(x;r,t) =0

r—0+

B(x,r)

Exercise 1: Simple

Prove the following:

Upp(z;1,t) = ][ AudS + (% — 1) ][ Audy

OB(x,r) B(x,r)

lim Uy (x;7r,t) = 1Au(ac,t)
n

r—0t




Euler-Poisson-Darboux
Equation

18



Euler-Poisson-Darboux Equation

Theorem 4 (Euler-Poisson-Darboux Equation)
Fix z € R™ and let u satisfy (3). Then U € C™ (R x [0, o0]) and

Uy — Upr — 22U, = 0 in Ry x (0, 00)
U=F on R, x {t=0} (6)
Us=G on Ry x {t =0}

Here U,, + ”T‘lUT represents the radial part of the Laplacian A in polar coordi-
nates.




Euler-Poisson-Darboux Equation

Proof: We have already proved that

lim U,(z;r,t) =0

r—0+t

Also, from the exercise, you can get that

lim Upp(x;r,t) = —Au(az,t)

r—0t

By computing through U,...., U,...., €tc., we can obtain that
U e C™(Ry x [0,00]) Now,

U,(x;r,t) ][ Audy—f ][ U dy

(x,7) B(x,r)




Euler-Poisson-Darboux Equation

Proof (continued):

r 1 1
Ur(z;rt) = ————— dy = ——— d
(x57,1) Y / U@y na(n)r—T / U@y

na(n

Now differentiating w.r.t », we obtain

1
(T‘n_lU'r)r = ) / Uttds

na(n




Euler-Poisson-Darboux Equation

Proof (continued):

1
(n—1)r" 20, + " U, = "1 — / ugrdS

Hence




Spherical Means

Exercise 2: Some Identities

Let: R — Rand ¢ € C*1(R). Then prove that fork = 1,2, - - -,

(i) () (e = (1) (43

1d\F! d
(i) (o) = ZW“ o

k
where ﬁj”? are independent of ¢ and 3§ = H(2j -1)
j=1




Kirchhoff's Formula

24



Wave Equation Solution for odd n

Now, let us transform the Euler-Poisson-Darboux equation into the usual
one-dimensional wave equation. Let us find a solution for n = 3. Let
u € C?*(R? x [0, 00))

U:=rUF :=rF G :=rG,

Let us prove that U solves

Uy — U, =0 in Ry x (0,00)
U=F on R, x {t=0}

Uy =G on Ry x {t =0}
U=0on {r=0} x(0,00)




Kirchhoff's Formula

Claim: Uy — U, =0
Utt =1rUy
2
=r[Uy + =U,]
T
=rUq + 2U,
= (U +rU),
— UTT‘
Therefore, the solution is given by for0 <r <t

r+t

[F(r+t)—F(t—r)]+ % / G(y)dy
—r4t

Uz;r,t) =

N |




Kirchhoff's Formula

Since

Ulx;r,t) := ][ u(y, t)dS(y)

0B(x,r)
we have lim U(x;r,t) = u(x,t)
r—0t
Flart
= u(x,t) = Ulz; 1)
,
lim | [F(r+ ) — F(t — )] +
= lim |—[F(r — —r —
r—0+ | 2r




Kirchhoff's Formula

u(:v,t):% t ][ fdS | +t ][ gdS
OB(x,1) OB

(x (x:t)

Now,

f F(y)dS(y) = f f(x + 12)dS (z)

OB(x,t) 9B(0,1)

:;(6][ fds | = ][ Df(x+1z).zdS(z) = ][ Df(y). (y;X>dS(Y)

B(x.t) 8B(0,1) 8B(x,t)




Kirchhoff's Formula

g(][ fds) ~f sl (837[ fds)

(x,t) OB(x,t) (x,t)
0
:>8tt][de ][de—i—t][Df (
OB(x,t) OB(x,t) OB(x,t)

(][fds) F s f o

OB(x,t) OB(x,t) OB(x,t)




Kirchhoff's Formula

ua, 1) = f tg(y) + £(y) + DF(y).(y — x)dS(y), (x € B, ¢ > 0)
OB(x,t)

This is Kirchhoff's formula for the solution of the initial-value problem

Utt —Au=0 in R"* x (0,00)
uw=f on R" x {t =0} (8)
up =g on R™ x {t =0}

Note for n = 2, this transformation will not work to convert the

Euler-Poisson-Darboux equation into a one-dimensional equation. However,
we will try to use x = (1, 72,0) € R3.



Wave Equation Solution for odd n

Now, let us transform the Euler-Poisson-Darboux equation into the usual
one-dimensional wave equation. Let us find a solution for n = 2k + 1. Let
u € C*HL(R™ x [0, 00)) solves the initial-value problem. For » > 0,t > 0 write

T(r,t) = <1d>k_1 (U (air)

rdr

F = <1j>“ (P F(aim)

Then




Wave Equation Solution for odd n

Let us prove that U solves

U, =0 in R+X(0,00)
F on R, x {t=0}
t:é on R+X{t20}

+
I | ~

(i s{ I ]

Il
(an)}
o
=)
—
=
Il
o
—
X
—
uO
2




Wave Equation Solution for odd n

— 1 d 2k—1 n— 1 1 d 2k—1 77
Urr - <Td’r‘) |: ( rr r 7">:| - <’r‘d’l“) ( Utt) - Utt

From the Euler-Poisson-Darboux equation, it follows that

U=F,U =G
Also, ‘
1d k=t 2k—1 — k ]—i—la U( )
(i) (P wm) =X ptn 278 o

k=0

whenr =0 B
= U(r,0) = F(r),U(r,0) = G(r)




Wave Equation Solution for odd n

Therefore, the solution is given by

r+1

[F(r+t)—F(t—7r)]+ % / G(y)dy
—r+t

U’r,t =

DO | =

Recall, u(x,t) = lim U(x;r,t). Also,

r—0t




Wave Equation Solution for odd n

u(z,t) = 11161+ U(z;r,t) = ho+ Uﬁ( r)
" T+t
—hmi F(r—i—t) F(t—r) /G
r—0+t ,30 —r+t
1 — —
[E7 () + G(1)]

G




Wave Equation Solution for odd n

o= |G ()7 (0 o)

3

oNz [, ][
+ | 5 t" dS
<8t> ( 0B0ct) > ]

:
here nis odd, n = 2k + 1and v, = [J(2k — 1)
j=1




Wave Equation Solution for odd n

Theorem 5
Assume n is an odd integer, n > 3,m = L, f € C™HY(R"), g € C™(R") and
define u by above. Then
1. u € C?(R™ x [0,00))
2. uy —Au =0 in R" x [0,00)
: 0
3. (x’t)lggco,o)u(x, t) = f(x")
x€ER™ t>0
4 m,  ulxt) = 9(x%)
xER™ >0
In (3) and (4) for each point x° € R”
Proof: Exercise.
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