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Preliminaries

• B(x, r) = the closed ball with center x and radius r > 0

• α(n) = Volume of unit ball B(0, 1) in Rn =
πn/2

Γ(n2 + 1)

• nα(n) = Surface area of unit Sphere B(0, 1) in Rn

•
 

B(x,r)

fdy =
1

α(n)rn

ˆ

B(x,r)

fdy = average of f over the ball B(x, r)

•
 

∂B(x,r)

fdS =
1

nα(n)rn−1

ˆ

∂B(x,r)

fdS = avg of f over the sphere ∂B(x, r)
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Recap

∆u = v′′(r) +
n− 1

r
v′(r)

Now suppose n ≥ 2,m ≥ 2 and u ∈ Cm(R)× [0,∞) solves the initial value problem
utt −∆u = 0 in Rn × (0,∞)

u = f on Rn × {t = 0}
ut = g on Rn × {t = 0}

(1)

Let x ∈ Rn, t > 0, r > 0. Define

U(x; r, t) :=

 

∂B(x,r)

u(y, t)dS(y) (2)

the average of u(x, t) over the sphere ∂B(x, r).
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Recap

Ur(x; r, t) =
r

n

 

B(x,r)

∆udy =⇒ lim
r→0+

Ur(x; r, t) = 0

Urr(x; r, t) =

 

∂B(x,r)

∆udS +

(
1

n
− 1

)  

B(x,r)

∆udy

lim
r→0+

Urr(x; r, t) =
1

n
∆u(x, t)

Fix x ∈ Rn and let u satisfy (1). Then U ∈ Cm(R+ × [0,∞]) and
Utt − Urr − n−1

r
Ur = 0 in R+ × (0,∞)

U = F on R+ × {t = 0}
Ut = G on R+ × {t = 0}

(3)
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Recap
Let ϕ : R → R and ϕ ∈ Ck+1(R). Then prove that for k = 1, 2, · · · ,(

d2

dr2

)(
1

r

d

dr

)k−1 (
r2k−1ϕ(r)

)
=

(
1

r

d

dr

)k (
r2k

dϕ(r)

dr

)
(
1

r

d

dr

)k−1 (
r2k−1ϕ(r)

)
=

k−1∑
j=0

βk
j r

j+1d
jϕ(r)

drj

where βk
j are independent of ϕ and βk

0 =
k∏

j=1

(2j − 1)
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Kirchhoff’s Formula
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Wave Equation Solution for odd n
Now, let us transform the Euler-Poisson-Darboux equation into the usual
one-dimensional wave equation. Let us find a solution for n = 3. Let
u ∈ C2(R3 × [0,∞)). Define

U(x; r, t) := rU, F (r) := rF,G(r) := rG,

Let us prove that U solves
U tt − U rr = 0 in R+ × (0,∞)

U = F on R+ × {t = 0}
U t = G on R+ × {t = 0}
U = 0 on {r = 0} × (0,∞)

(4)
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Kirchhoff’s Formula
Claim: U tt − U rr = 0

U tt = rUtt

= r[Urr +
2

r
Ur]

= rUrr + 2Ur

= (U + rUr)r

= U rr

Therefore, the solution is given by for 0 ≤ r ≤ t

U(x; r, t) =
1

2
[F (r + t)− F (t− r)] +

1

2

r+tˆ

−r+t

G(y)dy
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Kirchhoff’s Formula
Since

U(x; r, t) :=

 

∂B(x,r)

u(y, t)dS(y)

we have lim
r→0+

U(x; r, t) = u(x, t)

=⇒ u(x, t) =
U(x; r, t)

r

= lim
r→0+

 1

2r
[F (r + t)− F (t− r)] +

1

2r

r+tˆ

−r+t

G(y)dy


= F

′
(t) +G(t)
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Kirchhoff’s Formula

u(x, t) =
∂

∂t

t

 

∂B(x,t)

fdS

+ t

 

∂B(x,t)

gdS

Now,  

∂B(x,t)

f(y)dS(y) =

 

∂B(0,1)

f(x+ tz)dS(z)

=⇒ ∂

∂t

  

∂B(x,t)

fdS

 =

 

∂B(0,1)

Df(x+tz).zdS(z) =

 

∂B(x,t)

Df(y).

(
y − x

t

)
dS(y)
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Kirchhoff’s Formula

∂

∂t

t

 

∂B(x,t)

fdS

 =

 

∂B(x,t)

fdS + t
∂

∂t

  

∂B(x,t)

fdS



=⇒ ∂

∂t

t

 

∂B(x,t)

fdS

 =

 

∂B(x,t)

fdS + t

 

∂B(x,t)

Df(y).

(
y − x

t

)
dS(y)

=⇒ ∂

∂t

t

 

∂B(x,t)

f(y)dS(y)

 =

 

∂B(x,t)

fdS +

 

∂B(x,t)

Df(y). (y − x) dS(y)
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Kirchhoff’s Formula

u(x, t) =

 

∂B(x,t)

tg(y) + f(y) +Df(y).(y − x)dS(y), (x ∈ R3, t > 0)

This is Kirchhoff’s formula for the solution of the initial-value problem
utt −∆u = 0 in Rn × (0,∞)

u = f on Rn × {t = 0}
ut = g on Rn × {t = 0}

(5)

Note for n = 2, this transformation will not work to convert the
Euler-Poisson-Darboux equation into a one-dimensional equation. However,
we will try to use x = (x1, x2, 0) ∈ R3.
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Wave Equation Solution for odd n
Now, let us transform the Euler-Poisson-Darboux equation into the usual
one-dimensional wave equation. Let us find a solution for n = 2k + 1. Let
u ∈ Ck+1(Rn × [0,∞)) solves the initial-value problem. For r > 0, t ≥ 0 write

U(r, t) :=

(
1

r

d

dr

)k−1 (
r2k−1U(x; r, t)

)

F (r) :=

(
1

r

d

dr

)k−1 (
r2k−1F (x; r)

)
G(r) :=

(
1

r

d

dr

)k−1 (
r2k−1G(x; r)

)
Then

U(r, 0) = F (r), U t(r, 0) = G(r)
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Wave Equation Solution for odd n
Let us prove that U solves

U tt − U rr = 0 in R+ × (0,∞)

U = F on R+ × {t = 0}
U t = G on R+ × {t = 0}
U = 0 on {r = 0} × (0,∞)

(6)

U rr =

(
d2

dr2

)(
1

r

d

dr

)k−1 (
r2k−1U

)
=

(
1

r

d

dr

)k (
r2kUr

)
=

(
1

r

d

dr

)k−1 (
r2k−1Urr + 2kr2k−2Ur

)
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Wave Equation Solution for odd n

U rr =

(
1

r

d

dr

)k−1 [
r2k−1

(
Urr +

n− 1

r
Ur

)]
=

(
1

r

d

dr

)k−1

(r2k−1Utt) = U tt

From the Euler-Poisson-Darboux equation, it follows that

U = F ,U t = G

Also, (
1

r

d

dr

)k−1 (
r2k−1U(r)

)
=

j−1∑
k=0

βk
j r

j+1∂
jU(r)

∂rj
= 0

when r = 0
=⇒ U(r, 0) = F (r), U t(r, 0) = G(r)
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Wave Equation Solution for odd n
Therefore, the solution is given by

U(r, t) =
1

2
[F (r + t)− F (t− r)] +

1

2

r+tˆ

−r+t

G(y)dy

Recall, u(x, t) = lim
r→0+

U(x; r, t). Also,

U(r, t) =

(
1

r

d

dr

)k−1 (
r2k−1U(x; r, t)

)
=

k−1∑
j=0

βk
j r

j+1∂
jU(r)

∂rj
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Wave Equation Solution for odd n

u(x, t) = lim
r→0+

U(x; r, t) = lim
r→0+

U(r, t)

βk
0r

= lim
r→0+

1

βk
0

F (r + t)− F (t− r)

2r
+

1

2r

r+tˆ

−r+t

G(y)dy


=

1

βk
0

[F
′
(t) +G(t)]
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Wave Equation Solution for odd n

u(x, t) =
1

γn

[(
∂

∂t

)(
∂

∂t

)n−3
2

(
tn−2

 
∂B(x,t)

fdS

)
(7)

+

(
∂

∂t

)n−3
2

(
tn−2

 
∂B(x,t)

gdS

)]

here n is odd, n = 2k + 1 and γn =

k∏
j=1

(2k − 1)
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Wave Equation Solution for odd n

Theorem 1
Assume n is an odd integer, n ≥ 3,m = n+1

2 , f ∈ Cm+1(Rn), g ∈ Cm(Rn) and
define u by above. Then
1. u ∈ C2(Rn × [0,∞))

2. utt −∆u = 0 in Rn × [0,∞)

3. lim
(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = f(x0)

4. lim
(x,t)→(x0,0)
x∈Rn,t>0

ut(x, t) = g(x0)

In (3) and (4) for each point x0 ∈ Rn

Proof: Exercise.
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Poisson’s Formula
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Homogeneous Problem
Homogeneous wave equation

utt −∆u = 0 in Rn × (0,∞)

u = f on Rn × {t = 0}
ut = g on Rn × {t = 0}

(8)

1. n = 1: d’Alembert’s Formula from Transport Equation basics
2. n = 3: Spherical Means =⇒ Euler-Poisson-Darboux Equation =⇒

Kirchhoff’s formula
3. n = 2k + 1: Extend this idea using the identity provided in the exercise
4. n = 2 and n = 2k: Poisson’s formula
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Poisson’s Formula
Assume that u ∈ C2(R2 × [0,∞)) solves (8) for n = 2. Let

x = (x1, x2) and x = (x1, x2, 0)

u(x, t) := u(x, t), f(x, t) := f(x, t), g(x, t) := g(x, t)

Then 
utt −∆u = 0 in R3 × (0,∞)

u = f on R3 × {t = 0}
ut = g on R3 × {t = 0}

(9)

u(x, t) = u(x, t) =
∂

∂t

t

 

∂B(x,t)

fdS

+ t

 

∂B(x,t)

gdS
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Poisson’s Formula
Here ∂B(x, t) and B(x, t) denote respectively the ball and sphere in R3 with
center x, radius t > 0. dS denotes two-dimensional surface measure on
B(x, t). Now,

t

 

∂B(x,t)

fdS =
1

4πt

ˆ

∂B(x,t)

fdS =
2

4πt

ˆ

B(x,t)

f(y)
√
1 + |Dγ(y)|2dy

Here, γ(y) =
√

t2 − |y − x|2 for y ∈ B(x, t). The factor 2 appears since
∂B(x, t) has two hemispheres. Also,

Dγ(y) = −|y − x|
γ(y)

=⇒
√
1 +Dγ(y)2 =

t

γ(y)
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Poisson’s Formula
Therefore,

t

 

∂B(x,t)

fdS =
1

2π

ˆ

B(x,t)

f(y)

γ(y)
dy =

t2

2

 

B(x,t)

f(y)

γ(y)
dy

Similarly,

t

 

∂B(x,t)

gdS =
t2

2

 

B(x,t)

g(y)

γ(y)
dy

If we take y = x+ tz, then γ(y) = t
√
1− |z|2. Hence,

t

 

∂B(x,t)

fdS =
t2

2

 

B(x,t)

f(y)

γ(y)
dy =

t

2

 

B(0,1)

f(x+ tz)√
1− |z|2

dz

24



Poisson’s Formula

∂

∂t

t

 

∂B(x,t)

fdS

 =
∂

∂t

 t

2

 

B(0,1)

f(x+ tz)√
1− |z|2

dz


=

1

2

 

B(0,1)

f(x+ tz)√
1− |z|2

dz+
t

2

 

B(0,1)

Df(x+ tz).z√
1− |z|2

dz

=
t

2

 

B(x,t)

f(y)

γ(y)
dy +

t

2

 

B(x,t)

Df(y).(y − x)

γ(y)
dy
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Poisson’s Formula

u(x, t) =
t

2

 

B(x,t)

f(y) + t2g(y) +Df(y).(y − x)

γ(y)
dy (10)

This is Poisson formula for the solution of the initial value problems (9) in two
dimensions. This technique of obtaining the solution of problem in three
dimensions and dropping to two dimension is called method of descent.
Note that for odd n, the data f and g at a given point x ∈ Rn affect the
solution u only on the boundary {(y, t)|t > 0, |x− y| = t} of the cone
C = {(y, t)|t > 0, |x− y| < t}. However, for even n, the data f and g within all
of C.
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Huygen’s Principle
For a disturbance originating at x propagates along a sharp wavefront in odd
dimensions, but in even dimensions continues to have effects even after the
leading edge of the wavefront passes. This is called Huygen’s principle.
Note that for even n, you need the information of f and g in the entire ball,
whereas for odd n, you require the information only on the sphere.
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Wave Equation Solution for even n

Suppose u ∈ Cm is a solution of (8) and m = n+2
2 . We use the same trick of

method of descent. Let

x = (x1, x2, · · · , xn+1) and x = (x1, x2, · · · , xn, 0)

u(x, t) := u(x, t), f(x, t) := f(x, t), g(x, t) := g(x, t)

Then we obtain

u(x, t) =
1

γn+1

[(
∂

∂t

)(
1

t

∂

∂t

)n−2
2

(
tn−1

 
∂B(x,t)

fdS

)
(11)

+

(
1

t

∂

∂t

)n−2
2

(
tn−1

 
∂B(x,t)

gdS

)]
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Wave Equation Solution for even n

Doing the same way as we did in Poisson’s formula, we obtain

u(x, t) =
1

γn

( ∂

∂t

)(
1

t

∂

∂t

)n−2
2

tn
 

B(x,t)

f(y)

γ(y)

 (12)

+

(
1

t

∂

∂t

)n−2
2

tn
 

B(x,t)

g(y)

γ(y)




Here n = 2k is even and γn =

k∏
j=1

(2j)
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Wave Equation Solution for even n

Theorem 2
Assume n is an even integer, n ≥ 2,m = n+2

2 , f ∈ Cm+1(Rn), g ∈ Cm(Rn) and
define u by above. Then
1. u ∈ C2(Rn × [0,∞))

2. utt −∆u = 0 in Rn × [0,∞)

3. lim
(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = f(x0)

4. lim
(x,t)→(x0,0)
x∈Rn,t>0

ut(x, t) = g(x0)

In (3) and (4) for each point x0 ∈ Rn

Proof: Exercise.
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Inhomogeneous
Problem
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Inhomogeneous Problem
Now let us consider the following inhomogeneous problem

utt −∆u = h in Rn × (0,∞)

u = 0 on Rn × {t = 0}
ut = 0 on Rn × {t = 0}

(13)

How do we solve this?
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Transport Equation in Rn × (0,∞)

Consider the following inhomogeneous problem{
ut + b.Du = f,x ∈ Rn, t > 0

u(x, 0) = g(x), x ∈ Rn
(14)

Using the same z(s), we obtain

u(x, t) = g(x− bt) +

ˆ t

0
f(x+ (s− t)b, s)ds, x ∈ Rn, t ≥ 0

solves the IVP (14).

33



d’Alembert’s Formula n = 1

Consider the following one dimensional wave equation
utt − c2uxx = 0 in R× (0,∞)

u = f on R× (t = 0)

ut = g on R× (t = 0)

(15)

u(x, t) = f(x+ ct) +

tˆ

0

a(x− 2cs+ ct))ds, x ∈ R, t ≥ 0
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Duhamel’s principle
Let us see more details of Duhamel’s principle obtained while solving Heat
equation from Fundamental solution. For the moment, let us assume that we
define a new function. Let u = u(x, t; s) be the solution

utt(, ; s)−∆u(.; s) = 0 in Rn × (s,∞)

u(, ; s) = 0 on Rn × {t = s}
ut(.; s) = g(., s) on Rn × {t = s}

(16)

Now, set

u(x, t) :=

tˆ

0

u(x, t; s)ds (x ∈ Rn, t ≥ 0) (17)

Then Duhamel’s principle guarantees that u(x, t) is a solution of (13)
35



Solution of inhomogeneous wave equation

Theorem 3
Assume n ≥ 2,m = ⌊n2 ⌋, h ∈ Cm+1(Rn × [0,∞)) and define u by (17). Then
1. u ∈ C2(Rn × [0,∞))

2. utt −∆u = h in Rn × [0,∞)

3. lim
(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = 0

4. lim
(x,t)→(x0,0)
x∈Rn,t>0

ut(x, t) = 0

In (3) and (4) for each point x0 ∈ Rn

36



Solution of inhomogeneous wave equation
Proof: If n is odd, then m+ 1 = n+1

2 and as per the theorem from Kirchhoff’s
formula lecture, we have u(., .; s) ∈ C2(Rn × [0,∞)) for each s ≥ 0. Therefore,
u ∈ C2(Rn × [0,∞)). If n is even, m+ 1 = n+2

2 .Hence u ∈ C2(Rn × [0,∞)) by
theorem 2. Now,

ut(x, t) = u(x, t; t) +

tˆ

0

ut(x, t; s)ds =

tˆ

0

ut(x, t; s)ds

utt(x, t) = ut(x, t; t) +

tˆ

0

utt(x, t; s)ds = h(x, t) +

tˆ

0

utt(x, t; s)ds
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Solution of inhomogeneous wave equation
Proof (continued): Also,

∆u(x, t) =

tˆ

0

∆u(x, t; s)ds =

tˆ

0

utt(x, t; s)ds = utt − h(x, t)

=⇒ utt(x, t)−∆u(x, t) = h(x, t), (x ∈ Rn, t > 0)

Also, u(x, 0) = ut(x, 0) = 0. Hence the theorem.
The solution of the inhomogeneous problem is the sum of d’Alembert’s
formula or Kirchhoff’s formula or Poisson’s formula and (17).
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Solution of inhomogeneous wave equation


utt −∆u = h in R× (0,∞)

u = 0 on R× {t = 0}
ut = 0 on R× {t = 0}

(18)

Then by d’Alembert’s formula

u(x, t; s) =
1

2

x+t+sˆ

x−t+s

h(y, s)dy, u(x, t) =
1

2

tˆ

0

x+t+sˆ

x−t+s

h(y, s)dyds

u(x, t) =
1

2

tˆ

0

x+sˆ

x−s

h(y, t− s)dyds
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Solution of inhomogeneous wave equation


utt −∆u = h in R3 × (0,∞)

u = 0 on R3 × {t = 0}
ut = 0 on R3 × {t = 0}

(19)

By Kirchhoff’s formula

u(x, t; s) = (t− s)

 

∂B(x,t−s)

h(y, s)dS

u(x, t) =

tˆ

0

(t− s)

  

∂B(x,t−s)

h(y, s)dS

 ds
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Solution of inhomogeneous wave equation

=⇒ u(x, t) =
1

4π

tˆ

0

ˆ

∂B(x,t−s)

h(y, s)

t− s
dSds

=⇒ u(x, t) =
1

4π

tˆ

0

ˆ

∂B(x,r)

h(y, t− r)

r
dSdr

=⇒ u(x, t) =
1

4π

ˆ

∂B(x,t)

h(y, t− |y − x|)
|y − x|

dy
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Exercises

Exercise 1: Compact Support

Let u solve 
utt −∆u = 0 in R3 × (0,∞)

u = f on R3 × {t = 0}
ut = g on R3 × {t = 0}

where g, h are smooth and have compact support. Show there exists
constants C such that

|u(x, t)| ≤ C

t
(x ∈ R3, t > 0)
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Energy Methods
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Solution of inhomogeneous wave equation
Let Ω ⊂ Rn be a bounded, open set with a smooth boundary ∂Ω and set
ΩT = Ω× (0, T ],ΓT = ΩT − ΩT where T > 0. Let us solve the following
IVP/BVP 

utt −∆u = h in ΩT

u = f on ΓT

ut = g on Ω× {t = 0}
(20)

Theorem 4 (Uniqueness for Wave Equation)
There exists at most one function u ∈ C2(ΩT ) solving (20).

Proof: Suppose u1 and u2 are two solution such that u1, u2 ∈ C2(ΩT ). Define
w := u1 − u2.
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Solution of inhomogeneous wave equation
Proof (continued): Then 

wtt −∆w = h in ΩT

w = 0 on ΓT

wt = 0 on Ω× {t = 0}
(21)

Now, define the energy as

E(t) :=
1

2

ˆ

Ω

w2
t (x, t) + |Dw(x, t)|2dx, (0 ≤ t ≤ T )

dE

dt
=

ˆ

Ω

wtwtt +Dw.Dwtdx =

ˆ

Ω

wt(wtt −∆w)dx = 0
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Solution of inhomogeneous wave equation
Proof (continued): There is no boundary term since w = 0 and hence wt = 0
on ∂Ω× [0, T ]. Thus for all 0 ≤ t ≤ T , E(t) = E(0) = 0. Therefore,
wt ≡ 0, Dw ≡ 0. Since w ≡ 0 on Ω× {t = 0}, u1 ≡ u2 in ΩT .

Figure 1: Caption
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Solution of inhomogeneous wave equation
Suppose u ∈ C2 solves

utt −∆u = 0 in Rn × (0,∞)

Let x0 ∈ Rn, t0 > 0, and consider the cone

C = {(x, t) : 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}

Theorem 5 (Finite Propagation Speed)
If u ≡ ut ≡ 0 on B(x0, t0), then u ≡ 0 within the cone C.

Proof: Define the energy as

E(t) :=
1

2

ˆ

Ω

u2t (x, t) + |Du(x, t)|2dx, (0 ≤ t ≤ t0)
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Solution of inhomogeneous wave equation
Proof (continued):

dE

dt
=

ˆ

B(x0,t0−t)

ututt +Du.Dutdx−
ˆ

∂B(x0,t0−t)

u2t + |Du|2dS

=

ˆ

B(x0,t0−t)

ut(utt −∆u)dx+

ˆ

∂B(x0,t0−t)

∂u

∂ν
utdS

−
ˆ

∂B(x0,t0−t)

u2t + |Du|2dS

=

ˆ

∂B(x0,t0−t)

∂u

∂ν
utdS − u2t − |Du|2dS
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Solution of inhomogeneous wave equation
Proof (continued): Now, by Cauchy-Schwarz and Cauchy inequalities.∣∣∣∣∂u∂ν ut

∣∣∣∣ ≤ |ut||Du| ≤ 1

2
u2t +

1

2
|Du|2

Now, dEdt ≤ 0 and so, E(t) ≤ E(0) = 0 for all 0 ≤ t ≤ t0. Thus ut ≡ 0, Du ≡ 0
and hence u ≡ 0 within the cone C.
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