MA612L-Partial Differential Equations

Lecture 19: Wave Equation - Inhomogeneous Problem and Energy Methods

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

September 26, 2025

Inhomogeneous Problem

Inhomogeneous Problem

Now let us consider the following inhomogeneous problem

$$\begin{cases} u_{tt} - \Delta u = h & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = 0 & \text{on } \mathbb{R}^n \times \{t = 0\} \\ u_t = 0 & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$
 (1)

How do we solve this?

Transport Equation in $\mathbb{R}^n \times (0, \infty)$

Consider the following inhomogeneous problem

$$\begin{cases} u_t + b.Du = f, \mathbf{x} \in \mathbb{R}^n, t > 0 \\ u(\mathbf{x}, 0) = g(\mathbf{x}), x \in \mathbb{R}^n \end{cases}$$

Using the same z(s), we obtain

$$u(\mathbf{x},t) = g(\mathbf{x} - \mathbf{b}t) + \int_0^t f(\mathbf{x} + (s-t)\mathbf{b}, s)ds, x \in \mathbb{R}^n, t \ge 0$$

solves the IVP (2).

(2)

d'Alembert's Formula n=1

Consider the following one-dimensional wave equation

$$\begin{cases} u_{tt} - c^2 u_{xx} = 0 & \text{in } \mathbb{R} \times (0, \infty) \\ u = f & \text{on } \mathbb{R} \times (t = 0) \\ u_t = h & \text{on } \mathbb{R} \times (t = 0) \end{cases}$$

$$u(x,t) = f(x+ct) + \int_{0}^{t} a(x-2cs+ct))ds, x \in \mathbb{R}, t \ge 0$$

Duhamel's principle

Let us see more details of Duhamel's principle obtained while solving Heat equation from Fundamental solution. For the moment, let us assume that we define a new function. Let $u=u(\mathbf{x},t;s)$ be the solution

$$\begin{cases} u_{tt}(,;s) - \Delta u(.;s) = 0 & \text{in } \mathbb{R}^n \times (s,\infty) \\ u(,;s) = 0 & \text{on } \mathbb{R}^n \times \{t=s\} \\ u_t(.;s) = h(.,s) & \text{on } \mathbb{R}^n \times \{t=s\} \end{cases}$$

$$\tag{4}$$

Now, set

$$u(\mathbf{x},t) := \int_{0}^{t} u(\mathbf{x},t;s)ds \quad (\mathbf{x} \in \mathbb{R}^{n}, t \ge 0)$$
 (5)

Then Duhamel's principle guarantees that u(x,t) is a solution of (1)

Theorem 1

Assume $n \geq 2, m = \lfloor \frac{n}{2} \rfloor, h \in C^{m+1}(\mathbb{R}^n \times [0, \infty))$ and define u by (5). Then

- 1. $u \in C^2(\mathbb{R}^n \times [0, \infty))$
- 2. $u_{tt} \Delta u = h$ in $\mathbb{R}^n \times [0, \infty)$
- 3. $\lim_{\substack{(\mathbf{x},t)\to(\mathbf{x}^0,0)\\\mathbf{x}\in\mathbb{R}^n,t>0}} u(\mathbf{x},t)=0$
- 4. $\lim_{\substack{(\mathbf{x},t)\to(\mathbf{x}^0,0)\\\mathbf{x}\in\mathbb{R}^n.t>0}} u_t(\mathbf{x},t) = 0$

In (3) and (4) for each point $\mathbf{x}^0 \in \mathbb{R}^n$

Proof: If n is odd, then $m+1=\frac{n+1}{2}$ and as per the theorem from Kirchhoff's formula lecture, we have $u(.,.;s)\in C^2(\mathbb{R}^n\times[0,\infty))$ for each $s\geq 0$. Therefore, $u\in C^2(\mathbb{R}^n\times[0,\infty))$. If n is even, $m+1=\frac{n+2}{2}$. Hence $u\in C^2(\mathbb{R}^n\times[0,\infty))$ by theorem 2. Now, by Leibniz rule.

$$u_t(\mathbf{x},t) = u(\mathbf{x},t;t) + \int_0^t u_t(\mathbf{x},t;s)ds = \int_0^t u_t(\mathbf{x},t;s)ds$$

$$u_{tt}(\mathbf{x},t) = u_t(\mathbf{x},t;t) + \int_0^t u_{tt}(\mathbf{x},t;s)ds = h(\mathbf{x},t) + \int_0^t u_{tt}(\mathbf{x},t;s)ds$$

Proof (continued): Also,

$$\Delta u(\mathbf{x}, t) = \int_{0}^{t} \Delta u(\mathbf{x}, t; s) ds = \int_{0}^{t} u_{tt}(\mathbf{x}, t; s) ds = u_{tt} - h(\mathbf{x}, t)$$

$$\implies u_{tt}(\mathbf{x}, t) - \Delta u(\mathbf{x}, t) = h(\mathbf{x}, t), \quad (x \in \mathbb{R}^{n}, t > 0)$$

Also, $u(\mathbf{x}, 0) = u_t(\mathbf{x}, 0) = 0$. Hence the theorem.

The solution of the inhomogeneous problem is the sum of d'Alembert's formula or Kirchhoff's formula or Poisson's formula and (5).

(6)

$$\begin{cases} u_{tt} - \Delta u = h \text{ in } \mathbb{R} \times (0, \infty) \\ u = 0 \text{ on } \mathbb{R} \times \{t = 0\} \\ u_t = 0 \text{ on } \mathbb{R} \times \{t = 0\} \end{cases}$$

Then by d'Alembert's formula

$$u(x,t;s) = \frac{1}{2} \int_{x-t+s}^{x+t+s} h(y,s) dy, \ \ u(x,t) = \frac{1}{2} \int_{0}^{t} \int_{x-t+s}^{x+t+s} h(y,s) dy ds$$

$$u(x,t) = \frac{1}{2} \int_{-\infty}^{t} \int_{-\infty}^{x+s} h(y,t-s) dy ds$$

(7)

$$\begin{cases} u_{tt} - \Delta u = h & \text{in } \mathbb{R}^3 \times (0, \infty) \\ u = 0 & \text{on } \mathbb{R}^3 \times \{t = 0\} \\ u_t = 0 & \text{on } \mathbb{R}^3 \times \{t = 0\} \end{cases}$$

By Kirchhoff's formula

$$u(\mathbf{x}, t; s) = (t - s) \int_{\partial B(\mathbf{x}, t - s)} h(\mathbf{y}, s) dS$$

$$u(x,t) = \int_{0}^{t} (t-s) \left(\int_{\partial B(\mathbf{x},t-s)} h(\mathbf{y},s) dS \right) ds$$

$$\implies u(x,t) = \frac{1}{4\pi} \int_{0}^{t} \int_{\partial B(\mathbf{x},t-s)} \frac{h(\mathbf{y},s)}{t-s} dS ds$$

$$\implies u(x,t) = \frac{1}{4\pi} \int_{0}^{t} \int_{\partial B(\mathbf{x},t-s)} \frac{h(\mathbf{y},t-r)}{r} dS dr$$

$$\implies u(x,t) = \frac{1}{4\pi} \int_{\partial B(\mathbf{x},t)} \frac{h(\mathbf{y},t - |\mathbf{y} - \mathbf{x}|)}{|\mathbf{y} - \mathbf{x}|} d\mathbf{y}$$

Exercises

Exercise 1: Compact Support

Let u solve

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{in } \mathbb{R}^3 \times (0, \infty) \\ u = f & \text{on } \mathbb{R}^3 \times \{t = 0\} \\ u_t = g & \text{on } \mathbb{R}^3 \times \{t = 0\} \end{cases}$$

where g,h are smooth and have compact support. Show there exists constants ${\cal C}$ such that

$$|u(x,t)| \le \frac{C}{t} \quad (x \in \mathbb{R}^3, t > 0)$$

Energy Methods

Let $\Omega\subset\mathbb{R}^n$ be a bounded, open set with a smooth boundary $\partial\Omega$ and set $\Omega_T=\Omega\times(0,T], \Gamma_T=\overline{\Omega}_T-\Omega_T$ where T>0. Let us consider the following IVP/BVP

$$\begin{cases} u_{tt} - \Delta u = h & \text{in } \Omega_T \\ u = f & \text{on } \Gamma_T \\ u_t = g & \text{on } \Omega \times \{t = 0\} \end{cases}$$
 (8)

Theorem 2 (Uniqueness for Wave Equation)

There exists at most one function $u \in C^2(\overline{\Omega}_T)$ solving (8).

Proof: Suppose u_1 and u_2 are two solution such that $u_1,u_2\in C^2(\overline{\Omega}_T)$. Define $w:=u_1-u_2$.

(9)

Proof (continued): Then

$$egin{cases} w_{tt} - \Delta w = h & ext{in } \Omega_T \ w = 0 & ext{on } \Gamma_T \ w_t = 0 & ext{on } \Omega imes \{t=0\} \end{cases}$$

Now, define the energy as

$$E(t) := \frac{1}{2} \int_{\Omega} w_t^2(\mathbf{x}, t) + |Dw(\mathbf{x}, t)|^2 d\mathbf{x}, \quad (0 \le t \le T)$$

$$\frac{dE}{dt} = \int_{\Omega} w_t w_{tt} + Dw.Dw_t d\mathbf{x} = \int_{\Omega} w_t (w_{tt} - \Delta w) d\mathbf{x} = 0$$

Proof (continued): There is no boundary term since w=0 and hence $w_t=0$ on $\partial\Omega\times[0,T]$. Thus for all $0\leq t\leq T$, E(t)=E(0)=0. Therefore, $w_t\equiv 0$, $Dw\equiv 0$. Since $w\equiv 0$ on $\Omega\times\{t=0\}$, $u_1\equiv u_2$ in Ω_T .

Suppose $u \in C^2$ solves

$$u_{tt} - \Delta u = 0$$
 in $\mathbb{R}^n \times (0, \infty)$

Let $x_0 \in \mathbb{R}^n, t_0 > 0$, and consider the cone

$$C = \{(x, t) : 0 \le t \le t_0, |\mathbf{x} - \mathbf{x}_0| \le t_0 - t\}$$

Theorem 3 (Finite Propagation Speed)

If $u \equiv u_t \equiv 0$ on $B(\mathbf{x}_0, t_0)$, then $u \equiv 0$ within the cone C.

Proof: Define the energy as

$$E(t) := \frac{1}{2} \int_{\Omega} u_t^2(\mathbf{x}, t) + |Du(\mathbf{x}, t)|^2 d\mathbf{x}, \quad (0 \le t \le t_0)$$

Proof (continued):

$$\frac{dE}{dt} = \int\limits_{B(\mathbf{x}_0, t_0 - t)} u_t u_{tt} + Du \cdot Du_t d\mathbf{x} - \int\limits_{\partial B(\mathbf{x}_0, t_0 - t)} u_t^2 + |Du|^2 dS$$

$$= \int\limits_{B(\mathbf{x}_0, t_0 - t)} u_t (u_{tt} - \Delta u) d\mathbf{x} + \int\limits_{\partial B(\mathbf{x}_0, t_0 - t)} \frac{\partial u}{\partial \nu} u_t dS$$

$$- \int\limits_{\partial B(\mathbf{x}_0, t_0 - t)} u_t^2 + |Du|^2 dS$$

$$= \int\limits_{\partial B(\mathbf{x}_0, t_0 - t)} \left(\frac{\partial u}{\partial \nu} u_t - u_t^2 - |Du|^2 \right) dS$$

Proof (continued): Now, by Cauchy-Schwarz and Cauchy inequalities.

$$\left| \frac{\partial u}{\partial \nu} u_t \right| \le |u_t||Du| \le \frac{1}{2} u_t^2 + \frac{1}{2} |Du|^2$$

Now, $\frac{dE}{dt} \leq 0$ and so, $E(t) \leq E(0) = 0$ for all $0 \leq t \leq t_0$. Thus $u_t \equiv 0$, $Du \equiv 0$ and hence $u \equiv 0$ within the cone C.

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

