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Inhomogeneous Problem
Now let us consider the following inhomogeneous problem

utt −∆u = h in Rn × (0,∞)

u = 0 on Rn × {t = 0}
ut = 0 on Rn × {t = 0}

(1)

How do we solve this?
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Transport Equation in Rn × (0,∞)

Consider the following inhomogeneous problem{
ut + b.Du = f,x ∈ Rn, t > 0

u(x, 0) = g(x), x ∈ Rn
(2)

Using the same z(s), we obtain

u(x, t) = g(x− bt) +

ˆ t

0
f(x+ (s− t)b, s)ds, x ∈ Rn, t ≥ 0

solves the IVP (2).
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d’Alembert’s Formula n = 1

Consider the following one-dimensional wave equation
utt − c2uxx = 0 in R× (0,∞)

u = f on R× (t = 0)

ut = h on R× (t = 0)

(3)

u(x, t) = f(x+ ct) +

tˆ

0

a(x− 2cs+ ct))ds, x ∈ R, t ≥ 0
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Duhamel’s principle
Let us see more details of Duhamel’s principle obtained while solving Heat
equation from Fundamental solution. For the moment, let us assume that we
define a new function. Let u = u(x, t; s) be the solution

utt(, ; s)−∆u(.; s) = 0 in Rn × (s,∞)

u(, ; s) = 0 on Rn × {t = s}
ut(.; s) = h(., s) on Rn × {t = s}

(4)

Now, set

u(x, t) :=

tˆ

0

u(x, t; s)ds (x ∈ Rn, t ≥ 0) (5)

Then Duhamel’s principle guarantees that u(x, t) is a solution of (1)
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Solution of inhomogeneous wave equation

Theorem 1
Assume n ≥ 2,m = ⌊n2 ⌋, h ∈ Cm+1(Rn × [0,∞)) and define u by (5). Then
1. u ∈ C2(Rn × [0,∞))

2. utt −∆u = h in Rn × [0,∞)

3. lim
(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = 0

4. lim
(x,t)→(x0,0)
x∈Rn,t>0

ut(x, t) = 0

In (3) and (4) for each point x0 ∈ Rn
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Solution of inhomogeneous wave equation
Proof: If n is odd, then m+ 1 = n+1

2 and as per the theorem from Kirchhoff’s
formula lecture, we have u(., .; s) ∈ C2(Rn × [0,∞)) for each s ≥ 0. Therefore,
u ∈ C2(Rn × [0,∞)). If n is even, m+ 1 = n+2

2 .Hence u ∈ C2(Rn × [0,∞)) by
theorem 2. Now, by Leibniz rule,

ut(x, t) = u(x, t; t) +

tˆ

0

ut(x, t; s)ds =

tˆ

0

ut(x, t; s)ds

utt(x, t) = ut(x, t; t) +

tˆ

0

utt(x, t; s)ds = h(x, t) +

tˆ

0

utt(x, t; s)ds
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Solution of inhomogeneous wave equation
Proof (continued): Also,

∆u(x, t) =

tˆ

0

∆u(x, t; s)ds =

tˆ

0

utt(x, t; s)ds = utt − h(x, t)

=⇒ utt(x, t)−∆u(x, t) = h(x, t), (x ∈ Rn, t > 0)

Also, u(x, 0) = ut(x, 0) = 0. Hence the theorem.
The solution of the inhomogeneous problem is the sum of d’Alembert’s
formula or Kirchhoff’s formula or Poisson’s formula and (5).
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Solution of inhomogeneous wave equation


utt −∆u = h in R× (0,∞)

u = 0 on R× {t = 0}
ut = 0 on R× {t = 0}

(6)

Then by d’Alembert’s formula

u(x, t; s) =
1

2

x+t+sˆ

x−t+s

h(y, s)dy, u(x, t) =
1

2

tˆ

0

x+t+sˆ

x−t+s

h(y, s)dyds

u(x, t) =
1

2

tˆ

0

x+sˆ

x−s

h(y, t− s)dyds
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Solution of inhomogeneous wave equation


utt −∆u = h in R3 × (0,∞)

u = 0 on R3 × {t = 0}
ut = 0 on R3 × {t = 0}

(7)

By Kirchhoff’s formula

u(x, t; s) = (t− s)

 

∂B(x,t−s)

h(y, s)dS

u(x, t) =

tˆ

0

(t− s)

  

∂B(x,t−s)

h(y, s)dS

 ds
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Solution of inhomogeneous wave equation

=⇒ u(x, t) =
1

4π

tˆ

0

ˆ

∂B(x,t−s)

h(y, s)

t− s
dSds

=⇒ u(x, t) =
1

4π

tˆ

0

ˆ

∂B(x,r)

h(y, t− r)

r
dSdr

=⇒ u(x, t) =
1

4π

ˆ

∂B(x,t)

h(y, t− |y − x|)
|y − x|

dy
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Exercises

Exercise 1: Compact Support

Let u solve 
utt −∆u = 0 in R3 × (0,∞)

u = f on R3 × {t = 0}
ut = g on R3 × {t = 0}

where g, h are smooth and have compact support. Show there exists
constants C such that

|u(x, t)| ≤ C

t
(x ∈ R3, t > 0)
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Energy Methods
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Solution of inhomogeneous wave equation
Let Ω ⊂ Rn be a bounded, open set with a smooth boundary ∂Ω and set
ΩT = Ω× (0, T ],ΓT = ΩT − ΩT where T > 0. Let us consider the following
IVP/BVP 

utt −∆u = h in ΩT

u = f on ΓT

ut = g on Ω× {t = 0}
(8)

Theorem 2 (Uniqueness for Wave Equation)
There exists at most one function u ∈ C2(ΩT ) solving (8).

Proof: Suppose u1 and u2 are two solution such that u1, u2 ∈ C2(ΩT ). Define
w := u1 − u2.
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Solution of inhomogeneous wave equation
Proof (continued): Then 

wtt −∆w = h in ΩT

w = 0 on ΓT

wt = 0 on Ω× {t = 0}
(9)

Now, define the energy as

E(t) :=
1

2

ˆ

Ω

w2
t (x, t) + |Dw(x, t)|2dx, (0 ≤ t ≤ T )

dE

dt
=

ˆ

Ω

wtwtt +Dw.Dwtdx =

ˆ

Ω

wt(wtt −∆w)dx = 0
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Solution of inhomogeneous wave equation
Proof (continued): There is no boundary term since w = 0 and hence wt = 0
on ∂Ω× [0, T ]. Thus for all 0 ≤ t ≤ T , E(t) = E(0) = 0. Therefore,
wt ≡ 0, Dw ≡ 0. Since w ≡ 0 on Ω× {t = 0}, u1 ≡ u2 in ΩT .

Figure 1: Caption
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Solution of inhomogeneous wave equation
Suppose u ∈ C2 solves

utt −∆u = 0 in Rn × (0,∞)

Let x0 ∈ Rn, t0 > 0, and consider the cone

C = {(x, t) : 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}

Theorem 3 (Finite Propagation Speed)
If u ≡ ut ≡ 0 on B(x0, t0), then u ≡ 0 within the cone C.

Proof: Define the energy as

E(t) :=
1

2

ˆ

Ω

u2t (x, t) + |Du(x, t)|2dx, (0 ≤ t ≤ t0)
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Solution of inhomogeneous wave equation
Proof (continued):

dE

dt
=

ˆ

B(x0,t0−t)

ututt +Du.Dutdx−
ˆ

∂B(x0,t0−t)

u2t + |Du|2dS

=

ˆ

B(x0,t0−t)

ut(utt −∆u)dx+

ˆ

∂B(x0,t0−t)

∂u

∂ν
utdS

−
ˆ

∂B(x0,t0−t)

u2t + |Du|2dS

=

ˆ

∂B(x0,t0−t)

(
∂u

∂ν
ut − u2t − |Du|2

)
dS
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Solution of inhomogeneous wave equation
Proof (continued): Now, by Cauchy-Schwarz and Cauchy inequalities.∣∣∣∣∂u∂ν ut

∣∣∣∣ ≤ |ut||Du| ≤ 1

2
u2t +

1

2
|Du|2

Now, dEdt ≤ 0 and so, E(t) ≤ E(0) = 0 for all 0 ≤ t ≤ t0. Thus ut ≡ 0, Du ≡ 0
and hence u ≡ 0 within the cone C.

19



Thanks
Doubts and Suggestions

panch.m@iittp.ac.in

20


