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Examples
Let us revisit the ODE example again

Examples

f(x) = 4x2 =⇒ f ′(x) = 8x
?

=⇒ f(x) = 4x2

y = e5x =⇒ dy

dx
= 5e5x

?
=⇒ y = e5x

y = sinx+ x2 =⇒ dy

dx
= cosx+ 2x

?
=⇒ y = sinx+ x2

2



Examples
Let us revisit the ODE example again

Examples

f(x) = 4x2 =⇒ f ′(x) = 8x =⇒ f(x) = 4x2 + C1

y = e5x =⇒ dy

dx
= 5e5x =⇒ y = e5x + C2

y = sinx+ x2 =⇒ dy

dx
= cosx+ 2x =⇒ y = sinx+ x2 + C3

What do these C1, C2 and C3 represent? Note that, the derivative measures
the slope of tangent lines of a given curve. However, when you know a
tangent line, you end up with a family of curves or no curve.
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Examples
Let us revisit the PDE example again

Examples

u = ex−y =⇒ ux + uy = 0
?

=⇒ u = ex−y

u = ex−y =⇒ uxx + uyy = 2u
?

=⇒ u = ex−y

Will you get a unique answer?
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Examples
In fact, what we will see in our next class

Examples

ux + uy = 0 =⇒ u = f(x− y)1

uxx + uyy = 2u Helmholtz equation* with k2 < 0

Will you get a unique answer? 1 Using method of characteristics. *Separation
of variable can be used to find solution, however, we need more assumptions
and BCs to solve this problem.
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From ODE Course
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ODE

Definition 1 (ODE)
Ordinary Differential Equation (ODE) is a differential equation that contains only
one independent variable so that all the derivative occurring in it are ordinary
derivatives.

Definition 2 (ODE (Mathematical way))
Let Ω ⊂ R,m ∈ N and F : Ω×Rm → R be a function. Then an ODE of order m
is defined by the equation

F

(
x, y(x),

dy(x)

dx
,
d2y(x)

dx2
, · · · , d

my(x)

dxm

)
= 0 (1)
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ODE
Let x be an independent variable and y = (y1, y2, · · · , yp) ∈ Rp be the
dependent variable depending on x.

Definition 3 (System of ODE)
Let Ω ⊂ R,m ∈ N and

F : Ω

mtimes︷ ︸︸ ︷
×Rp × Rp · · · × Rp → Rq

be a function. Then the system of ODE of order m is defined by the equation

F

(
x,y(x),

dy(x)

dx
,
d2y(x)

dx2
, · · · , d

my(x)

dxm

)
= 0 (2)
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Remarks on ODE

F

(
x, y(x),

dy(x)

dx
,
d2y(x)

dx2
, · · · , d

ny(x)

dxn

)
= 0 (3)

• There is only one independent variable (here x)
• All derivatives are ordinary derivatives of the unknown function y(x)

• Order of ODE = The highest derivative in the equation
• Equation (4) is linear if F is linear in y, dy(x)dx , d

2y(x)
dx2 , · · · , d

ny(x)
dxn with the

coefficients depending on the independent variable x.
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Examples

ODE EXample

dS(t)

dt
= −k(S(t)− Si) Survivability with AIDS

dN(t)

dt
= bN(t)− nN(t) Population Growth

mẍ = mg + b(x)− β(ẋ) Simple Harmonic Equation
dT

dt
= k(T − Tm), t > 0, Newton’s Law of Cooling
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Calculus
Consider the ODE:

dy

dx
= r(x)

Theorem 4 (Fundamental Theorem of Calculus)
If f is continuous on [a, b], then F (x) =

∫ x
a f(t)dt is continuous on [a, b] and

differentiable on (a, b) and its derivative is f(x):

F ′(x) =
d

dx

∫ x

a
f(t)dt = f(x)

If F is any antiderivative of f on [a, b], then∫ b

a
f(x)dx = F (b)− F (a)
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Existence

Theorem 5 (Peano’s Existence Theorem)
Consider the ODE:

y′ = f(x, y), y(x0) = y0 (4)

Suppose f(x, y) is continuous for all points (x, y) in some rectangle R : |x −
x0| < a, |y − y0| < b and bounded in R, that is there exists a number K such
that

|f(x, y)| ≤ K, for all(x, y) ∈ R (5)

Then the initial value problem has at least one solution y(x). This solution
exists at least for all x in the subinterval |x−x0| < α of the interval |x−x0| < a,
here α = min{a, b/K}.
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Picard’s Theorem

Theorem 6 (Uniqueness Theorem )
In addition to the condition (5), if f satisfy the Lipschitz condition with respect
to y ∈ R, that is, there exists a number M such that

|f(x, y2)− f(x, y1)| ≤ M |y2 − y1| for all(x, y1), (x, y2) ∈ R

Then the IVP (4) has at most one solution y(x).
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Keywords

• Separable ODE, Exact ODE
• Bernoulli, Euler-Cauchy, Euler-Lagrange, Legendre, Bessel equations
• Superposition Principle, Wronskian
• Constant and Variable Coefficients
• Variation of Parameters, Green’s Function, BVP
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Exercise

1. Solve the following ODEs

y′′ + y = 0, y(0) = y(2) = 0, 0 ≤ x ≤ 2

y′′ + 4y = 8x, y(0) = A, y(L) = B, 0 ≤ x ≤ L

2. Find all eigenvalues and eigenfunctions for the following:

y′′ + λy = 0, y = y(x), 0 < x < 1, y(0) = y(1) = 0

y′′ + λy = 0, y = y(x), 0 < x < 3, y(0) = y′(3) = 0

y′′ + λy = 0, y = y(x), 0 < x < 1, y(0) = y(1) + y′(1) = 0

x2y′′ + xy′ − λy = 0, y(1) = y(e) = 0, 0 < x < e
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PDE-Preliminaries
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PDE

Definition 7 (PDE)
Partial Differential Equation (PDE) is a differential equation involving an un-
known function (possibly a vector-valued) of two or more variables and a finite
number of partial derivatives.
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PDE-Notations
Independent Variables: Let us denote the independent variable by
x = (x1, x2, · · · , xn) ∈ Ω ⊂ Rn, n ≥ 2
Dependent Variables: Let us denote the dependent variable or unknown
function by u = (u1, u2, · · · , up) ∈ Rp, p ≥ 1
Let α = (α1, α2, · · · , αn) ∈ Zn

+ and

|α| =
n∑

i=1

αi

Then Dαu denotes
Dαu =

∂αu

∂α1x1∂α2x2 · · · ∂αnxn

18



PDE

Definition 8 (PDE-Formal Definition)
Let Ω ⊂ Rn,m ∈ N and

F : Ω× Rp × Rnp × Rn2p × · · · × Rnmp → Rq

A system of partial differential equations of orderm is defined by the equation

F (x,u, Du, D2u, · · · , Dmu) = 0 or F (x, (∂αu)|α| ≤ m) = 0

Here some mth order derivative of the function u appears in the system of
equations.

19



PDE
If u = (u1) is the only dependent variable and F is real-valued, then the above
definition can be written as

Definition 9 (PDE-Formal Definition, p = 1, q = 1)
Let Ω ⊂ Rn,m ∈ N and

F : Ω× R× Rn × Rn2 × · · · × Rnm → R

The partial differential equation of order m is defined by the equation

F (x, u,Du,D2u, · · · , Dmu) = 0

Here some mth order derivative of the function u appears in the equation.
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PDE

PDE-2D and 3D

F (x, y, ux, uy, uxx, uyy, uxy, uyx) = 0

F (x, y, ux, uy, uxx, uyy, uxy, uyx, uxxx, uyyy, · · · , uxxx···x) = 0

F (x, y, z, ux, uy, uz, uxx, uyy, uzz, uxy, uxz, uyx, uyz, uzy, uzx) = 0

F (x, y, z, ux, uy, uz, uxx, · · · , uzzz···z) = 0

Here ux = ∂u
∂x , uy = ∂u

∂y , uz =
∂u
∂z , uxx = ∂2u

∂x2 , uxy = ∂2u
∂x∂y , etc.
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Four Important Linear
PDEs
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Four Important Linear PDEs

• Transport Equation
ut + aux = 0

• Heat Equation
ut = α2uxx

• Wave Equation
utt = c2uxx

• Laplace Equation
uxx + uyy = 0

In all problems in this presentation, valid domain for time, space and function
space are assumed.
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Transport Equation
Transport equation is the simplest PDE with constant coefficients. It is also
called Convection or Advection equation. It has applications in different fields
of science and engineering streams
• Chemistry: Purification and Crystallization
• Mechanical Engineer: Convection-Diffusion Equation
• Civil engineers : Pollutant Transport
• Electrical Engineers: Phonon and Dispersion
• Financial Mathematics: Dynamics of financial derivatives

For mathematicians, it is simply a first-order PDE.
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Chemistry: Purification and Crystallization

∂C

∂t
+ v

∂C

∂x
= 0

• C(x, t): Concentration of solute
• v: Constant fluid velocity
• x: Spatial position
• t: Time
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Mechanical Engineering: Convection–Diffusion

∂T

∂t
+ v

∂T

∂x
= α

∂2T

∂x2

• T (x, t): Temperature
• v: Flow velocity
• α: Thermal diffusivity (assume α = 0)
• x: Position
• t: Time

26



Civil Engineering: Pollutant Transport

∂C

∂t
+ v

∂C

∂x
= D

∂2C

∂x2

• C(x, t): Pollutant concentration
• v: Groundwater flow velocity
• D: Dispersion coefficient (assume D = 0)
• x: Distance along flow
• t: Time
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Electrical Engineering: Phonon Transport

∂u

∂t
+ vg

∂u

∂x
= 0

• u(x, t): Energy density of phonons
• vg: Group velocity of phonons
• x: Position in material
• t: Time
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Financial Mathematics: Option Pricing Drift

∂V

∂t
+ rS

∂V

∂S
− rV = 0

• V (S, t): Price of a financial derivative (e.g., an option)
• S: Underlying asset price
• r: Risk-free interest rate
• t: Time
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Mathematics: First-order Linear PDE

∂u

∂t
+ a

∂u

∂x
= 0

• u(x, t): Transported quantity
• a: Constant wave or transport speed
• x: Spatial variable
• t: Time
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Heat Equation
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Heat Equation
Heat equation has different names in different engineering and science
stream.
• Thermodynamics: Heat Equation
• Mechanical Engineer: Diffusion Equation
• Civil engineers (Terzaghi’s theory): Consolidation equation for drilling
• Electrical Engineers: Telegraph equation
• Financial Mathematics: Black-Scholes equation

For mathematicians, it is simply a second order PDE or parabolic PDE
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Heat Equation
Heat Equation with heat source, convection term are applied in the field of
• Cancer Treatment: Bioheat Equation
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Heat Equation
Heat Equation is also applied in
• Medical imaging: Image smoothing

∇2I =
ϕ′′(S/ϵ)

ϵ2
∇S ⊗∇S +

ϕ′(S/ϵ)

ϵ
∇2S (6)

• Inverse Problem: In DCIS-Breast Cancer

c
∂σ

∂t
=

∂2σ

∂x2
− λ(x)σ (7)
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Diffusion Equation
Atmospheric Diffusion Equation: The dispersion of pollutant concentration
from multiple point sources

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
= kx

∂2c

∂x2
+ ky

∂2c

∂y2
+ kz

∂2c

∂z2
+ s (8)

In Chemical Engineering for concentration around the point (x, y, z)

∂c

∂t
= kx

∂2c

∂x2
+ ky

∂2c

∂y2
+ kz

∂2c

∂z2
(9)
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Mechanical Engineering: Diffusion Equation

∂C

∂t
= D

∂2C

∂x2

• C(x, t): Concentration of diffusing species (e.g., gas or vapor)
• D: Diffusion coefficient
• x: Position
• t: Time
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Civil Engineering: Terzaghi’s Consolidation
Equation

∂u

∂t
= cv

∂2u

∂z2

• u(z, t): Excess pore water pressure
• cv: Coefficient of consolidation
• z: Depth
• t: Time
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Electrical Engineering: Telegraph Equation

∂2V

∂x2
= LC

∂2V

∂t2
+RC

∂V

∂t

• V (x, t): Voltage along the transmission line
• L: Inductance per unit length (assume L = 0)
• C: Capacitance per unit length
• R: Resistance per unit length
• x: Position along the line
• t: Time
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Financial Mathematics: Black–Scholes Equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

• V (S, t): Option price
• S: Underlying asset price
• σ: Volatility of the asset
• r: Risk-free interest rate
• t: Time

Use substitution, x = ln(S/K), τ = T − t, and V (S, t) = Ke−rτu(x, τ).
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Wave Equation
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Wave Equation
Again, wave equation has different names in different engineering and
science stream.
• Physics: Vibration of String
• Mechanical Engineer:Vibration of Beams
• Civil engineers (Terzaghi’s theory): Seismic Waves Equation
• Electrical Engineers: Electromagnetic Waves
• Financial Mathematics: Analogous wave models

For mathematicians, it is simply a second order PDE or hyperbolic PDE
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Wave Equation
Lighthill’s acoustic wave equation(

∂2

∂t2
− c20∇2

)
ρ =

∂2Tij

∂xi∂xj
(10)

Tij = ρuiuj − τij + [(p− p0)− c20(ρ− ρ0)]δij
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Physics: Vibrating String (Wave Equation)

∂2u

∂t2
= c2

∂2u

∂x2

• u(x, t): Displacement of the string
• c: Wave speed in the medium
• x: Position along the string
• t: Time
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Mechanical Engineering: Vibrations of Beams or
Rods

∂2u

∂t2
= a2

∂2u

∂x2

• u(x, t): Displacement of the structure
• a: Wave speed determined by material properties
• x: Spatial coordinate
• t: Time
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Civil Engineering: Seismic and Ground Waves

∂2u

∂t2
= v2

∂2u

∂x2

• u(x, t): Displacement in the ground
• v: Propagation speed of seismic wave
• x: Depth or lateral position
• t: Time
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Electrical Engineering: Electromagnetic Waves

∂2E

∂t2
= c2

∂2E

∂x2

• E(x, t): Electric field component of the EM wave
• c: Speed of light in the medium
• x: Position in space
• t: Time
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Financial Mathematics: Analogous Wave
Models

∂2V

∂t2
= c2

∂2V

∂x2

• V (x, t): Price function (in rare wave-based financial models)
• c: Abstract propagation rate of market signal
• x: Log-price or other spatially transformed variable
• t: Time
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Mathematics: Second-Order Hyperbolic PDE

∂2u

∂t2
= c2

∂2u

∂x2

• u(x, t): General wave profile (displacement, signal, etc.)
• c: Constant wave speed
• x: Space variable
• t: Time
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Laplace/Poisson
Equation
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Physics: Electrostatics (Laplace’s Equation)

∇2ϕ = 0

• ϕ(x, y, z): Electric potential
• ∇2: Laplacian operator
• Used when charge density is zero in a region
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Physics: Electrostatics (Poisson’s Equation)

∇2ϕ = − ρ

ε0

• ϕ: Electric potential
• ρ: Charge density
• ε0: Permittivity of free space
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Mechanical Engineering: Steady-State Heat

∇2T = 0 (Laplace), ∇2T = − q

k
(Poisson)

• T (x, y): Temperature
• q: Internal heat generation
• k: Thermal conductivity
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Civil Engineering: Groundwater Flow

∇2h = 0

• h(x, y): Hydraulic head
• ∇2: Spatial Laplacian
• Describes steady, incompressible flow through porous media
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Electrical Engineering: Field Simulation

∇2V = −ρ

ε

• V (x, y, z): Electric potential
• ρ: Charge distribution
• ε: Permittivity of the medium
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Financial Mathematics: Steady-State Option
Pricing

1

2
σ2S2d

2V

dS2
+ rS

dV

dS
− rV = 0

• V (S): Option value (steady-state)
• S: Underlying asset price
• σ: Volatility
• r: Interest rate
• This ODE is elliptic — akin to Laplace in transformed coordinates
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Mathematics: Elliptic PDEs

∇2u = 0 (Laplace), ∇2u = f(x, y) (Poisson)

• u(x, y): Unknown scalar field
• f(x, y): Source term (for Poisson)
• ∇2: Laplace operator in 2D or 3D
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