MA612L-Partial Differential Equations

Lecture 2: Introduction: What is PDE?

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

August 6, 2025

Recap

Let us revisit the ODE example again

Examples

$$f(x) = 4x^{2} \implies f'(x) = 8x \stackrel{?}{\Longrightarrow} f(x) = 4x^{2}$$

$$y = e^{5x} \implies \frac{dy}{dx} = 5e^{5x} \stackrel{?}{\Longrightarrow} y = e^{5x}$$

$$y = \sin x + x^{2} \implies \frac{dy}{dx} = \cos x + 2x \stackrel{?}{\Longrightarrow} y = \sin x + x^{2}$$

Let us revisit the ODE example again

Examples

$$f(x) = 4x^{2} \implies f'(x) = 8x \implies f(x) = 4x^{2} + C_{1}$$

$$y = e^{5x} \implies \frac{dy}{dx} = 5e^{5x} \implies y = e^{5x} + C_{2}$$

$$y = \sin x + x^{2} \implies \frac{dy}{dx} = \cos x + 2x \implies y = \sin x + x^{2} + C_{3}$$

What do these C_1 , C_2 and C_3 represent? Note that, the derivative measures the slope of tangent lines of a given curve. However, when you know a tangent line, you end up with a family of curves or no curve.

Let us revisit the PDE example again

Examples

$$u = e^{x-y} \implies u_x + u_y = 0 \stackrel{?}{\implies} u = e^{x-y}$$

 $u = e^{x-y} \implies u_{xx} + u_{yy} = 2u \stackrel{?}{\implies} u = e^{x-y}$

Will you get a unique answer?

In fact, what we will see in our next class

Examples

$$u_x + u_y = 0 \implies u = f(x-y)^1$$

$$u_{xx} + u_{yy} = 2u \quad \text{Helmholtz equation* with } k^2 < 0$$

Will you get a unique answer? ¹ Using method of characteristics. *Separation of variable can be used to find solution, however, we need more assumptions and BCs to solve this problem.

From ODE Course

ODE

Definition 1 (ODE)

Ordinary Differential Equation (ODE) is a differential equation that contains only one independent variable so that all the derivative occurring in it are ordinary derivatives.

Definition 2 (ODE (Mathematical way))

Let $\Omega\subset\mathbb{R}, m\in\mathbb{N}$ and $F:\Omega\times\mathbb{R}^m\to\mathbb{R}$ be a function. Then an ODE of order m is defined by the equation

$$F\left(x,y(x),\frac{dy(x)}{dx},\frac{d^2y(x)}{dx^2},\cdots,\frac{d^my(x)}{dx^m}\right) = 0$$
 (1)

ODE

Let x be an independent variable and $\mathbf{y}=(y_1,y_2,\cdots,y_p)\in\mathbb{R}^p$ be the dependent variable depending on x.

Definition 3 (System of ODE)

Let $\Omega \subset \mathbb{R}$, $m \in N$ and

$$F: \Omega \underbrace{\times \mathbb{R}^p \times \mathbb{R}^p \cdots \times \mathbb{R}^p}_{mtimes} \to \mathbb{R}^q$$

be a function. Then the system of ODE of order m is defined by the equation

$$F\left(x, \mathbf{y}(x), \frac{d\mathbf{y}(x)}{dx}, \frac{d^2\mathbf{y}(x)}{dx^2}, \cdots, \frac{d^m\mathbf{y}(x)}{dx^m}\right) = \mathbf{0}$$
 (2)

Remarks on ODE

$$F\left(x,y(x),\frac{dy(x)}{dx},\frac{d^2y(x)}{dx^2},\cdots,\frac{d^ny(x)}{dx^n}\right) = 0$$
(3)

- There is only one independent variable (here *x*)
- All derivatives are ordinary derivatives of the unknown function y(x)
- Order of ODE = The highest derivative in the equation
- Equation (4) is linear if F is linear in $y, \frac{dy(x)}{dx}, \frac{d^2y(x)}{dx^2}, \cdots, \frac{d^ny(x)}{dx^n}$ with the coefficients depending on the independent variable x.

ODE EXample

$$\frac{dS(t)}{dt} = -k(S(t) - S_i) \quad \text{Survivability with AIDS}$$

$$\frac{dN(t)}{dt} = bN(t) - nN(t) \quad \text{Population Growth}$$

$$m\ddot{x} = mg + b(x) - \beta(\dot{x}) \quad \text{Simple Harmonic Equation}$$

$$\frac{dT}{dt} = k(T - T_m), t > 0, \quad \text{Newton's Law of Cooling}$$

Calculus

Consider the ODE:

$$\frac{dy}{dx} = r(x)$$

Theorem 4 (Fundamental Theorem of Calculus)

If f is continuous on [a,b], then $F(x)=\int_a^x f(t)dt$ is continuous on [a,b] and differentiable on (a,b) and its derivative is f(x):

$$F'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

If F is any antiderivative of f on [a,b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Existence

Theorem 5 (Peano's Existence Theorem)

Consider the ODE:

$$y' = f(x, y), y(x_0) = y_0$$
 (4)

Suppose f(x,y) is continuous for all points (x,y) in some rectangle $R:|x-x_0|< a, |y-y_0|< b$ and bounded in R, that is there exists a number K such that

$$|f(x,y)| \le K, \text{ for all } (x,y) \in R$$
 (5)

Then the initial value problem has at least one solution y(x). This solution exists at least for all x in the subinterval $|x-x_0|<\alpha$ of the interval $|x-x_0|<\alpha$, here $\alpha=\min\{a,b/K\}$.

Picard's Theorem

Theorem 6 (Uniqueness Theorem)

In addition to the condition (5), if f satisfy the Lipschitz condition with respect to $y \in R$, that is, there exists a number M such that

$$|f(x,y_2) - f(x,y_1)| \le M|y_2 - y_1|$$
 for all $(x,y_1), (x,y_2) \in R$

Then the IVP (4) has at most one solution y(x).

Keywords

- Separable ODE, Exact ODE
- Bernoulli, Euler-Cauchy, Euler-Lagrange, Legendre, Bessel equations
- Superposition Principle, Wronskian
- Constant and Variable Coefficients
- Variation of Parameters, Green's Function, BVP

Exercise

1. Solve the following ODEs

$$y'' + y = 0, y(0) = y(2) = 0, 0 \le x \le 2$$
$$y'' + 4y = 8x, y(0) = A, y(L) = B, 0 \le x \le L$$

2. Find all eigenvalues and eigenfunctions for the following:

$$y'' + \lambda y = 0, y = y(x), 0 < x < 1, y(0) = y(1) = 0$$

$$y'' + \lambda y = 0, y = y(x), 0 < x < 3, y(0) = y'(3) = 0$$

$$y'' + \lambda y = 0, y = y(x), 0 < x < 1, y(0) = y(1) + y'(1) = 0$$

$$x^{2}y'' + xy' - \lambda y = 0, y(1) = y(e) = 0, 0 < x < e$$

PDE-Preliminaries

Definition 7 (PDE)

Partial Differential Equation (PDE) is a differential equation involving an unknown function (possibly a vector-valued) of two or more variables and a finite number of partial derivatives.

PDE-Notations

Independent Variables: Let us denote the independent variable by

$$\mathbf{x} = (x_1, x_2, \cdots, x_n) \in \Omega \subset \mathbb{R}^n, n \ge 2$$

Dependent Variables: Let us denote the dependent variable or unknown

function by
$$\mathbf{u} = (u_1, u_2, \cdots, u_p) \in \mathbb{R}^p, p \ge 1$$

Let
$$\alpha=(\alpha_1,\alpha_2,\cdots,\alpha_n)\in\mathbb{Z}_+^n$$
 and

$$|\alpha| = \sum_{i=1}^{n} \alpha_i$$

Then $D^{\alpha}u$ denotes

$$D^{\alpha}u = \frac{\partial^{\alpha}u}{\partial^{\alpha_1}x_1\partial^{\alpha_2}x_2\cdots\partial^{\alpha_n}x_n}$$

Definition 8 (PDE-Formal Definition)

Let $\Omega \subset \mathbb{R}^n, m \in \mathbb{N}$ and

$$F: \Omega \times \mathbb{R}^p \times \mathbb{R}^{np} \times \mathbb{R}^{n^2p} \times \dots \times \mathbb{R}^{n^mp} \to \mathbb{R}^q$$

A system of partial differential equations of order m is defined by the equation

$$F(\mathbf{x}, \mathbf{u}, D\mathbf{u}, D^2\mathbf{u}, \cdots, D^m\mathbf{u}) = \mathbf{0}$$
 or $F(\mathbf{x}, (\partial^{\alpha}\mathbf{u})_{|\alpha|} \leq m) = \mathbf{0}$

Here some m^{th} order derivative of the function ${\bf u}$ appears in the system of equations.

If $u=(u_1)$ is the only dependent variable and F is real-valued, then the above definition can be written as

Definition 9 (PDE-Formal Definition, p = 1, q = 1)

Let $\Omega \subset \mathbb{R}^n, m \in \mathbb{N}$ and

$$F: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^{n^2} \times \cdots \times \mathbb{R}^{n^m} \to \mathbb{R}$$

The partial differential equation of order m is defined by the equation

$$F(\mathbf{x}, u, Du, D^2u, \cdots, D^mu) = 0$$

Here some m^{th} order derivative of the function u appears in the equation.

PDE-2D and 3D

$$F(x, y, u_x, u_y, u_{xx}, u_{yy}, u_{xy}, u_{yx}) = 0$$

$$F(x, y, u_x, u_y, u_{xx}, u_{yy}, u_{xy}, u_{xxx}, u_{yyy}, \cdots, u_{xxx\cdots x}) = 0$$

$$F(x, y, z, u_x, u_y, u_z, u_{xx}, u_{yy}, u_{zz}, u_{xy}, u_{xz}, u_{yx}, u_{yz}, u_{zy}, u_{zx}) = 0$$

$$F(x, y, z, u_x, u_y, u_z, u_{xx}, \cdots, u_{zzz\cdots z}) = 0$$

Here $u_x = \frac{\partial u}{\partial x}, u_y = \frac{\partial u}{\partial y}, u_z = \frac{\partial u}{\partial z}, u_{xx} = \frac{\partial^2 u}{\partial x^2}, u_{xy} = \frac{\partial^2 u}{\partial x \partial y}$, etc.

Four Important Linear PDEs

• Transport Equation

$$u_t + au_x = 0$$

Heat Equation

$$u_t = \alpha^2 u_{xx}$$

Wave Equation

$$u_{tt} = c^2 u_{xx}$$

Laplace Equation

$$u_{xx} + u_{yy} = 0$$

In all problems in this presentation, valid domain for time, space and function space are assumed.

Transport Equation

Transport equation is the simplest PDE with constant coefficients. It is also called Convection or Advection equation. It has applications in different fields of science and engineering streams

- Chemistry: Purification and Crystallization
- Mechanical Engineer: Convection-Diffusion Equation
- Civil engineers : Pollutant Transport
- Electrical Engineers: Phonon and Dispersion
- Financial Mathematics: Dynamics of financial derivatives

For mathematicians, it is simply a first-order PDE.

Chemistry: Purification and Crystallization

$$\frac{\partial C}{\partial t} + v \frac{\partial C}{\partial x} = 0$$

- C(x,t): Concentration of solute
- v: Constant fluid velocity
- x: Spatial position
- *t*: Time

Mechanical Engineering: Convection-Diffusion

$$\frac{\partial T}{\partial t} + v \frac{\partial T}{\partial x} = \alpha \frac{\partial^2 T}{\partial x^2}$$

- T(x,t): Temperature
- v: Flow velocity
- α : Thermal diffusivity (assume $\alpha = 0$)
- x: Position
- *t*: Time

Civil Engineering: Pollutant Transport

$$\frac{\partial C}{\partial t} + v \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2}$$

- C(x,t): Pollutant concentration
- v: Groundwater flow velocity
- D: Dispersion coefficient (assume D=0)
- x: Distance along flow
- *t*: Time

Electrical Engineering: Phonon Transport

$$\frac{\partial u}{\partial t} + v_g \frac{\partial u}{\partial x} = 0$$

- u(x,t): Energy density of phonons
- v_g : Group velocity of phonons
- x: Position in material
- *t*: Time

Financial Mathematics: Option Pricing Drift

$$\frac{\partial V}{\partial t} + rS \frac{\partial V}{\partial S} - rV = 0$$

- V(S,t): Price of a financial derivative (e.g., an option)
- S: Underlying asset price
- r: Risk-free interest rate
- *t*: Time

Mathematics: First-order Linear PDE

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$

- u(x,t): Transported quantity
- a: Constant wave or transport speed
- x: Spatial variable
- *t*: Time

Heat Equation

Heat equation has different names in different engineering and science stream.

- Thermodynamics: Heat Equation
- Mechanical Engineer: Diffusion Equation
- Civil engineers (Terzaghi's theory): Consolidation equation for drilling
- Electrical Engineers: Telegraph equation
- Financial Mathematics: Black-Scholes equation

For mathematicians, it is simply a second order PDE or parabolic PDE

Heat Equation

Heat Equation with heat source, convection term are applied in the field of

• Cancer Treatment: Bioheat Equation

Heat Equation

Heat Equation is also applied in

• Medical imaging: Image smoothing

$$\nabla^2 I = \frac{\phi''(S/\epsilon)}{\epsilon^2} \nabla S \otimes \nabla S + \frac{\phi'(S/\epsilon)}{\epsilon} \nabla^2 S \tag{6}$$

• Inverse Problem: In DCIS-Breast Cancer

$$c\frac{\partial \sigma}{\partial t} = \frac{\partial^2 \sigma}{\partial x^2} - \lambda(x)\sigma \tag{7}$$

Diffusion Equation

Atmospheric Diffusion Equation: The dispersion of pollutant concentration from multiple point sources

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} + w \frac{\partial c}{\partial z} = k_x \frac{\partial^2 c}{\partial x^2} + k_y \frac{\partial^2 c}{\partial y^2} + k_z \frac{\partial^2 c}{\partial z^2} + s$$
 (8)

In Chemical Engineering for concentration around the point (x,y,z)

$$\frac{\partial c}{\partial t} = k_x \frac{\partial^2 c}{\partial x^2} + k_y \frac{\partial^2 c}{\partial y^2} + k_z \frac{\partial^2 c}{\partial z^2}$$
(9)

Mechanical Engineering: Diffusion Equation

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

- C(x,t): Concentration of diffusing species (e.g., gas or vapor)
- D: Diffusion coefficient
- x: Position
- *t*: Time

Civil Engineering: Terzaghi's Consolidation Equation

$$\frac{\partial u}{\partial t} = c_v \frac{\partial^2 u}{\partial z^2}$$

- u(z,t): Excess pore water pressure
- c_v : Coefficient of consolidation
- z: Depth
- *t*: Time

Electrical Engineering: Telegraph Equation

$$\frac{\partial^2 V}{\partial x^2} = LC \frac{\partial^2 V}{\partial t^2} + RC \frac{\partial V}{\partial t}$$

- V(x,t): Voltage along the transmission line
- L: Inductance per unit length (assume L=0)
- C: Capacitance per unit length
- R: Resistance per unit length
- x: Position along the line
- *t*: Time

Financial Mathematics: Black-Scholes Equation

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

- V(S, t): Option price
- S: Underlying asset price
- σ : Volatility of the asset
- r: Risk-free interest rate
- *t*: Time

Use substitution, $x = \ln(S/K)$, $\tau = T - t$, and $V(S, t) = Ke^{-r\tau}u(x, \tau)$.

Wave Equation

Wave Equation

Again, wave equation has different names in different engineering and science stream.

- Physics: Vibration of String
- Mechanical Engineer: Vibration of Beams
- Civil engineers (Terzaghi's theory): Seismic Waves Equation
- Electrical Engineers: Electromagnetic Waves
- Financial Mathematics: Analogous wave models

For mathematicians, it is simply a second order PDE or hyperbolic PDE

Wave Equation

Lighthill's acoustic wave equation

$$\left(\frac{\partial^2}{\partial t^2} - c_0^2 \nabla^2\right) \rho = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j} \tag{10}$$

$$T_{ij} = \rho u_i u_j - \tau_{ij} + [(p - p_0) - c_0^2 (\rho - \rho_0)] \delta_{ij}$$

Physics: Vibrating String (Wave Equation)

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

- u(x,t): Displacement of the string
- c: Wave speed in the medium
- x: Position along the string
- *t*: Time

Mechanical Engineering: Vibrations of Beams or Rods

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

- u(x,t): Displacement of the structure
- a: Wave speed determined by material properties
- x: Spatial coordinate
- *t*: Time

Civil Engineering: Seismic and Ground Waves

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

- u(x,t): Displacement in the ground
- v: Propagation speed of seismic wave
- x: Depth or lateral position
- *t*: Time

Electrical Engineering: Electromagnetic Waves

$$\frac{\partial^2 E}{\partial t^2} = c^2 \frac{\partial^2 E}{\partial x^2}$$

- E(x,t): Electric field component of the EM wave
- *c*: Speed of light in the medium
- *x*: Position in space
- *t*: Time

Financial Mathematics: Analogous Wave Models

$$\frac{\partial^2 V}{\partial t^2} = c^2 \frac{\partial^2 V}{\partial x^2}$$

- V(x,t): Price function (in rare wave-based financial models)
- c: Abstract propagation rate of market signal
- x: Log-price or other spatially transformed variable
- *t*: Time

Mathematics: Second-Order Hyperbolic PDE

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

- u(x,t): General wave profile (displacement, signal, etc.)
- c: Constant wave speed
- x: Space variable
- *t*: Time

Physics: Electrostatics (Laplace's Equation)

$$\nabla^2 \phi = 0$$

- $\phi(x, y, z)$: Electric potential
- ∇^2 : Laplacian operator
- Used when charge density is zero in a region

Physics: Electrostatics (Poisson's Equation)

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}$$

- ϕ : Electric potential
- ρ : Charge density
- ε_0 : Permittivity of free space

Mechanical Engineering: Steady-State Heat

$$abla^2 T = 0$$
 (Laplace), $abla^2 T = -rac{q}{k}$ (Poisson)

- T(x,y): Temperature
- q: Internal heat generation
- k: Thermal conductivity

Civil Engineering: Groundwater Flow

$$\nabla^2 h = 0$$

- h(x,y): Hydraulic head
- ∇^2 : Spatial Laplacian
- Describes steady, incompressible flow through porous media

Electrical Engineering: Field Simulation

$$\nabla^2 V = -\frac{\rho}{\varepsilon}$$

- V(x, y, z): Electric potential
- ρ : Charge distribution
- ε : Permittivity of the medium

Financial Mathematics: Steady-State Option Pricing

$$\frac{1}{2}\sigma^2 S^2 \frac{d^2 V}{dS^2} + rS \frac{dV}{dS} - rV = 0$$

- V(S): Option value (steady-state)
- S: Underlying asset price
- σ : Volatility
- r: Interest rate
- This ODE is elliptic akin to Laplace in transformed coordinates

Mathematics: Elliptic PDEs

$$\nabla^2 u = 0$$
 (Laplace), $\nabla^2 u = f(x, y)$ (Poisson)

- u(x, y): Unknown scalar field
- f(x,y): Source term (for Poisson)
- ∇^2 : Laplace operator in 2D or 3D