MA612L-Partial Differential Equations

Lecture 20: Laplace Equation - Fundamental Solution

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

September 26, 2025

Compact Support

Definition 1 (Compact Support)

Let $f: \mathbb{R}^n \to \mathbb{R}$ (or \mathbb{C}) be a function. The *support* of f is defined as

$$\operatorname{supp}(f) := \overline{\{x \in \mathbb{R}^n : f(x) \neq 0\}}.$$

We say that f has $compact \ supp (f)$ is a compact set in \mathbb{R}^n , i.e., it is closed and bounded.

A classical smooth function with compact support is

$$f(x) = \begin{cases} e^{-1/(1-x^2)}, & |x| < 1, \\ 0, & |x| \ge 1. \end{cases}$$

Here, f is smooth (C^{∞}) and zero outside [-1,1], so it has compact support.

Compact Support

The function

$$g(x) = \begin{cases} 1, & |x| \le 2, \\ 0, & |x| > 2 \end{cases}$$

also has compact support, with $\operatorname{supp}(g) = \overline{B_2(0)}$, the closed ball of radius 2. The function

$$h(x) = e^{-x^2}, \quad x \in \mathbb{R},$$

is smooth but *not* compactly supported, since $h(x) \neq 0$ for all $x \in \mathbb{R}$

Fundamental Solution

The Laplace equation appears in both the Heat and Wave equations when we assume that u is independent of time.

$$\Delta u = 0 \quad \text{in} \quad \Omega \subset \mathbb{R}^n \tag{1}$$

Prove that Laplace's equation is invariant under rotations.

We know that when

$$u(\mathbf{x}) = v(r)$$
$$\Delta u = v''(r) + \frac{n-1}{r}v'(r)$$

Fundamental Solution

Now for Laplace equation, we have

$$\Delta u = 0$$

Hence

$$v''(r) + \frac{n-1}{r}v'(r) = 0$$

If $v' \neq 0$, then

$$\log(v')' = \frac{v''}{v'} = \frac{1-n}{r}$$

$$\implies v'(r) = \frac{a}{r^{n-1}}$$

where a is a constant.

Fundamental Solution

Now, when r > 0, we have

$$v(r) = \begin{cases} b \log r + c & (n=2) \\ \frac{b}{r^{n-2}} + c & (n \ge 3) \end{cases}$$
 (2)

where b and c are constants.

Definition 1

The function

$$\Phi(\mathbf{x}) := \begin{cases} -\frac{1}{2\pi} \log |\mathbf{x}| & (n=2)\\ \frac{1}{n(n-2)\alpha(n)|\mathbf{x}|^{n-2}} & (n \ge 3) \end{cases}$$
 (3)

defined for $\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0$ is the fundamental solution of Laplace equation.

Abuse of notations: $\Phi(x) = \Phi(|\mathbf{x}|)$. Why these particular constants??

$$|D\Phi(\mathbf{x})| \le \frac{C}{|\mathbf{x}|^{n-1}}, |D^2\Phi(\mathbf{x})| \le \frac{C}{|\mathbf{x}|^n}, (\mathbf{x} \ne 0)$$

for some constant C.

 Φ is harmonic for $\mathbf{x} \neq 0$ from its construction. If we shift the origin to a new point \mathbf{y} , the PDE (1) is unchanged. Therefore, $\Phi(x-y)$ is also harmonic as a function of \mathbf{x} as $\mathbf{x} \neq \mathbf{y}$.

Let $f: \mathbb{R}^n \to \mathbb{R}$ and note that the mapping $\mathbf{x} \to \Phi(\mathbf{x} - \mathbf{y}) f(\mathbf{x}), \ (\mathbf{x} \neq y)$ is harmonic for each point $\mathbf{y} \in \mathbb{R}^n$.

(4)

We can also prove that

$$u_m(\mathbf{x}) = \sum_{i=1}^m \Phi(\mathbf{x} - \mathbf{y}_i) f(\mathbf{y}_i)$$

is also harmonic where $\mathbf{x} \notin \{\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_m\}$

$$u_m(\mathbf{x}) = \begin{cases} \frac{-1}{2\pi} \sum_{i=1}^m \log(|\mathbf{x} - \mathbf{y}_i|) f(\mathbf{y}_i) & (n = 2) \\ \frac{1}{n(n-2)\alpha(n)} \sum_{i=1}^m \frac{f(\mathbf{y}_i)}{|\mathbf{x} - \mathbf{y}_i|^{n-2}} & (n \ge 3) \end{cases}$$

(4) solves (1). What will happen if $m \to \infty$?

(5)

By extending further, we obtain the convolution

$$u(\mathbf{x}) = \int_{\mathbb{R}^n} \Phi(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$
$$u(\mathbf{x}) = \begin{cases} \frac{-1}{2\pi} \int_{\mathbb{R}^2} \log(|\mathbf{x} - \mathbf{y}|) f(\mathbf{y}) d\mathbf{y} & (n = 2) \\ \frac{1}{n(n-2)\alpha(n)} \int_{\mathbb{R}^n} \frac{f(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{n-2}} d\mathbf{y} & (n \ge 3) \end{cases}$$

Do you expect that (5) solves (1)?

Do you expect that (5) solves (1)?? No. We can't compute

$$\Delta u(\mathbf{x}) = \int_{\mathbb{R}^n} \Delta_x \Phi(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y} = 0$$

$$|D^2\Phi(\mathbf{x} - \mathbf{y})|$$

is not summable near the singularity at y = x. The differentiation under the integral sign above is incorrect.

Now, let us assume that $f \in C^2_c(\mathbb{R}^n)$; that is f is continuously differentiable (twice) with compact support.

Poisson Equation

Theorem 2

Define u by

$$u(\mathbf{x}) = \begin{cases} \frac{-1}{2\pi} \int \log(|\mathbf{x} - \mathbf{y}|) f(\mathbf{y}) d\mathbf{y} & (n = 2) \\ \frac{1}{n(n-2)\alpha(n)} \int_{\mathbb{R}^n} \frac{f(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{n-2}} d\mathbf{y} & (n \ge 3) \end{cases}$$
 (6)

Then

- 1. $u \in C^2(\mathbb{R}^n)$
- 2. $-\Delta u = f$ in \mathbb{R}^n

Proof

We have

$$u(\mathbf{x}) = \int_{\mathbb{R}^n} \Phi(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y} = \int_{\mathbb{R}^n} \Phi(\mathbf{y}) f(\mathbf{x} - \mathbf{y}) d\mathbf{y}$$

Now,

$$\frac{u(\mathbf{x} + he_i) - u(\mathbf{x})}{h} = \int \Phi(\mathbf{y}) \left[\frac{f(\mathbf{x} + he_i - \mathbf{y}) - f(\mathbf{x} - \mathbf{y})}{h} \right] d\mathbf{y}$$

As $h \to 0$, we have

$$\frac{f(\mathbf{x} + he_i - \mathbf{y}) - f(\mathbf{x} - \mathbf{y})}{h} \to \frac{\partial f}{\partial x_i}(\mathbf{x} - \mathbf{y})$$

uniformly on \mathbb{R}^n

Proof

Therefore, we have for $i = 1, 2, \dots, n$

$$\frac{\partial u}{\partial x_i}(\mathbf{x}) = \int_{\mathbb{R}^n} \Phi(\mathbf{y}) \frac{\partial f}{\partial x_i}(\mathbf{x} - \mathbf{y}) d\mathbf{y}$$

Similarly,

$$\frac{\partial^2 u}{\partial x_i \partial x_j}(\mathbf{x}) = \int_{\mathbb{R}^n} \Phi(\mathbf{y}) \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x} - \mathbf{y}) d\mathbf{y}$$

Since f is twice continuously differentiable, and Φ is also continuous, we have $u \in C^2(\mathbb{R}^n)$.

Definition 3 (Lebesgue Outer Measure)

Let $E \subset \mathbb{R}^n$. The *Lebesgue outer measure* of E is defined by

$$m^*(E) := \inf \Bigg\{ \sum_{k=1}^\infty \operatorname{vol}(I_k) : E \subset \bigcup_{k=1}^\infty I_k, \ I_k \ ext{are rectangles in } \mathbb{R}^n \Bigg\},$$

where $vol(I_k)$ denotes the usual n-dimensional volume of I_k , and the infimum is taken over all countable collections of rectangles covering E.

Example 4 (Interval)

For $E = [a, b] \subset \mathbb{R}$, we have

$$m^*([a,b]) = b - a.$$

Example 5 (Finite Set)

For a finite set $E = \{x_1, x_2, \dots, x_n\}$, we have $m^*(E) = 0$.

Example 6 (Countable Set)

For $E = \mathbb{Q} \cap [0,1]$, we also have $m^*(E) = 0$.

Definition 7 (Lebesgue Measurable Set)

A set $E\subset\mathbb{R}^n$ is called *Lebesgue measurable* if for every set $A\subset\mathbb{R}^n$, the Lebesgue outer measure m^* satisfies

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^c),$$

where E^c is the complement of E and m^* is the Lebesgue outer measure. Intuitively, E is measurable if its size (measure) behaves well with respect to any other set A, so that cutting A into pieces inside and outside E exactly adds up in measure.

Example 8 (Intervals in \mathbb{R})

Any interval $[a,b],(a,b),[a,b),(a,b]\subset\mathbb{R}$ is Lebesgue measurable, with measure equal to its length:

$$m([a,b]) = b - a.$$

Example 9 (Open and Closed Sets)

All open or closed sets in \mathbb{R}^n are Lebesgue measurable.

Example 10 (Null Sets)

Any set of Lebesgue measure zero (e.g., a finite or countable set of points in \mathbb{R}^n) is Lebesgue measurable.

Example 11 (Non-Measurable Sets)

There exist sets in \mathbb{R} (like the Vitali set) which are not Lebesgue measurable. These sets are constructed using the axiom of choice and cannot have a well-defined Lebesgue measure.

Definition 12 (σ **-Algebra)**

Let X be a set. A collection $\mathcal{F}\subset 2^X$ of subsets of X is called a σ -algebra if it satisfies the following three properties:

- 1. (Non-empty) $X \in \mathcal{F}$.
- **2.** (Closed under complement) If $A \in \mathcal{F}$, then $A^c = X \setminus A \in \mathcal{F}$.
- 3. (Closed under countable unions) If $\{A_n\}_{n=1}^{\infty} \subset \mathcal{F}$, then

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}.$$

From these properties, it also follows that ${\cal F}$ is closed under countable intersections:

$$\bigcap_{n=1}^{\infty} A_n \in \mathcal{F}, \quad \text{for any } A_n \in \mathcal{F}.$$

Example 13 (Trivial σ -algebra)

For any set X, $\mathcal{F} = \{\emptyset, X\}$ is a σ -algebra.

Example 14 (Power Set)

The power set $\mathcal{F} = 2^X$ is a σ -algebra.

Example 15 (Borel σ -algebra)

For $X = \mathbb{R}$, the collection of all Borel sets (generated from open intervals by countable unions, intersections, and complements) forms a σ -algebra.

Example 16 (Lebesgue measurable sets σ -algebra)

Lebesgue-measurable sets form a σ -algebra

Definition 17 (Lebesgue Measure on \mathbb{R}^n **)**

Lebesgue measure m is a set function $m:\mathcal{L}\subset 2^{\mathbb{R}^n}\to [0,\infty]$, defined on the σ -algebra \mathcal{L} of Lebesgue measurable sets, satisfying:

- 1. (Non-negativity) $m(E) \geq 0$ for all $E \in \mathcal{L}$.
- 2. (Null empty set) $m(\emptyset) = 0$.
- 3. (Countable additivity) If $\{E_i\}_{i=1}^{\infty}$ are disjoint sets in \mathcal{L} , then

$$m\Big(\bigcup_{i=1}^{\infty} E_i\Big) = \sum_{i=1}^{\infty} m(E_i).$$

4. **(Translation invariance)** For any $E \in \mathcal{L}$ and $x_0 \in \mathbb{R}^n$,

$$m(E+x_0)=m(E),$$

where
$$E + x_0 := \{x + x_0 : x \in E\}.$$

- Lebesgue measure generalizes length/area/volume to very irregular sets.
- It allows integration of more functions (not just continuous ones) and forms the basis of Lebesgue integration in analysis.

Definition 18 (Lebesgue Measurable Function)

A function $f:\mathbb{R}^n\to\mathbb{R}$ is said to be *Lebesgue measurable* if for every $\alpha\in\mathbb{R}$, the set

$$\{x \in \mathbb{R}^n : f(x) > \alpha\}$$

is Lebesgue measurable.

Example 19 (Continuous Functions)

Every continuous function $f:\mathbb{R}^n\to\mathbb{R}$ is Lebesgue measurable because the set $\{x:f(x)>\alpha\}$ is open, hence measurable.

Example 20 (Characteristic Function)

Let $E \subset \mathbb{R}^n$ be Lebesgue measurable. Then its characteristic function

$$\chi_E(x) = \begin{cases} 1, & x \in E, \\ 0, & x \notin E \end{cases}$$

is Lebesgue measurable.

$$\mathcal{L}^p(\Omega) = \{f : \Omega \to \mathbb{R} : f \text{ is Lebesgue measurable}, ||f||_{L^p(\Omega)} < \infty \}$$

Here,

$$||f||_{L^p(\Omega)} = \left(\int\limits_{\Omega} |f|^p d\mathbf{x}\right)^{\frac{1}{p}} \quad (1 \le p \le \infty)$$

$$\mathcal{L}^{\infty}(\Omega) = \{f : \Omega \to \mathbb{R} : f \text{ is Lebesgue measurable}, \|f\|_{L^{\infty}(\Omega)} < \infty\}$$

Here,

$$||f||_{L^{\infty}(\Omega)} = \sup_{\Omega} |f|$$

Remember that Φ has a singularity near 0. What type of singularity? Let us isolate this singularity as follows: Consider a small ball of radius $\epsilon > 0$. Then

$$\Delta u(\mathbf{x}) = \int_{B(\mathbf{0},\epsilon)} \Delta_x \Phi(\mathbf{y}) f(\mathbf{x} - \mathbf{y}) d\mathbf{y} + \int_{\mathbb{R}^n - B(\mathbf{0},\epsilon)} \Phi(\mathbf{y}) \Delta_x f(\mathbf{x} - \mathbf{y}) d\mathbf{y}$$

Now

$$|I_{\epsilon}| \le C \|D^2 f\|_{L^{\infty}(\mathbb{R}^n)} \int_{B(\mathbf{0},\epsilon)} |\Phi(\mathbf{y})| d\mathbf{y}$$

From volume of ball $B(\mathbf{0}, \epsilon)$ and (3)

$$|I_{\epsilon}| \le \begin{cases} C\epsilon^2 |\log \epsilon| & (n=2) \\ C\epsilon^2 & (n \ge 3) \end{cases} \tag{7}$$

Preliminaries

Theorem 21 (Gauss-Green Theorem)

Suppose $u \in C^1(\overline{\Omega})$. Then

$$\int_{\Omega} u_{x_i} dx = \int_{\partial \Omega} u \nu^i dS \tag{8}$$

where $i = 1, 2, \dots, n$.

Theorem 22 (Integration by Parts)

Suppose $u, v \in C^1(\overline{\Omega})$. Then

$$\int_{\Omega} u_{x_i} v d\mathbf{x} = -\int_{\Omega} u v_{x_i} d\mathbf{x} + \int_{\partial \Omega} u v \nu^i dS$$
(9)

where $i = 1, 2, \dots, n$.

An integration by parts, we obtain that

$$|J_{\epsilon}| = \int_{\mathbb{R}^{n} - B(\mathbf{0}, \epsilon)} \Phi(\mathbf{y}) \Delta_{x} f(\mathbf{x} - \mathbf{y}) d\mathbf{y}$$

$$= -\int_{\mathbb{R}^{n} - B(\mathbf{0}, \epsilon)} D\Phi(\mathbf{y}) \cdot \Delta_{y} f(\mathbf{x} - \mathbf{y}) d\mathbf{y} + \int_{\partial B(\mathbf{0}, \epsilon)} \Phi(\mathbf{y}) \frac{\partial f}{\partial \nu} (\mathbf{x} - \mathbf{y}) dS(\mathbf{y})$$

$$\downarrow_{L_{\epsilon}}$$

where ν denotes the inward pointing unit normal along $\partial B(\mathbf{0},\epsilon)$

Now

$$|L_{\epsilon}| \leq ||Df||_{L^{\infty}(\mathbb{R}^n)} \int_{\partial B(\mathbf{0}, \epsilon)} |\Phi(\mathbf{y})| dS\mathbf{y}$$

From volume of sphere $\partial B(\mathbf{0}, \epsilon)$ and (3)

$$|L_{\epsilon}| \le \begin{cases} C\epsilon |\log \epsilon| & (n=2) \\ C\epsilon & (n \ge 3) \end{cases}$$

(10)

An integration by parts for $K_{\epsilon_{\ell}}$ we obtain that

$$|K_{\epsilon}| = \int_{\mathbb{R}^{n} - B(\mathbf{0}, \epsilon)} \Delta\Phi(\mathbf{y}) f(\mathbf{x} - \mathbf{y}) d\mathbf{y} - \int_{\partial B(\mathbf{0}, \epsilon)} \frac{\partial\Phi(\mathbf{y})}{\partial\nu} f(\mathbf{x} - \mathbf{y}) dS(\mathbf{y})$$
$$= -\int_{\partial B(\mathbf{0}, \epsilon)} \frac{\partial\Phi(\mathbf{y})}{\partial\nu} f(\mathbf{x} - \mathbf{y}) dS(\mathbf{y})$$

Since Φ is harmonic in the region $\mathbb{R}^n - B(\mathbf{0}, \epsilon)$

$$D\Phi(\mathbf{y}) = -\frac{1}{n\alpha(n)} \frac{\mathbf{y}}{|\mathbf{y}|^n}, \quad (\mathbf{y} \neq 0)$$
$$\nu = \frac{-\mathbf{y}}{|\mathbf{y}|} = -\frac{|\mathbf{y}|}{\epsilon}$$

on $\partial B(\mathbf{0}, \epsilon)$.

$$\frac{\partial \phi}{\partial \nu}(\mathbf{y}) = \nu.D\Phi(\mathbf{y}) = \frac{1}{n\alpha(n)\epsilon^{n-1}}$$

on $\partial B(\mathbf{0}, \epsilon)$.

$$\begin{split} |K_{\epsilon}| &= -\frac{1}{n\alpha(n)\epsilon^{n-1}} \int\limits_{\partial B(\mathbf{0},\epsilon)} f(\mathbf{x} - \mathbf{y}) dS(\mathbf{y}) \\ &= -\int\limits_{\partial B(\mathbf{x},\epsilon)} f(y) dS(y) \\ &\to -f(\mathbf{x}) \quad (\text{as} \quad \epsilon \to 0) \end{split}$$

Hence $-\Delta u(\mathbf{x}) = f(\mathbf{x})$ as $\epsilon \to 0$. Hence the proof.

Remarks

For a few problems, you need to solve

$$-\Delta\Phi = \delta_0$$
 in \mathbb{R}^n

where δ_0 denotes the Dirac measure on \mathbb{R}^n giving unit mass to the point 0. Here, we have

$$-\Delta u(\mathbf{x}) = \int_{\mathbb{R}^n} -\Delta_x \Phi(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$
$$= \int_{\mathbb{R}^n} \delta_{\mathbf{x}} f(\mathbf{y}) d\mathbf{y}$$
$$= f(\mathbf{x}) \quad (\mathbf{x} \in \mathbb{R}^n)$$

Mean-value Formulas

Now, we are looking again the average integral, which we have discussed for wave equation.

Theorem 23

 $u \in C^2(\Omega)$ is harmonic, if and only if,

$$u(\mathbf{x}) = \int_{\partial B(\mathbf{x},r)} u dS = \int_{B(\mathbf{x},r)} u dy$$
 (11)

for each ball $B(\mathbf{x}, r) \subset \Omega$.

Proof:

As we have seen in the Wave equation, we have

$$\phi(r) := \int_{\partial B(\mathbf{x},r)} u(\mathbf{y}) dS(\mathbf{y}) = \int_{\partial B(\mathbf{0},1)} u(\mathbf{x} + r\mathbf{z}) dS(\mathbf{z})$$

$$\implies \phi'(r) = \int_{\partial B(\mathbf{0},1)} Du(\mathbf{x} + r\mathbf{z}) \cdot \mathbf{z} dS(\mathbf{z})$$

$$= \int_{\partial B(\mathbf{x},r)} Du(\mathbf{y}) \cdot \frac{\mathbf{y} - \mathbf{x}}{r} dS(\mathbf{y})$$

$$= \int_{\partial B(\mathbf{x},r)} \frac{\partial u}{\partial \nu} dS(\mathbf{y})$$

By Green's formula, we have

$$\int\limits_{\Omega} \Delta u d\mathbf{x} = \int\limits_{\partial\Omega} \frac{\partial u}{\partial \nu} dS$$

Hence

$$\implies \phi'(r) = \int_{\partial B(\mathbf{x},r)} \frac{\partial u}{\partial \nu} dS(\mathbf{y}) = \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B(\mathbf{x},r)} \frac{\partial u}{\partial \nu} dS(\mathbf{y})$$
$$= \frac{r}{n} \frac{1}{\alpha(n)r^n} \int_{B(\mathbf{x},r)} \Delta u d(\mathbf{y}) = \frac{r}{n} \int_{B(\mathbf{x},r)} \Delta u d(\mathbf{y}) = 0$$

 $\implies \phi$ is constant.

$$\phi(r) = \lim_{t \to 0} \phi(t) = \lim_{t \to 0} \int_{\partial B(\mathbf{x}, t)} u(\mathbf{y}) dS(\mathbf{y}) = u(\mathbf{x})$$

Therefore, we have proved that

$$u(\mathbf{x}) = \int_{\partial B(\mathbf{x},r)} udS \implies \int_{\partial B(\mathbf{x},r)} udS = n\alpha(n)r^{n-1}u(\mathbf{x})$$

Now, it is sufficient prove that

$$u(\mathbf{x}) = \int_{B(\mathbf{x}, r)} u dy$$

when u is harmonic

Proof(continued)

The following results can be obtained from the Coarea formula (or a curvilinear Fubini Theorem). For continuous integrable functions $f: \mathbb{R}^n \to \mathbb{R}$, the spherical integration formula is given by

$$\int_{\mathbb{R}^n} f d\mathbf{x} = \int_0^\infty \left(\int_{\partial B(\mathbf{x}, r)} f dS \right) dr$$

In particular,

$$\int_{B(\mathbf{x},r)} f d\mathbf{x} = \int_{0}^{r} \left(\int_{\partial B(\mathbf{x},s)} f dS \right) ds$$

Proof(continued)

$$\int_{B(\mathbf{x},r)} u dy = \frac{1}{\alpha(n)r^n} \int_{B(\mathbf{x},r)} u dy = \frac{1}{\alpha(n)r^n} \int_0^r \left(\int_{\partial B(\mathbf{x},s)} u dS \right) ds$$

$$= \frac{1}{\alpha(n)r^n} \int_0^r n\alpha(n)s^{n-1}u(\mathbf{x})ds = u(\mathbf{x})$$

Conversely, suppose, u is not harmonic, then there exists a ball $B(\mathbf{x},r)\subset\Omega$ such that $\Delta u\not\equiv 0$. Suppose $\Delta u>0$ within $B(\mathbf{x},r)$. Then

$$0 = \phi'(r) = \frac{r}{n} \oint \Delta u d(\mathbf{y}) > 0 \Rightarrow \Leftarrow$$

Hence the proof.

Maximum-Minimum Principle

Strong Maximum Principle

Theorem 24

Suppose $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is harmonic within Ω .

1. If Ω is connected and there exists a point $x_0 \in \Omega$ such that

$$u(x_0) = \max_{\overline{\Omega}} u$$

then u is constant within Ω

2. Further

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$$

Proof:

Suppose there exists a point $x_0 \in \Omega$ with

$$u(x_0) = M := \max_{\overline{\Omega}} u$$

Then for $0 < r < dist(x_0, \partial \Omega)$, the mean value property asserts that

$$M = u(x_0) = \int_{B(\mathbf{x}_0, r)} u d\mathbf{y} \le M$$

The equality holds only if $u \equiv M$ within $B(\mathbf{x}_0, r)$. Hence $u(\mathbf{y}) = M$ for all $\mathbf{y} \in B(\mathbf{x}, r)$. Therefore, $\Omega_1 = \{\mathbf{x} \in \Omega : u(\mathbf{x}) = M\}$ is open and relatively closed in Ω . Also $\Omega_1 = \Omega$ if Ω is connected. Hence, u is constant within Ω . The second part follows immediately.

Strong Maximum Principle:

Remarks

- 1. The first part of the theorem is strong maximum principle
- 2. The second part of the theorem is called maximum principle.
- 3. If we replace u by -u, we obtain strong minimum and minimum principles.
- 4. If u=f on $\partial\Omega$ where $f\geq 0$, then u is positive everywhere in Ω if f is positive somewhere on $\partial\Omega$
- 5. We can prove the uniqueness solutions of boundary value problems for Poisson equation using this maximum principle.

Uniqueness

Theorem 25 (Uniqueness)

Let $f\in C(\partial\Omega), h\in C(\Omega)$. Then there exists at most one solution $u\in C^2(\Omega)\cap C(\overline{\Omega})$ of the boundary value problem

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = f & \text{on } \partial \Omega \end{cases} \tag{12}$$

Proof; Let u_1 and u_2 satisfy (12). Let $w = u_1 - u_2 \implies \Delta w = 0$. Now, we apply the strong maximum principle on this, we obtain that $w \equiv 0$. Hence $u_1 = u_2$.

Mollifiers

Locally Integrable

Let $\Omega \subset \mathbb{R}^n$ be an open set. We say $\Omega_1 \subset\subset \Omega$ if Ω_1 is compactly contained in Ω . That is, $\Omega_1 \subset \overline{\Omega_1} \subset \Omega$ is compact.

Definition 2 (Locally Integrable)

$$L^p_{loc}(\Omega):=\{f:\Omega\to\mathbb{R}:f\in L^p(\Omega_1)\text{for each }\Omega_1\subset\subset\Omega\}$$

Let $f:\Omega \to \mathbb{R}$ is measurable. We say $f\in L^1_{loc}$ iff

$$\int_{K} |f(\mathbf{x})| d\mathbf{x} < \infty$$

for all compact sets $K \subset \Omega$.

Locally Integrable

Example 1

- 1. Constant functions defined on real line is locally integrable but not globally integrable as the real line has infinite measure
- 2. Continuous functions
- 3. Integrable functions
- 4. $f(x)=1/x, x\in(0,1)$ is locally integrable, but not globally integrable. [Since any compact set $K\subset(0,1)$ has positive distance from 0 and 1 and f is bounded on K]
- $5. \ 1/x \in L^1_{loc}(\mathbb{R} \setminus 0)$
- 6. f(x) = 1/x if $x \neq 0$ and f(x) = 0 if x = 0 is not locally integrable in x = 0.

Read more details about this on Distribution Theory courses.

Locally Integrable

Theorem 26

- 1. The locally integral functions form a linear space
- 2. L_{loc}^p is a complete metrizable space.
- 3. $f \in L_p(\Omega)$ is locally integrable

Lebesgue Differentiation Theorem

Theorem 27 (Lebesgue Differentiation Theorem)

Let $f:\mathbb{R}^n \to \mathbb{R}$ be locally integrable. Then for a.e point $x_0 \in \mathbb{R}^n$,

1.

$$\oint_{B(\mathbf{x}_0,r)} f d\mathbf{x} o f(\mathbf{x}_0)$$
 as $r o 0$

2

$$\int\limits_{B(\mathbf{x}_0,r)}|f(\mathbf{x})-f(\mathbf{x}_0)|d\mathbf{x} o 0$$
 as $r o 0$

The point at which (2) holds is called a Lebesgue point of f.

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

