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Fundamental Solution



Compact Support

Definition 1 (Compact Support)
Let f : R” — R (or C) be a function. The support of f is defined as

supp(f) := {z € R": f(z) # 0}.

We say that f has compact support if supp(f) is a compact set in R", i.e,, it is
closed and bounded.

A classical smooth function with compact support is

—1/(1—22) 1
fy=qC " s
0, |z > 1.

Here, f is smooth (C*°) and zero outside [—1, 1], so it has compact support.




Compact Support
The function

( ) 17 ‘x’ S 27
xTr) =
g 0, |z|>2

also has compact support, with supp(g) = B2(0), the closed ball of radius 2.
The function ,
h(z)=e*, zeR,

is smooth but not compactly supported, since h(z) # 0 forall z € R




Fundamental Solution

The Laplace equation appears in both the Heat and Wave equations when we
assume that « is independent of time.

Au=0 in QCR" (M

Prove that Laplace’s equation is invariant under rotations.
We know that when
u(x) = v(r)
n—1

Au =" (r) + ——'(r)

r



Fundamental Solution

Now for Laplace equation, we have

Hence

If v’ # 0, then

where ¢ is a constant.

Au=0
1
’U//(T') n U/(’I") — 0
T
/! ].—TL
1 / /:/lji:
og(v)) = = = —
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Fundamental Solution

Now, when r > 0, we have

where b and ¢ are constants.

Definition 1
The function

B(x) = {—;ﬂ log1|x| (n=2) 3)

nn—2)a(n)x|" 2 (n=3)

defined for x € R, x # 0 is the fundamental solution of Laplace equation.
Abuse of notations: ®(z) = ®(|x|).Why these particular constants??




Observations

D2B(x)| < < (x £0)

x|’

D2 <

for some constant C.

® is harmonic for x # 0 from its construction. If we shift the origin to a new
point y, the PDE (1) is unchanged. Therefore, ®(z — y) is also harmonic as a
functionof xas x # y.

Let f : R” — R and note that the mappingx — ®(x —y) f(x), (x #y)is
harmonic for each point y € R".




Observations

We can also prove that

m

() = 3 B(x — yi) ()

i=1

is also harmonic where x ¢ {y1,y2, - ,ym}
1
o Z log(Ix — yil) /(i) (n=2)

U (X) =
Z ’X ‘n 2 nz 3)

(4) solves (1). What will happen if m — co?




Observations

By extending further, we obtain the convolution
ux) = [ @x—y)f(v)dy
Rn
—1
Q/bak—ﬂHWMy(nZ%
T

TOET L/RyW2@1m>3)

Do you expect that (5) solves (1)?

u(x) =




Observations

Do you expect that (5) solves (1)?? No. We can’t compute

Au(x) = / ApB(x — y)f(y)dy = 0
J

|D*®(x — )|

is not summable near the singularity at y = x. The differentiation under the
integral sign above is incorrect.

Now, let us assume that f € C%(R"); that is f is continuously differentialble
(twice) with compact support.




Poisson Equation

Theorem 2
Define u by
=1l
= / log(x — y))/(y)dy (n=2)
u(x) =
o /|x—y|n 74y (n=3)
Then
1. u € C%(R")

2. ~Au=f in R®

(6)




Now,

h

As h — 0, we have

f(x+hei—y)—flx—y) _Of
h ~ Ox;

(x—y)

uniformly on R™




Proof

Therefore, we have for: =1,2,--- . n

09 = [ o5) 5L (x - y)ay

Rn

0%u 0% f
g 00 = [ow)5s 5 e y)dy

Similarly,

Rn
Since f is twice continuously differentiable, and ® is also continuous, we
have v € C%(R").




Recall from Lebesgue Measure Theory:

Definition 3 (Lebesgue Outer Measure)
Let £ C R™. The Lebesgue outer measure of E is defined by

m*(E) := inf { > “vol(Iy) : E C | I, Ik are rectangles in ]R"},

k=1 k=1

where vol(I}) denotes the usual n-dimensional volume of I, and the infimum is taken over all
countable collections of rectangles covering E.




Recall from Lebesgue Measure Theory:

Example 4 (Interval)
For E = [a,b] C R, we have
m*([a,b]) = b — a.

I Example 5 (Finite Set)

For a finite set £ = {z1, 2, ..., Zn }, Wwe have m*(E) = 0.

Example 6 (Countable Set)
For E = Qn [0, 1], we also have m*(E) = 0.




Recall from Lebesgue Measure Theory:

Definition 7 (Lebesgue Measurable Set)
A set E C R" is called Lebesgue measurable if for every set A C R", the Lebesgue outer
measure m* satisfies

m*(A) =m"(ANE)+m" (AN E°),
where E° is the complement of E and m™ is the Lebesgue outer measure.
Intuitively, £ is measurable if its size (measure) behaves well with respect to any other set A4,
so that cutting A into pieces inside and outside E exactly adds up in measure.

Example 8 (Intervals in R)
Any interval [a, ], (a,b), [a,b), (a,b] C R is Lebesgue measurable, with measure equal to its
length:

m([a,b]) = b — a.




Proof (Recall from Lebesgue Measure Theory):

All open or closed sets in R™ are Lebesgue measurable.

I Example 9 (Open and Closed Sets)

Example 10 (Null Sets)
Any set of Lebesgue measure zero (e.g., a finite or countable set of points in R™) is Lebesgue
measurable.

Example 11 (Non-Measurable Sets)
There exist sets in R (like the Vitali set) which are not Lebesgue measurable. These sets are
constructed using the axiom of choice and cannot have a well-defined Lebesgue measure.




Recall from Lebesgue Measure Theory:

Definition 12 (o-Algebra)
Let X be a set. A collection F C 2% of subsets of X is called a o-algebra if it satisfies the
following three properties:

1. (Non-empty) X € F.
2. (Closed under complement) If A € F,then A°= X\ A€ F.
3. (Closed under countable unions) If {A,}32; C F, then

[ee]
A er
n=1
From these properties, it also follows that F is closed under countable intersections:

() An € F, forany A, e F.
=il




Recall from Lebesgue Measure Theory:

Example 13 (Trivial o-algebra)
For any set X, ¥ = {0, X'} is a o-algebra.

Example 14 (Power Set)

The power set F = 2% is a o-algebra.

Example 15 (Borel o-algebra)
For X = R, the collection of all Borel sets (generated from open intervals by countable unions,
intersections, and complements) forms a o-algebra.

Example 16 (Lebesgue measurable sets o-algebra)
Lebesgue-measurable sets form a o-algebra




Proof (Recall from Lebesgue Measure Theory):

Definition 17 (Lebesgue Measure on R")
Lebesgue measure m is a set function m : £ c 28" — [0, o0], defined on the o-algebra £ of
Lebesgue measurable sets, satisfying:

1. (Non-negativity) m(E) > 0 forall £ € L.
2. (Null empty set) m(0) = 0.
3. (Countable additivity) If { F;};2, are disjoint sets in £, then

4. (Translation invariance) For any E € £ and x, € R",
m(E + vo) = m(E),

where E + zo := {z + zo : © € E}.




Proof (Recall from Lebesgue Measure Theory):

® | ebesgue measure generalizes length/area/volume to very irregular sets.

e |t allows integration of more functions (not just continuous ones) and
forms the basis of Lebesgue integration in analysis.

Definition 18 (Lebesgue Measurable Function)
A function f : R® — R is said to be Lebesgue measurable if for every a € R,

the set
{z eR": f(z) > a}

is Lebesgue measurable.



Proof (Recall from Lebesgue Measure Theory):

Example 19 (Continuous Functions)
Every continuous function f : R” — R is Lebesgue measurable because the
set {z : f(x) > a} is open, hence measurable.

Example 20 (Characteristic Function)
Let E ¢ R" be Lebesgue measurable. Then its characteristic function

17 xEE’

xe(@) = {0, x ¢ FE

is Lebesgue measurable.




Proof (Recall from Lebesgue Measure Theory):

LP(Q) ={f:Q—R: fis Lebesgue measurable, || || 1») < oo}

£l zr () = (/ fpdx) (1<p<o0)
0

L) ={f:Q—R: fis Lebesgue measurable, || f|| ;) < oo}

Here,

Here,
| fll oo (@) = Slglzp|f’




Proof(continued)

Remember that ® has a singularity near 0. What type of singularity? Let us
isolate this singularity as follows: Consider a small ball of radius ¢ > 0. Then

/ ALB(y)f(x — y)dy + / B(y)Arf(x — y)dy

B(0,¢) R”—B(0,¢)

I. Je
Now
1] < CID ey [ [0(3)ldy
B(0,¢)
From volume of ball B(0, ¢) and (3)

Ce*|loge| (n=2)
el < {062 (n > 3) @)




Preliminaries

Theorem 21 (Gauss-Green Theorem)

Suppose u € C1(Q). Then
/ Uy, dx = / uv'dS (8)

Q 1)9]

wherei =1,2,--- ,n.

Theorem 22 (Integration by Parts)
Suppose u,v € C*(Q). Then

/uxivdx: —/uvxidx—i—/uvyids 9)

Q Q o0

wherei=1,2,--- ,n.




Proof(continued)

An integration by parts, we obtain that

ul= [ emrec-yay

R”—B(0,¢)

0
= Do(y). Ay f(x —y)dy + / @(Y)%(X —y)dS(y)
OB(0,¢)
K. Lo
where v denotes the inward pointing unit normal along 9B(0, ¢)

R"—B(0,¢)




Proof(continued)

Now
L < |Df| gz / B(y)|dSy
9B(0,¢)

From volume of sphere 9B(0, ¢) and (3)

L] < Cellogel (n=2)
“ 7 ) Ce (n>3)

v




Proof(continued)

An integration by parts for K, we obtain that

K| = / AD(y)f(x — y)dy — / — y)ds(y)
R"—B(0,¢) B(0,c
-/ 8q;(VY)f(x—y)dS(y)
OB(0,¢)

Since @ is harmonic in the region R — B(0,¢)

_ Ly
D(I)(y)__na(n)W’ (Y#O)
Loy _ bl

ly| €

on 0B(0,¢).



Proof(continued)

0 1
oY) = 1DBY) = s
on 0B(0,¢).

B /“f@—yMﬂw

na(n)er
9B(0,¢)

—- f Jwisw)
OB(x,¢)
— —f(x) (as e€—0)

K| =~

Hence —Au(x) = f(x) as e — 0. Hence the proof.




Remarks

For a few problems, you need to solve
—A® =4, in R”

where 4, denotes the Dirac measure on R™ giving unit mass to the point 0.
Here, we have

_ Au(x) = / —A,B(x — y) f(y)dy
J

— [ sty
J

=f(x) (xeR")




Mean-Value Formulas
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Mean-value Formulas

Now, we are looking again the average integral, which we have discussed for
wave equation.

Theorem 23
u € C2(2) is harmonic, if and only if,

u(x) = ][ udS = ][ udy (1)

for each ball B(x,r) C Q.



Proof:

As we have seen in the Wave equation, we have

o(r) = ][ u(y)dS(y) = ][ u(x +rz)dS(z)

dB(x,r) 8B(0,1)

= ¢'(r) = ][ Du(x + rz).zdS(z)
dB(0,1)

][Du

OB(x,r)

ou
= f Pasty)
OB (x,r)

()




Proof(continued)

By Green's formula, we have

/Audx— —dS
Hence
ou 1 ou
— ¢'(r) = @ds( y)= S / @ds( y)
6B(xr OB(x,r)

/ Aud(y ][ Aud(y
B xr

— ¢ is constant.




Proof(continued)

o(r) = lim (t) = lim f u(y)dS(y) = u(x)

t—0 t—0
OB(x,t)

Therefore, we have proved that

u(x) = ][ udS —> / wdS = na(n)r"u(x)

0B(x,r) 0B(x,r)

Now, it is sufficient prove that

when w« is harmonic



Proof(continued)

The following results can be obtained from the Coarea formula (or a
curvilinear Fubini Theorem). For continuous integrable functions f : R" — R,
the spherical integration formula is given by

o0

R[fdx:/ / fdS | dr

0 \9B(x,r)

In particular,

r

/fdx:/ / £ds | ds

B(x,r) 0 \9B(x,s)



Proof(continued)

][ udy:a(nl)rn / udy:a(;)rno/ / udsS | ds

B(x,r) )

B(x
S Tnozns"_lux s = u(x
—am)rno/ ()"~ u(x)ds = u(x)

Conversely, suppose, u is not harmonic, then there exists a ball B(x,r) C Q
such that Au # 0. Suppose Au > 0 within B(x,r). Then

0=d¢(r) = % ][ Aud(y) > 0 =<«
B(x,r)

Hence the proof.



Maximum-Minimum
Principle
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Strong Maximum Principle

Theorem 24
Suppose u € C?(22) N C(£2) is harmonic within €.

1. If Qis connected and there exists a point 2y € Q such that

u(rp) = maxu
Q

then w is constant within 2
2. Further

maxu = maxu
o Gy




Proof:

Suppose there exists a point zg € Q2 with

u(zg) = M = mﬁaxu

Then for 0 < r < dist(x, 02), the mean value property asserts that

M = u(xg) = ][ udy < M
B(xo,r)

The equality holds only if w = M within B(xq, ). Hence u(y) = M for all
y € B(x,r). Therefore, Q; = {x € Q : u(x) = M} is open and relatively closed
in Q. Also ; = Q if Q is connected. Hence, u is constant within 2. The
second part follows immediately.



Strong Maximum Principle:

Remarks

1.
2.
3.

The first part of the theorem is strong maximum principle
The second part of the theorem is called maximum principle.

If we replace u by —u, we obtain strong minimum and minimum
principles.

If w = f on 9Q where f > 0, then v is positive everywhere in Q if f is
positive somewhere on 952

We can prove the uniqueness solutions of boundary value problems for
Poisson equation using this maximum principle.




Uniqueness

Theorem 25 (Uniqueness)
Let f € C(99Q),h € C(£2). Then there exists at most one solution u € C%(Q) N
C(9Q) of the boundary value problem

{—AUZf in Q (12)
u=f on 0f)

Proof; Let u; and us satisfy (12). Let w = u; —us = Aw = 0. Now, we apply
the strong maximum principle on this, we obtain that w = 0. Hence u; = us».



Mollifiers
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Locally Integrable
Let 2 C R™ be an open set. We say 2; cC Qif Q; is compactly contained in

Q. Thatis, Q; C Q; C Qis compact.

Definition 2 (Locally Integrable)

LY (Q):={f: Q= R: feLP(Q)foreachQ; cc O}

Let f : © — R is measurable. We say f € L}, . iff

[ 176l < oo
K

for all compact sets K C Q.




Locally Integrable

1. Constant functions defined on real line is locally integrable but not
globally integrable as the real line has infinite measure

Continuous functions
Integrable functions

f(xz)=1/z,2 € (0,1) is locally integrable, but not globally integrable.
[Since any compact set K C (0, 1) has positive distance from 0 and 1 and

f is bounded on K]
5. 1/z € L} (R~ 0)

6. f(z) =1/xzifx #0and f(z) = 0if x = 0 is not locally integrable in x = 0.
Read more details about this on Distribution Theory courses.

s~ DN




Locally Integrable

Theorem 26
1. The locally integral functions form a linear space
2. L}  is a complete metrizable space.
3. f e Ly(2)is locally integrable




Lebesgue Differentiation Theorem

Theorem 27 (Lebesgue Differentiation Theorem)
Let f : R™ — R be locally integrable. Then for a.e point 2y € R",

1.
fdx — f(x0) as r—0

B(xo,r)

|f(x) — f(xo)|dx =0 as r—0
B(xq,r)

The point at which (2) holds is called a Lebesgue point of f.
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Doubts and Suggestions
panch.m@iittp.ac.in
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