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Compact Support

Definition 1 (Compact Support)
Let f : Rn → R (or C) be a function. The support of f is defined as

supp(f) := {x ∈ Rn : f(x) ̸= 0}.

We say that f has compact support if supp(f) is a compact set in Rn, i.e., it is
closed and bounded.

A classical smooth function with compact support is

f(x) =

{
e−1/(1−x2), |x| < 1,

0, |x| ≥ 1.

Here, f is smooth (C∞) and zero outside [−1, 1], so it has compact support.
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Compact Support
The function

g(x) =

{
1, |x| ≤ 2,

0, |x| > 2

also has compact support, with supp(g) = B2(0), the closed ball of radius 2.
The function

h(x) = e−x2
, x ∈ R,

is smooth but not compactly supported, since h(x) ̸= 0 for all x ∈ R
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Fundamental Solution
The Laplace equation appears in both the Heat and Wave equations when we
assume that u is independent of time.

∆u = 0 in Ω ⊂ Rn (1)

Prove that Laplace’s equation is invariant under rotations.
We know that when

u(x) = v(r)

∆u = v′′(r) +
n− 1

r
v′(r)
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Fundamental Solution
Now for Laplace equation, we have

∆u = 0

Hence
v′′(r) +

n− 1

r
v′(r) = 0

If v′ ̸= 0, then

log(v′)′ =
v′′

v′
=

1− n

r

=⇒ v′(r) =
a

rn−1

where a is a constant.
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Fundamental Solution
Now, when r > 0, we have

v(r) =

{
b log r + c (n = 2)

b
rn−2 + c (n ≥ 3)

(2)

where b and c are constants.

Definition 1
The function

Φ(x) :=

{
− 1

2π log |x| (n = 2)
1

n(n−2)α(n)|x|n−2 (n ≥ 3)
(3)

defined for x ∈ Rn,x ̸= 0 is the fundamental solution of Laplace equation.
Abuse of notations: Φ(x) = Φ(|x|).Why these particular constants??
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Observations

|DΦ(x)| ≤ C

|x|n−1
, |D2Φ(x)| ≤ C

|x|n
, (x ̸= 0)

for some constant C.
Φ is harmonic for x ̸= 0 from its construction. If we shift the origin to a new
point y, the PDE (1) is unchanged. Therefore, Φ(x− y) is also harmonic as a
function of x as x ̸= y.
Let f : Rn → R and note that the mapping x → Φ(x− y)f(x), (x ̸= y) is
harmonic for each point y ∈ Rn.
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Observations
We can also prove that

um(x) =

m∑
i=1

Φ(x− yi)f(yi)

is also harmonic where x /∈ {y1,y2, · · · ,ym}

um(x) =


−1

2π

m∑
i=1

log(|x− yi|)f(yi) (n = 2)

1

n(n− 2)α(n)

m∑
i=1

f(yi)

|x− yi|n−2
(n ≥ 3)

(4)

(4) solves (1). What will happen if m → ∞?
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Observations
By extending further, we obtain the convolution

u(x) =

ˆ

Rn

Φ(x− y)f(y)dy

u(x) =


−1

2π

ˆ

R2

log(|x− y|)f(y)dy (n = 2)

1

n(n− 2)α(n)

ˆ

Rn

f(y)

|x− y|n−2
dy (n ≥ 3)

(5)

Do you expect that (5) solves (1)?
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Observations
Do you expect that (5) solves (1)?? No. We can’t compute

∆u(x) =

ˆ

Rn

∆xΦ(x− y)f(y)dy = 0

|D2Φ(x− y)|

is not summable near the singularity at y = x. The differentiation under the
integral sign above is incorrect.
Now, let us assume that f ∈ C2

c (Rn); that is f is continuously differentialble
(twice) with compact support.
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Poisson Equation

Theorem 2
Define u by

u(x) =


−1

2π

ˆ

R2

log(|x− y|)f(y)dy (n = 2)

1

n(n− 2)α(n)

ˆ

Rn

f(y)

|x− y|n−2
dy (n ≥ 3)

(6)

Then
1. u ∈ C2(Rn)

2. −∆u = f in Rn
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Proof
We have

u(x) =

ˆ

Rn

Φ(x− y)f(y)dy =

ˆ

Rn

Φ(y)f(x− y)dy

Now,

u(x+ hei)− u(x)

h
=

ˆ

Rn

Φ(y)

[
f(x+ hei − y)− f(x− y)

h

]
dy

As h → 0, we have

f(x+ hei − y)− f(x− y)

h
→ ∂f

∂xi
(x− y)

uniformly on Rn
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Proof
Therefore, we have for i = 1, 2, · · · , n

∂u

∂xi
(x) =

ˆ

Rn

Φ(y)
∂f

∂xi
(x− y)dy

Similarly,
∂2u

∂xi∂xj
(x) =

ˆ

Rn

Φ(y)
∂2f

∂xi∂xj
(x− y)dy

Since f is twice continuously differentiable, and Φ is also continuous, we
have u ∈ C2(Rn).
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Recall from Lebesgue Measure Theory:

Definition 3 (Lebesgue Outer Measure)
Let E ⊂ Rn. The Lebesgue outer measure of E is defined by

m∗(E) := inf

{
∞∑

k=1

vol(Ik) : E ⊂
∞⋃

k=1

Ik, Ik are rectangles in Rn

}
,

where vol(Ik) denotes the usual n-dimensional volume of Ik , and the infimum is taken over all
countable collections of rectangles covering E.
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Recall from Lebesgue Measure Theory:

Example 4 (Interval)
For E = [a, b] ⊂ R, we have

m∗([a, b]) = b− a.

Example 5 (Finite Set)
For a finite set E = {x1, x2, . . . , xn}, we have m∗(E) = 0.

Example 6 (Countable Set)
For E = Q ∩ [0, 1], we also have m∗(E) = 0.
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Recall from Lebesgue Measure Theory:

Definition 7 (Lebesgue Measurable Set)
A set E ⊂ Rn is called Lebesgue measurable if for every set A ⊂ Rn, the Lebesgue outer
measure m∗ satisfies

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec),

where Ec is the complement of E and m∗ is the Lebesgue outer measure.
Intuitively, E is measurable if its size (measure) behaves well with respect to any other set A,
so that cutting A into pieces inside and outside E exactly adds up in measure.

Example 8 (Intervals in R)
Any interval [a, b], (a, b), [a, b), (a, b] ⊂ R is Lebesgue measurable, with measure equal to its
length:

m([a, b]) = b− a.
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Proof (Recall from Lebesgue Measure Theory):

Example 9 (Open and Closed Sets)
All open or closed sets in Rn are Lebesgue measurable.

Example 10 (Null Sets)
Any set of Lebesgue measure zero (e.g., a finite or countable set of points in Rn) is Lebesgue
measurable.

Example 11 (Non-Measurable Sets)
There exist sets in R (like the Vitali set) which are not Lebesgue measurable. These sets are
constructed using the axiom of choice and cannot have a well-defined Lebesgue measure.
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Recall from Lebesgue Measure Theory:

Definition 12 (σ-Algebra)
Let X be a set. A collection F ⊂ 2X of subsets of X is called a σ-algebra if it satisfies the
following three properties:

1. (Non-empty) X ∈ F .

2. (Closed under complement) If A ∈ F , then Ac = X \A ∈ F .

3. (Closed under countable unions) If {An}∞n=1 ⊂ F , then
∞⋃

n=1

An ∈ F .

From these properties, it also follows that F is closed under countable intersections:
∞⋂

n=1

An ∈ F , for any An ∈ F .
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Recall from Lebesgue Measure Theory:

Example 13 (Trivial σ-algebra)
For any set X , F = {∅, X} is a σ-algebra.

Example 14 (Power Set)
The power set F = 2X is a σ-algebra.

Example 15 (Borel σ-algebra)
For X = R, the collection of all Borel sets (generated from open intervals by countable unions,
intersections, and complements) forms a σ-algebra.

Example 16 (Lebesgue measurable sets σ-algebra)
Lebesgue-measurable sets form a σ-algebra
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Proof (Recall from Lebesgue Measure Theory):

Definition 17 (Lebesgue Measure on Rn)
Lebesgue measure m is a set function m : L ⊂ 2R

n

→ [0,∞], defined on the σ-algebra L of
Lebesgue measurable sets, satisfying:

1. (Non-negativity) m(E) ≥ 0 for all E ∈ L.

2. (Null empty set) m(∅) = 0.

3. (Countable additivity) If {Ei}∞i=1 are disjoint sets in L, then

m
( ∞⋃

i=1

Ei

)
=

∞∑
i=1

m(Ei).

4. (Translation invariance) For any E ∈ L and x0 ∈ Rn,

m(E + x0) = m(E),

where E + x0 := {x+ x0 : x ∈ E}.
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Proof (Recall from Lebesgue Measure Theory):

• Lebesgue measure generalizes length/area/volume to very irregular sets.
• It allows integration of more functions (not just continuous ones) and

forms the basis of Lebesgue integration in analysis.

Definition 18 (Lebesgue Measurable Function)
A function f : Rn → R is said to be Lebesgue measurable if for every α ∈ R,
the set

{x ∈ Rn : f(x) > α}

is Lebesgue measurable.
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Proof (Recall from Lebesgue Measure Theory):

Example 19 (Continuous Functions)
Every continuous function f : Rn → R is Lebesgue measurable because the
set {x : f(x) > α} is open, hence measurable.

Example 20 (Characteristic Function)
Let E ⊂ Rn be Lebesgue measurable. Then its characteristic function

χE(x) =

{
1, x ∈ E,

0, x /∈ E

is Lebesgue measurable.
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Proof (Recall from Lebesgue Measure Theory):

Lp(Ω) = {f : Ω → R : f is Lebesgue measurable, ∥f∥Lp(Ω) < ∞}

Here,

∥f∥Lp(Ω) =

ˆ

Ω

|f |pdx

 1
p

(1 ≤ p ≤ ∞)

L∞(Ω) = {f : Ω → R : f is Lebesgue measurable, ∥f∥L∞(Ω) < ∞}

Here,
∥f∥L∞(Ω) = sup

Ω
|f |
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Proof(continued)
Remember that Φ has a singularity near 0. What type of singularity? Let us
isolate this singularity as follows: Consider a small ball of radius ϵ > 0. Then

∆u(x) =

ˆ

B(0,ϵ)

∆xΦ(y)f(x− y)dy

︸ ︷︷ ︸
Iϵ

+

ˆ

Rn−B(0,ϵ)

Φ(y)∆xf(x− y)dy

︸ ︷︷ ︸
Jϵ

Now
|Iϵ| ≤ C∥D2f∥L∞(Rn)

ˆ

B(0,ϵ)

|Φ(y)|dy

From volume of ball B(0, ϵ) and (3)

|Iϵ| ≤

{
Cϵ2| log ϵ| (n = 2)

Cϵ2 (n ≥ 3)
(7)
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Preliminaries

Theorem 21 (Gauss-Green Theorem)
Suppose u ∈ C1(Ω). Then

ˆ

Ω

uxidx =

ˆ

∂Ω

uνidS (8)

where i = 1, 2, · · · , n.

Theorem 22 (Integration by Parts)
Suppose u, v ∈ C1(Ω). Then

ˆ

Ω

uxivdx = −
ˆ

Ω

uvxidx+

ˆ

∂Ω

uvνidS (9)

where i = 1, 2, · · · , n.
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Proof(continued)
An integration by parts, we obtain that

|Jϵ| =
ˆ

Rn−B(0,ϵ)

Φ(y)∆xf(x− y)dy

= −
ˆ

Rn−B(0,ϵ)

DΦ(y).∆yf(x− y)dy

︸ ︷︷ ︸
Kϵ

+

ˆ

∂B(0,ϵ)

Φ(y)
∂f

∂ν
(x− y)dS(y)

︸ ︷︷ ︸
Lϵ

where ν denotes the inward pointing unit normal along ∂B(0, ϵ)
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Proof(continued)
Now

|Lϵ| ≤ ∥Df∥L∞(Rn)

ˆ

∂B(0,ϵ)

|Φ(y)|dSy

From volume of sphere ∂B(0, ϵ) and (3)

|Lϵ| ≤

{
Cϵ| log ϵ| (n = 2)

Cϵ (n ≥ 3)
(10)
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Proof(continued)
An integration by parts for Kϵ, we obtain that

|Kϵ| =
ˆ

Rn−B(0,ϵ)

∆Φ(y)f(x− y)dy −
ˆ

∂B(0,ϵ)

∂Φ(y)

∂ν
f(x− y)dS(y)

= −
ˆ

∂B(0,ϵ)

∂Φ(y)

∂ν
f(x− y)dS(y)

Since Φ is harmonic in the region Rn −B(0, ϵ)

DΦ(y) = − 1

nα(n)

y

|y|n
, (y ̸= 0)

ν =
−y

|y|
= −|y|

ϵ

on ∂B(0, ϵ). 28



Proof(continued)

∂ϕ

∂ν
(y) = ν.DΦ(y) =

1

nα(n)ϵn−1

on ∂B(0, ϵ).

|Kϵ| = − 1

nα(n)ϵn−1

ˆ

∂B(0,ϵ)

f(x− y)dS(y)

= −
 

∂B(x,ϵ)

f(y)dS(y)

→ −f(x) (as ϵ → 0)

Hence −∆u(x) = f(x) as ϵ → 0. Hence the proof.
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Remarks
For a few problems, you need to solve

−∆Φ = δ0 in Rn

where δ0 denotes the Dirac measure on Rn giving unit mass to the point 0.
Here, we have

−∆u(x) =

ˆ

Rn

−∆xΦ(x− y)f(y)dy

=

ˆ

Rn

δxf(y)dy

= f(x) (x ∈ Rn)
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Mean-Value Formulas
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Mean-value Formulas
Now, we are looking again the average integral, which we have discussed for
wave equation.

Theorem 23
u ∈ C2(Ω) is harmonic, if and only if,

u(x) =

 

∂B(x,r)

udS =

 

B(x,r)

udy (11)

for each ball B(x, r) ⊂ Ω.
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Proof:
As we have seen in the Wave equation, we have

ϕ(r) :=

 

∂B(x,r)

u(y)dS(y) =

 

∂B(0,1)

u(x+ rz)dS(z)

=⇒ ϕ′(r) =

 

∂B(0,1)

Du(x+ rz).zdS(z)

=

 

∂B(x,r)

Du(y).
y − x

r
dS(y)

=

 

∂B(x,r)

∂u

∂ν
dS(y)
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Proof(continued)
By Green’s formula, we have

ˆ

Ω

∆udx =

ˆ

∂Ω

∂u

∂ν
dS

Hence

=⇒ ϕ′(r) =

 

∂B(x,r)

∂u

∂ν
dS(y) =

1

nα(n)rn−1

ˆ

∂B(x,r)

∂u

∂ν
dS(y)

=
r

n

1

α(n)rn

ˆ

B(x,r)

∆ud(y) =
r

n

 

B(x,r)

∆ud(y) = 0

=⇒ ϕ is constant.
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Proof(continued)

ϕ(r) = lim
t→0

ϕ(t) = lim
t→0

 

∂B(x,t)

u(y)dS(y) = u(x)

Therefore, we have proved that

u(x) =

 

∂B(x,r)

udS =⇒
ˆ

∂B(x,r)

udS = nα(n)rn−1u(x)

Now, it is sufficient prove that

u(x) =

 

B(x,r)

udy

when u is harmonic 35



Proof(continued)
The following results can be obtained from the Coarea formula (or a
curvilinear Fubini Theorem). For continuous integrable functions f : Rn → R,
the spherical integration formula is given by

ˆ

Rn

fdx =

∞̂

0

 ˆ

∂B(x,r)

fdS

 dr

In particular,
ˆ

B(x,r)

fdx =

rˆ

0

 ˆ

∂B(x,s)

fdS

 ds
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Proof(continued)

 

B(x,r)

udy =
1

α(n)rn

ˆ

B(x,r)

udy =
1

α(n)rn

rˆ

0

 ˆ

∂B(x,s)

udS

 ds

=
1

α(n)rn

rˆ

0

nα(n)sn−1u(x)ds = u(x)

Conversely, suppose, u is not harmonic, then there exists a ball B(x, r) ⊂ Ω
such that ∆u ̸≡ 0. Suppose ∆u > 0 within B(x, r). Then

0 = ϕ′(r) =
r

n

 

B(x,r)

∆ud(y) > 0 ⇒⇐

Hence the proof. 37



Maximum-Minimum
Principle

38



Strong Maximum Principle

Theorem 24
Suppose u ∈ C2(Ω) ∩ C(Ω) is harmonic within Ω.
1. If Ω is connected and there exists a point x0 ∈ Ω such that

u(x0) = max
Ω

u

then u is constant within Ω

2. Further
max
Ω

u = max
∂Ω

u
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Proof:
Suppose there exists a point x0 ∈ Ω with

u(x0) = M := max
Ω

u

Then for 0 < r < dist(x0, ∂Ω), the mean value property asserts that

M = u(x0) =

 

B(x0,r)

udy ≤ M

The equality holds only if u ≡ M within B(x0, r). Hence u(y) = M for all
y ∈ B(x, r). Therefore, Ω1 = {x ∈ Ω : u(x) = M} is open and relatively closed
in Ω. Also Ω1 = Ω if Ω is connected. Hence, u is constant within Ω. The
second part follows immediately.
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Strong Maximum Principle:

Remarks
1. The first part of the theorem is strong maximum principle
2. The second part of the theorem is called maximum principle.
3. If we replace u by −u, we obtain strong minimum and minimum

principles.
4. If u = f on ∂Ω where f ≥ 0, then u is positive everywhere in Ω if f is

positive somewhere on ∂Ω

5. We can prove the uniqueness solutions of boundary value problems for
Poisson equation using this maximum principle.
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Uniqueness

Theorem 25 (Uniqueness)
Let f ∈ C(∂Ω), h ∈ C(Ω). Then there exists at most one solution u ∈ C2(Ω) ∩
C(Ω) of the boundary value problem{

−∆u = f in Ω

u = f on ∂Ω
(12)

Proof; Let u1 and u2 satisfy (12). Let w = u1 − u2 =⇒ ∆w = 0. Now, we apply
the strong maximum principle on this, we obtain that w ≡ 0. Hence u1 = u2.
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Mollifiers
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Locally Integrable
Let Ω ⊂ Rn be an open set. We say Ω1 ⊂⊂ Ω if Ω1 is compactly contained in
Ω. That is, Ω1 ⊂ Ω1 ⊂ Ω is compact.

Definition 2 (Locally Integrable)

Lp
loc(Ω) := {f : Ω → R : f ∈ Lp(Ω1)for each Ω1 ⊂⊂ Ω}

Let f : Ω → R is measurable. We say f ∈ L1
loc iffˆ

K

|f(x)|dx < ∞

for all compact sets K ⊂ Ω.
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Locally Integrable

Example 1
1. Constant functions defined on real line is locally integrable but not

globally integrable as the real line has infinite measure
2. Continuous functions
3. Integrable functions
4. f(x) = 1/x, x ∈ (0, 1) is locally integrable, but not globally integrable.

[Since any compact setK ⊂ (0, 1) has positive distance from 0 and 1 and
f is bounded on K]

5. 1/x ∈ L1
loc(R∖ 0)

6. f(x) = 1/x if x ̸= 0 and f(x) = 0 if x = 0 is not locally integrable in x = 0.
Read more details about this on Distribution Theory courses.
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Locally Integrable

Theorem 26
1. The locally integral functions form a linear space
2. Lp

loc is a complete metrizable space.
3. f ∈ Lp(Ω) is locally integrable
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Lebesgue Differentiation Theorem

Theorem 27 (Lebesgue Differentiation Theorem)
Let f : Rn → R be locally integrable. Then for a.e point x0 ∈ Rn,
1.  

B(x0,r)

fdx → f(x0) as r → 0

2.  

B(x0,r)

|f(x)− f(x0)|dx → 0 as r → 0

The point at which (2) holds is called a Lebesgue point of f .
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