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Mean-Value Formulas
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Mean-value Formulas
Now, we are looking again at the average integral, which we have discussed
for the wave equation.

Theorem 1
u ∈ C2(Ω) is harmonic, if and only if,

u(x) =

 

∂B(x,r)

udS =

 

B(x,r)

udy (1)

for each ball B(x, r) ⊂ Ω.
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Proof:
As we have seen in the Wave equation, we have

ϕ(r) :=

 

∂B(x,r)

u(y)dS(y) =

 

∂B(0,1)

u(x+ rz)dS(z)

=⇒ ϕ′(r) =

 

∂B(0,1)

Du(x+ rz).zdS(z)

=

 

∂B(x,r)

Du(y).
y − x

r
dS(y)

=

 

∂B(x,r)

∂u

∂ν
dS(y)
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Proof(continued)
By Green’s formula, we have

ˆ

Ω

∆udx =

ˆ

∂Ω

∂u

∂ν
dS

Hence

=⇒ ϕ′(r) =

 

∂B(x,r)

∂u

∂ν
dS(y) =

1

nα(n)rn−1

ˆ

∂B(x,r)

∂u

∂ν
dS(y)

=
r

n

1

α(n)rn

ˆ

B(x,r)

∆ud(y) =
r

n

 

B(x,r)

∆ud(y) = 0

=⇒ ϕ is constant.
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Proof(continued)

ϕ(r) = lim
t→0

ϕ(t) = lim
t→0

 

∂B(x,t)

u(y)dS(y) = u(x)

Therefore, we have proved that

u(x) =

 

∂B(x,r)

udS =⇒
ˆ

∂B(x,r)

udS = nα(n)rn−1u(x)

Now, it is sufficient to prove that

u(x) =

 

B(x,r)

udy

when u is harmonic 5



Proof(continued)
The following results can be obtained from the Coarea formula (or a
curvilinear Fubini Theorem). For continuous integrable functions f : Rn → R,
the spherical integration formula is given by

ˆ

Rn

fdx =

∞̂

0

 ˆ

∂B(x,r)

fdS

 dr

In particular,
ˆ

B(x,r)

fdx =

rˆ

0

 ˆ

∂B(x,s)

fdS

 ds

"Integrating over a ball is nothing but integrating over each inner sphere
starting from 0." 6



Proof(continued)

 

B(x,r)

udy =
1

α(n)rn

ˆ

B(x,r)

udy =
1

α(n)rn

rˆ

0

 ˆ

∂B(x,s)

udS

 ds

=
1

α(n)rn

rˆ

0

nα(n)sn−1u(x)ds = u(x)

Conversely, suppose, u is not harmonic, then there exists a ball B(x, r) ⊂ Ω
such that ∆u ̸≡ 0. Suppose ∆u > 0 within B(x, r). Then

0 = ϕ′(r) =
r

n

 

B(x,r)

∆ud(y) > 0 ⇒⇐

Hence the proof. 7



Maximum-Minimum
Principle
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Strong Maximum Principle

Theorem 2
Suppose u ∈ C2(Ω) ∩ C(Ω) is harmonic within Ω.
1. If Ω is connected and there exists a point x0 ∈ Ω such that

u(x0) = max
Ω

u

then u is constant within Ω

2. Further
max
Ω

u = max
∂Ω

u
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Proof:
Suppose there exists a point x0 ∈ Ω with

u(x0) = M := max
Ω

u

Then for 0 < r < dist(x0, ∂Ω), the mean value property asserts that

M = u(x0) =

 

B(x0,r)

udy ≤ M

The equality holds only if u ≡ M within B(x0, r). Hence u(y) = M for all
y ∈ B(x, r). Therefore, Ω1 = {x ∈ Ω : u(x) = M} is open and relatively closed
in Ω. Also Ω1 = Ω if Ω is connected. Hence, u is constant within Ω. The
second part follows immediately.
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Strong Maximum Principle:

Remarks
1. The first part of the theorem is the strong maximum principle
2. The second part of the theorem is called the maximum principle.
3. If we replace u by −u, we obtain strong minimum and minimum

principles.
4. If u = f on ∂Ω where f ≥ 0, then u is positive everywhere in Ω if f is

positive somewhere on ∂Ω

5. We can prove the uniqueness of solutions of boundary value problems
for the Poisson equation using this maximum principle.
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Uniqueness

Theorem 3 (Uniqueness)
Let f ∈ C(∂Ω), g ∈ C(Ω). Then there exists at most one solution u ∈ C2(Ω) ∩
C(Ω) of the boundary value problem{

−∆u = f in Ω

u = g on ∂Ω
(2)

Proof; Let u1 and u2 satisfy (2). Let w = u1 − u2 =⇒ ∆w = 0. Now, we apply
the strong maximum principle on this, and we obtain that w ≡ 0. Hence
u1 = u2.
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