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Mollifiers
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Locally Integrable
Let Ω ⊂ Rn be an open set. We say Ω1 ⊂⊂ Ω if Ω1 is compactly contained in
Ω. That is, Ω1 ⊂ Ω1 ⊂ Ω and Ω1 is compact.

Definition 1 (Locally Integrable)

Lp
loc(Ω) := {f : Ω → R : f ∈ Lp(Ω1) for each Ω1 ⊂⊂ Ω}

Let f : Ω → R is measurable. We say f ∈ L1
loc iffˆ

K

|f(x)|dx < ∞

for all compact sets K ⊂ Ω.
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Locally Integrable

Example 1
1. Constant functions defined on the real line are locally integrable but not

globally integrable, as the real line has infinite measure
2. Continuous functions
3. Integrable functions
4. f(x) = 1/x, x ∈ (0, 1) is locally integrable, but not globally integrable.

[Since any compact setK ⊂ (0, 1) has positive distance from 0 and 1 and
f is bounded on K]

5. 1/x ∈ L1
loc(R∖ {0})

6. f(x) = 1/x if x ̸= 0 and f(x) = 0 if x = 0 is not locally integrable in x = 0.
Read more details about this in the Distribution Theory courses.
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Locally Integrable

Theorem 1
1. Locally integral functions form a linear space
2. Lp

loc is a complete metrizable space.
3. f ∈ Lp(Ω) is locally integrable
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Lebesgue Differentiation Theorem

Theorem 2 (Lebesgue Differentiation Theorem)
Let f : Rn → R be locally integrable. Then for a.e point x0 ∈ Rn,
1.  

B(x0,r)

fdx → f(x0) as r → 0

2.  

B(x0,r)

|f(x)− f(x0)|dx → 0 as r → 0

The point at which (2) holds is called a Lebesgue point of f .

A function is the derivative of its own integral (or measure), recovered
through local averaging.
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Mollifiers

Definition 2 (Mollifier)
Define η ∈ C∞(Rn) by

η(x) :=

{
Cexp

(
1

|x|2−1

)
if |x| < 1

0 if |x| ≥ 1
(1)

the constant C > 0 selected so that
ˆ

Rn

ηdx = 1

We call η the standard mollifier.
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Mollifiers

Definition 3 (Mollifier)
For each ϵ > 0, set

ηϵ(x) =
1

ϵn
η
(x
ϵ

)
We can prove that ηϵ ∈ C∞(Rn) and satisfy

ˆ

Rn

ηϵdx = 1

and
support(ηϵ) ⊂ B(0, ϵ)

Here
support(f) = {x ∈ Ω : f(x) ̸= 0}
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Mollifiers

Definition 4 (Mollification)
If f : Ω → R is locally integrable, define its mollification

f ϵ := ηϵ ∗ f in Ωϵ

That is,

f ϵ(x) =

ˆ

Ω

ηϵ(x− y)f(y)dy =

ˆ

B(0,ϵ)

ηϵ(y)f(x− y)dy for x ∈ Ωϵ
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Mollifiers

Theorem 3 (Properties of Mollifiers)
1. f ϵ ∈ C∞(Ωϵ)

2. f ϵ → f almost everywhere as ϵ → 0

3. If f ∈ C(Ω), then f ϵ → f uniformly on compact subsets of Ω
4. If 1 ≤ p ≤ ∞ and f ∈ Lp

loc(Ω), then f ϵ → f in Lp
loc(Ω)

Proof: Fix x ∈ Ωϵ, i ∈ {1, 2, · · · , n} and h is so small that x+ hei ∈ Ωϵ. Then

f ϵ(x+ hei)− f ϵ(x)

h
=

1

ϵn

ˆ

Ω

1

h

[
η

(
x+ hei − y

ϵ

)
− η

(
x− y

ϵ

)]
f(y)dy

=
1

ϵn

ˆ

Ω1

1

h

[
η

(
x+ hei − y

ϵ

)
− η

(
x− y

ϵ

)]
f(y)dy

for some open set Ω1 ⊂⊂ Ω 9



Properties of Mollifiers
Since

1

h

[
η

(
x+ hei − y

ϵ

)
− η

(
x− y

ϵ

)]
→ 1

ϵ

∂η

∂xi

(
x− y

ϵ

)
uniformly on Ω1, ∂f

ϵ

∂xi
(x) exists. Also,

∂f ϵ

∂xi
(x) =

ˆ

Ω

∂η

∂xi
(x− y) f(y)dy

Extending this further, we can prove that

Dαf ϵ(x) =

ˆ

Ω

Dαηϵ (x− y) f(y)dy

=⇒ f ϵ ∈ C∞(Ωϵ) 10



Properties of Mollifiers
Using the Lebesgue differentiation theorem, we have

lim
r→0

 

B(x,r)

|f(y)− f(x)|dy = 0

for a.e. x ∈ Ω. Fix such a point x. Then

|f ϵ(x)− f(x)| =

∣∣∣∣∣∣∣
ˆ

B(x,ϵ)

ηϵ(x− y)[f(y)− f(x)]dy

∣∣∣∣∣∣∣
≤ 1

ϵn

ˆ

B(x,ϵ)

η

(
x− y

ϵ

)
[f(y)− f(x)]dy

≤ C

 

B(x,ϵ)

[f(y)− f(x)]dy → 0 as ϵ → 0
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Properties of Mollifiers
Since

lim
r→0

 

B(x,r)

|f(y)− f(x)|dy = 0

for a.e. x ∈ Ω.
|f ϵ(x)− f(x)| → 0

a.e as ϵ → 0. Suppose f ∈ C(Ω). Given Ω1 ⊂⊂ Ω, let us choose
Ω1 ⊂⊂ Ω2 ⊂⊂ Ω and note that f is uniformly continuous on Ω2. Therefore,

|f ϵ(x)− f(x)| → 0

uniformly for x ∈ Ω1. Hence f ϵ → f uniformly on Ω1.
Exercise: The proof of part(4)
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Regularity
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Regularity
In this section, let us prove that if u ∈ C2(Ω) is harmonic, then necessarily
u ∈ C∞(Ω).
• The harmonic functions are automatically infinitely differentiable
• It is called the regularity theorem
• Algebraic structure of Laplace equation

∆u = 0

leads to an analytic deduction that all the partial derivatives of u exist,
although it is a second-order PDE.

14



Smoothness

Theorem 4 (Smoothness)
If u ∈ C(Ω) satisfies the mean value property for each ball B(x, r), then

u ∈ C∞(Ω)

Proof: Let η be a standard mollifier and remember that η is a radial function.
Now define

uϵ := ηϵ ∗ u in Ωϵ = {x ∈ Ω : dist(x, ∂Ω) > ϵ}

By the properties of mollifiers, we can show that uϵ ∈ C∞(Ωϵ).
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Smoothness
Claim:u ≡ uϵ on Ωϵ

uϵ(x) =

ˆ

Ω

ηϵ(x− y)u(y)dy

=
1

ϵn

ˆ

B(x,ϵ)

η

(
|x− y|

ϵ

)
u(y)dy
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Claim (continued)

uϵ(x) =
1

ϵn

ϵˆ

0

η
(r
ϵ

) ˆ

∂B(x,r)

u(y)dSy

 dr

=
1

ϵn
u(x)

ϵˆ

0

η
(r
ϵ

)
nα(n)rn−1dr

= u(x)

ˆ

∂B(0,ϵ)

ηϵdSy

= u(x)

Hence uϵ ≡ u and u ∈ C∞(Ωϵ) for each ϵ > 0. Hence the claim and the proof.
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Thanks
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