MA612L-Partial Differential Equations

Lecture 22: Laplace Equation - Mollifiers, Regularity and Liouville's Theorem

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

October 1, 2025

Locally Integrable

Let $\Omega \subset \mathbb{R}^n$ be an open set. We say $\Omega_1 \subset\subset \Omega$ if Ω_1 is compactly contained in Ω . That is, $\Omega_1 \subset \overline{\Omega_1} \subset \Omega$ and $\overline{\Omega_1}$ is compact.

Definition 1 (Locally Integrable)

$$L^p_{loc}(\Omega):=\{f:\Omega\to\mathbb{R}:f\in L^p(\Omega_1)\text{ for each }\Omega_1\subset\subset\Omega\}$$

Let $f:\Omega\to\mathbb{R}$ is measurable. We say $f\in L^1_{loc}$ iff

$$\int_{K} |f(\mathbf{x})| d\mathbf{x} < \infty$$

for all compact sets $K \subset \Omega$.

Locally Integrable

Example 1

- 1. Constant functions defined on the real line are locally integrable but not globally integrable, as the real line has infinite measure
- 2. Continuous functions
- 3. Integrable functions
- 4. $f(x)=1/x, x\in(0,1)$ is locally integrable, but not globally integrable. [Since any compact set $K\subset(0,1)$ has positive distance from 0 and 1 and f is bounded on K]
- 5. $1/x \in L^1_{loc}(\mathbb{R} \setminus \{0\})$
- 6. f(x) = 1/x if $x \neq 0$ and f(x) = 0 if x = 0 is not locally integrable in x = 0.

Read more details about this in the Distribution Theory courses.

Locally Integrable

Theorem 1

- 1. Locally integral functions form a linear space
- 2. L_{loc}^p is a complete metrizable space.
- 3. $f \in L_p(\Omega)$ is locally integrable

Lebesgue Differentiation Theorem

Theorem 2 (Lebesgue Differentiation Theorem)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be locally integrable. Then for a.e point $x_0 \in \mathbb{R}^n$,

1

$$\int\limits_{B(\mathbf{x}_0,r)} f d\mathbf{x} o f(\mathbf{x}_0)$$
 as $r o 0$

2

$$\int\limits_{B(\mathbf{x}_0,r)}|f(\mathbf{x})-f(\mathbf{x}_0)|d\mathbf{x} o 0$$
 as $r o 0$

The point at which (2) holds is called a Lebesgue point of f.

A function is the derivative of its own integral (or measure), recovered through local averaging.

Definition 2 (Mollifier)

Define $\eta \in C^{\infty}(\mathbb{R}^n)$ by

$$\eta(\mathbf{x}) := \begin{cases} Cexp\left(\frac{1}{|\mathbf{x}|^2 - 1}\right) & \text{if } |\mathbf{x}| < 1\\ 0 & \text{if } |\mathbf{x}| \ge 1 \end{cases}$$
(1)

the constant C > 0 selected so that

$$\int_{\mathbb{D}^n} \eta d\mathbf{x} = 1$$

We call η the standard mollifier.

Definition 3 (Mollifier)

For each $\epsilon > 0$, set

$$\eta_{\epsilon}(\mathbf{x}) = \frac{1}{\epsilon^n} \eta\left(\frac{\mathbf{x}}{\epsilon}\right)$$

We can prove that $\eta_{\epsilon} \in C^{\infty}(\mathbb{R}^n)$ and satisfy

$$\int_{\mathbb{R}^n} \eta_{\epsilon} d\mathbf{x} = 1$$

and

$$\mathsf{support}(\eta_\epsilon) \subset B(\mathbf{0},\epsilon)$$

Here

$$\mathsf{support}(f) = \overline{\{x \in \Omega : f(x) \neq 0\}}$$

Definition 4 (Mollification)

If $f: \Omega \to \mathbb{R}$ is locally integrable, define its mollification

$$f^{\epsilon} := \eta_{\epsilon} * f \text{ in } \Omega_{\epsilon}$$

That is,

$$f^{\epsilon}(\mathbf{x}) = \int_{\Omega} \eta_{\epsilon}(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y} = \int_{B(\mathbf{0}, \epsilon)} \eta_{\epsilon}(\mathbf{y}) f(\mathbf{x} - \mathbf{y}) d\mathbf{y} \text{ for } x \in \Omega_{\epsilon}$$

Theorem 3 (Properties of Mollifiers)

- 1. $f^{\epsilon} \in C^{\infty}(\Omega_{\epsilon})$
- 2. $f^{\epsilon} \rightarrow f$ almost everywhere as $\epsilon \rightarrow 0$
- 3. If $f \in C(\Omega)$, then $f^{\epsilon} \to f$ uniformly on compact subsets of Ω
- 4. If $1 \leq p \leq \infty$ and $f \in L^p_{loc}(\Omega)$, then $f^\epsilon \to f$ in $L^p_{loc}(\Omega)$

Proof: Fix $\mathbf{x} \in \Omega_{\epsilon}, i \in \{1, 2, \cdots, n\}$ and h is so small that $\mathbf{x} + h\mathbf{e}_i \in \Omega_{\epsilon}$. Then

$$\frac{f^{\epsilon}(\mathbf{x} + h\mathbf{e}_{i}) - f^{\epsilon}(\mathbf{x})}{h} = \frac{1}{\epsilon^{n}} \int_{\Omega} \frac{1}{h} \left[\eta \left(\frac{\mathbf{x} + h\mathbf{e}_{i} - \mathbf{y}}{\epsilon} \right) - \eta \left(\frac{\mathbf{x} - \mathbf{y}}{\epsilon} \right) \right] f(\mathbf{y}) d\mathbf{y}$$

$$= \frac{1}{\epsilon^{n}} \int_{\Omega} \frac{1}{h} \left[\eta \left(\frac{\mathbf{x} + h\mathbf{e}_{i} - \mathbf{y}}{\epsilon} \right) - \eta \left(\frac{\mathbf{x} - \mathbf{y}}{\epsilon} \right) \right] f(\mathbf{y}) d\mathbf{y}$$

for some open set $\Omega_1 \subset\subset \Omega$

Properties of Mollifiers

Since

$$\frac{1}{h} \left[\eta \left(\frac{\mathbf{x} + h\mathbf{e}_i - \mathbf{y}}{\epsilon} \right) - \eta \left(\frac{\mathbf{x} - \mathbf{y}}{\epsilon} \right) \right] \to \frac{1}{\epsilon} \frac{\partial \eta}{\partial x_i} \left(\frac{\mathbf{x} - \mathbf{y}}{\epsilon} \right)$$

uniformly on Ω_1 , $\frac{\partial f^{\epsilon}}{\partial x_i}(\mathbf{x})$ exists. Also,

$$\frac{\partial f^{\epsilon}}{\partial x_{i}}(\mathbf{x}) = \int_{\Omega} \frac{\partial \eta}{\partial x_{i}} (\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$

Extending this further, we can prove that

$$D^{\alpha} f^{\epsilon}(\mathbf{x}) = \int_{\Omega} D^{\alpha} \eta_{\epsilon} (\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$

$$\implies f^{\epsilon} \in C^{\infty}(\Omega_{\epsilon})$$

Properties of Mollifiers

Using the Lebesgue differentiation theorem, we have

$$\lim_{r \to 0} \int_{B(\mathbf{x}, r)} |f(\mathbf{y}) - f(\mathbf{x})| d\mathbf{y} = 0$$

for a.e. $x \in \Omega$. Fix such a point x. Then

$$\begin{split} |f^{\epsilon}(\mathbf{x}) - f(\mathbf{x})| &= \left| \int\limits_{B(\mathbf{x}, \epsilon)} \eta_{\epsilon}(\mathbf{x} - \mathbf{y}) [f(\mathbf{y}) - f(\mathbf{x})] d\mathbf{y} \right| \\ &\leq \frac{1}{\epsilon^{n}} \int\limits_{B(\mathbf{x}, \epsilon)} \eta\left(\frac{\mathbf{x} - \mathbf{y}}{\epsilon}\right) [f(\mathbf{y}) - f(\mathbf{x})] d\mathbf{y} \\ &\leq C \int\limits_{B(\mathbf{x}, \epsilon)} [f(\mathbf{y}) - f(\mathbf{x})] d\mathbf{y} \to 0 \quad \text{as } \epsilon \to 0 \end{split}$$

Properties of Mollifiers

Since

$$\lim_{r \to 0} \int_{B(\mathbf{x},r)} |f(\mathbf{y}) - f(\mathbf{x})| d\mathbf{y} = 0$$

for a.e. $x \in \Omega$.

$$|f^{\epsilon}(\mathbf{x}) - f(\mathbf{x})| \to 0$$

a.e as $\epsilon \to 0$. Suppose $f \in C(\Omega)$. Given $\Omega_1 \subset\subset \Omega$, let us choose $\Omega_1 \subset\subset \Omega_2 \subset\subset \Omega$ and note that f is uniformly continuous on Ω_2 . Therefore,

$$|f^{\epsilon}(\mathbf{x}) - f(\mathbf{x})| \to 0$$

uniformly for $\mathbf{x} \in \Omega_1$. Hence $f^{\epsilon} \to f$ uniformly on Ω_1 . Exercise: The proof of part(4)

Regularity

Regularity

In this section, let us prove that if $u \in C^2(\Omega)$ is harmonic, then necessarily $u \in C^\infty(\Omega)$.

- The harmonic functions are automatically infinitely differentiable
- It is called the regularity theorem
- Algebraic structure of Laplace equation

$$\Delta u = 0$$

leads to an analytic deduction that all the partial derivatives of \boldsymbol{u} exist, although it is a second-order PDE.

Smoothness

Theorem 4 (Smoothness)

If $u \in C(\Omega)$ satisfies the mean value property for each ball $B(\mathbf{x},r)$, then

$$u \in C^{\infty}(\Omega)$$

Proof: Let η be a standard mollifier and remember that η is a radial function. Now define

$$u^{\epsilon} := \eta_{\epsilon} * u \text{ in } \Omega_{\epsilon} = \{ \mathbf{x} \in \Omega : dist(\mathbf{x}, \partial\Omega) > \epsilon \}$$

By the properties of mollifiers, we can show that $u^{\epsilon} \in C^{\infty}(\Omega_{\epsilon})$.

Smoothness

 $\mathbf{Claim} : u \equiv u^{\epsilon} \text{ on } \Omega_{\epsilon}$

$$u^{\epsilon}(\mathbf{x}) = \int_{\Omega} \eta_{\epsilon}(\mathbf{x} - \mathbf{y})u(\mathbf{y})d\mathbf{y}$$
$$= \frac{1}{\epsilon^{n}} \int_{B(\mathbf{x}, \epsilon)} \eta\left(\frac{|\mathbf{x} - \mathbf{y}|}{\epsilon}\right)u(\mathbf{y})d\mathbf{y}$$

Claim (continued)

$$u^{\epsilon}(\mathbf{x}) = \frac{1}{\epsilon^{n}} \int_{0}^{\epsilon} \eta\left(\frac{r}{\epsilon}\right) \left(\int_{\partial B(\mathbf{x},r)} u(\mathbf{y}) dS\mathbf{y}\right) dr$$
$$= \frac{1}{\epsilon^{n}} u(\mathbf{x}) \int_{0}^{\epsilon} \eta\left(\frac{r}{\epsilon}\right) n\alpha(n) r^{n-1} dr$$
$$= u(\mathbf{x}) \int_{\partial B(\mathbf{0},\epsilon)} \eta_{\epsilon} dS\mathbf{y}$$
$$= u(\mathbf{x})$$

Hence $u^{\epsilon} \equiv u$ and $u \in C^{\infty}(\Omega_{\epsilon})$ for each $\epsilon > 0$. Hence the claim and the proof.

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

