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Recap

∆u = 0 in Ω ⊂ Rn (1)

Definition 1 (Fundamental Solution)
The function

Φ(x) :=

{
− 1

2π
log |x| (n = 2)

1
n(n−2)α(n)|x|n−2 (n ≥ 3)

(2)

defined for x ∈ Rn,x ̸= 0 is the fundamental solution of Laplace equation.

Theorem 1
Define u by

u(x) =


−1

2π

ˆ

R2

log(|x− y|)f(y)dy (n = 2)

1

n(n− 2)α(n)

ˆ

Rn

f(y)

|x− y|n−2
dy (n ≥ 3)

(3)

Then u ∈ C2(Rn) and −∆u = f in Rn
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Mean-value Formulas

Theorem 2
u ∈ C2(Ω) is harmonic, if and only if,

u(x) =

 

∂B(x,r)

udS =

 

B(x,r)

udy ∀B(x, r) ⊂ Ω (4)

Theorem 3
Suppose u ∈ C2(Ω) ∩ C(Ω) is harmonic within Ω. If Ω is connected and there exists a point
x0 ∈ Ω such that u(x0) = maxΩ u then u is constant within Ω. Further maxΩ u = max∂Ω u

Theorem 4 (Smoothness)
If u ∈ C(Ω) satisfies the mean value property for each ball B(x, r), then u ∈ C∞(Ω)
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Liouville’s Theorem
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Liouville’s Theorem

Theorem 5 (Liouville’s Theorem)
If u : Rn → R is harmonic and bounded. Then u is constant.

Proof: Fix x0 ∈ Rn, r > 0.
Claim 1:

|Du(x0)| ≤
C

rn+1
∥u∥L1(B(x0,r))

Claim 2:
C

rn+1
∥u∥L1(B(x0,r)) ≤

Cα(n)

r
∥u∥L∞(Rn)

If claims (1) and (2) are true, then, as r → ∞, Du(x0) → 0. Hence Du ≡ 0 and
hence u is constant.
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Liouville’s Theorem
Claim 1:

|Du(x0)| ≤
C

rn+1
∥u∥L1(B(x0,r))

Proof of Claim 1: We can immediately show that

|u(x0)| ≤
C

rn
∥u∥L1(B(x0,r))

How? By the Mean value property

u(x) =

 

B(x,r)

udy =
1

α(n)rn

ˆ
udy ∀B(x, r) ⊂ Ω

|u(x)| ≤ 1

α(n)rn

ˆ
|u|dy =

1

α(n)rn
∥u∥L1(B(x0,r))
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Liouville’s Theorem
Since u is harmonic, differentiating the Laplace equation, we can prove that
uxi is also harmonic. Again, by the mean-value property,

u(x) =

 

B(x,r)

udy ∀B(x, r) ⊂ Ω

In particular, it is true for B(x0,
r
2)

|uxi(x0)| =

∣∣∣∣∣∣∣
 

B(x0,
r
2
)

uxidx

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1

α(n)( r2)
n

ˆ

∂B(x0,
r
2
)

uνidS

∣∣∣∣∣∣∣
≤ 2n

r
∥u∥L∞(∂B(x0,

r
2
))
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Liouville’s Theorem
Since ν is outward unit normal, |νi| ≤ 1. Hence∣∣∣∣∣∣∣

1

α(n)( r2)
n

ˆ

∂B(x0,
r
2
)

uνidS

∣∣∣∣∣∣∣ ≤
1

α(n)( r2)
n

ˆ

∂B(x0,
r
2
)

|u||νi|dS

≤
∥u∥L∞(∂B(x0,

r
2
))

α(n)( r2)
n

ˆ

∂B(x0,
r
2
)

1dS

≤ 2n

r
∥u∥L∞(∂B(x0,

r
2
))
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Liouville’s Theorem

x ∈ ∂B
(
x0,

r

2

)
=⇒ x ∈ B

(
x,

r

2

)
=⇒ x ∈ B(x0, r) ⊂ Ω

Figure 1: 2D
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Liouville’s Theorem

|u(x0)| ≤
C

rn
∥u∥L1(B(x0,r)) =⇒ |u(x)| ≤

(
2

r

)n 1

α(n)
∥u∥L1(B(x0,r))

Therefore,

|Du(x0)| ≤
(
2

r

)n+1 1

α(n)
∥u∥L1(B(x0,r))

Hence, the claim 1.
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Liouville’s Theorem

Exercise 1: Exercises

1. Prove that

|Dαu(x0)| ≤
(
2n+1nk

r

)k
1

rnα(n)
∥u∥L1(B(x0,r))

for k = |α| and for each ball B (x0, r) ⊂ Ω
Hint: Use

x ∈ ∂B(x0,
r

k
) =⇒ x ∈ B

(
x,

k − 1

k
r

)
⊂ B(x0, r) ⊂ Ω

2. Prove Claim 2.
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Representation
Formula
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Representation Formula

Theorem 6 (Representation Formula)
If h ∈ C2

c (Rn), n ≥ 3, then any bounded solution of

−∆u = h in Rn

has the form
u(x) =

ˆ

Rn

Φ(x− y)h(y)dy + C (x ∈ Rn)

for some constant C.
Proof: From the construction of Φ(x), it is immediate that Φ(x) → 0 as
|x| → ∞ for n ≥ 3.

13



Representation Formula
Proof (continued):

u(x) =

ˆ

Rn

Φ(x− y)h(y)dy

is a bounded solution of −∆u = h in Rn. Suppose u1 is another solution, then
w := u1 − u is constant as per Liouville’s theorem. Hence proved.
Remark
If n = 2,

Φ(x) =
−1

2π
log |x|

is unbounded as |x| → ∞ and hence

u(x) =

ˆ

R2

Φ(x− y)h(y)dy

may be unbounded
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Analyticity
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Analyticity

Theorem 7 (Analyticity)
Assume u is harmonic in Ω. Then u is analytic in Ω.

Proof: Fix any point x0 ∈ Ω.
Claim: u can be represented by a convergent powers series in some
neighbourhood of x0.
Let r := 1

4dist(x0, ∂Ω). Then M := 1
α(n)rn ∥u∥L1(B(x0,2r)) < ∞

Now, B(x, r) ⊂ B(x0, 2r) ⊂ Ω for each x ∈ B(x0, r).
From the exercise problem, we have that

|Dαu(x0)| ≤
(
2n+1nk

r

)k
1

rnα(n)
∥u∥L1(B(x0,r))
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Analyticity

Figure 2: 2D Illustration
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Analyticity
Proof (continued):

|Dαu(x0)| ≤
(
2n+1nk

r

)k

M ≤ M

(
2n+1n

r

)|α|
|α||α|

Stirling’s Formula:

lim
k→∞

e−k k
k+1/2

k!
=

1√
2π

=⇒ lim
|α|→∞

e−|α| |α||α|+1/2

|α|!
=

1√
2π

=⇒ e−|α| |α||α|+1/2

|α|!
≤ C1

=⇒ |α||α|+1/2 ≤ C1e
|α||α|! =⇒ |α||α| ≤ Ce|α||α|!

for some constant C.
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Analyticity
Proof (continued): Also

nk =
k

(1 + 1 + 1 + · · ·+ 1)︸ ︷︷ ︸
n times

=
∑
|α|=k

|α|!
α!

=⇒ |α|! ≤ n|α|α! =⇒ |α||α| ≤ C(ne)|α||α|!

Hence

|Dαu(x0)| ≤ M

(
2n+1n

r

)|α|
|α||α| ≤ CM

(
2n+1n2e

r

)|α|
α!

=⇒ |Dαu(x0)|
α!

≤ CM

(
2n+1n2e

r

)|α|
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Analyticity
Proof (continued): The Taylor series at for u at x0 is given by∑

|α|

Dαu(x0)

α!
(x− x0)

α

To prove that the Taylor series converges, we need to prove that the remainder
term |RN |converges to 0 as N → ∞ for some interval of convergence.∑

|α|

Dαu(x0)

α!
(x− x0)

α

Now,

RN (x) := u(x)−
N−1∑
k=0

∑
|α|

Dαu(x0)

α!
(x− x0)

α

20



Analyticity
Proof (continued):

=⇒ RN (x) =
∑

|α|=N

Dαu(x0 + t(x− x0))

α!
(x− x0)

α (How??)

for some t(x) ∈ [0, 1]

=⇒ |RN (x)| ≤
∑

|α|=N

|Dαu(x0 + t(x− x0))|
α!

|x− x0|α

=⇒ |RN (x)| ≤
∑

|α|=N

CM

(
2n+1n2e

r

)N

|x− x0|N

21



Analyticity
Proof (continued):

=⇒ |RN (x)| ≤ CM
∑

|α|=N

(
2n+1n2e

r

)N

|x− x0|N

Then
aN+1

aN
< 1 =⇒

(
2n+1n2e

r

)N+1 ( r

2n+1n2e

)N
|x− x0| < 1

=⇒ |x− x0| <
r

2n+1n2e

For, convergence, this is fine, but we need |RN (x)| → 0. So, choose

|x− x0| <
r

2n+2n3e
22



Analyticity
Proof (continued): Then

|RN (x)| ≤ CM
∑

|α|=N

(
2n+1n2e

r

)N

|x− x0|N

≤ CM
∑

|α|=N

(
2n+1n2e

r

)N ( r

2n+2n3e

)N

≤ CM
∑

|α|=N

(
1

2n

)N

≤ CMnN

(
1

2n

)N

=
CM

2N
→ 0 as N → ∞

Hence the proof.
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Harnack’s Inequality
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Harnack’s Inequality

Theorem 8 (Harnack’s Inequality)
For each connected open set Ω1 ⊂⊂ Ω, there exists a positive constant C
depending on Ω1 such that

sup
Ω1

u ≤ C inf
Ω1

u

for all nonnegative harmonic function u in Ω.

Proof:
Let r := 1

4dist(Ω1, ∂Ω). Choose x,y ∈ Ω1 such that |x− y| ≤ r. Then

u(x) =

 

B(x,2r)

udz =
1

α(n)2nrn

ˆ

B(x,2r)

udz ≥ 1

α(n)2nrn

ˆ

B(y,r)

udz =
1

2n

 

B(y,r)

udz
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Harnack’s Inequality
Proof (Continued):

=⇒ 1

2n
u(y) ≤ u(x)

if x,y ∈ Ω1 and |x− y| ≤ r. On the other hand,

u(x) =

 

B(x,2r)

udz =
1

α(n)2nrn

ˆ

B(x,2r)

udz ≤ 2n
1

α(n)rn

ˆ

B(y,r)

udz = 2n
 

B(y,r)

udz

=⇒ u(x) ≤ 2nu(y)

if x,y ∈ Ω1 and |x− y| ≤ r. Hence

=⇒ 1

2n
u(y) ≤ u(x) ≤ 2nu(y)

if x,y ∈ Ω1 and |x− y| ≤ r. 26



Harnack’s Inequality
Proof (Continued): It is given that Ω1 is connected and Ω1 ⊂⊂ Ω. Since Ω1 is
compact, we can cover Ω1 by a chain of finitely many balls {Bi}Ni=1 each of
which has radius r and Bi ∩Bi−1 ̸= ϕ for i = 2, 3, · · · , N . Hence

=⇒ 1

2nN
u(y) ≤ u(x)

for all x,y ∈ Ω1. Applying infimum and supremum definition, the proof
follows.
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Harnack’s Inequality

Remarks
1. We have that

=⇒ 1

2n
u(y) ≤ u(x) ≤ 2nu(y)

2. In particular

=⇒ 1

C
u(y) ≤ u(x) ≤ Cu(y) for all x,y ∈ Ω1

3. The value of nonnegative harmonic function within Ω1 are all comparable.
4. The value of u can’t be very small or very large at any point of Ω1 unless u

is very small or very large everywhere in Ω1.
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