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Harnack’s Inequality
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Harnack’s Inequality

Theorem 1 (Harnack’s Inequality)
For each connected open set Ω1 ⊂⊂ Ω, there exists a positive constant C
depending on Ω1 such that

sup
Ω1

u ≤ C inf
Ω1

u

for all nonnegative harmonic function u in Ω.

Proof:
Let r := 1

4dist(Ω1, ∂Ω). Choose x,y ∈ Ω1 such that |x− y| ≤ r. Then

u(x) =

 

B(x,2r)

udz =
1

α(n)2nrn

ˆ

B(x,2r)

udz ≥ 1

α(n)2nrn

ˆ

B(y,r)

udz =
1

2n

 

B(y,r)

udz
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Harnack’s Inequality
Proof (Continued):

=⇒ 1

2n
u(y) ≤ u(x)

if x,y ∈ Ω1 and |x− y| ≤ r. On the other hand,

u(x) =

 

B(x,2r)

udz =
1

α(n)2nrn

ˆ

B(x,2r)

udz ≤ 2n
1

α(n)rn

ˆ

B(y,r)

udz = 2n
 

B(y,r)

udz

=⇒ u(x) ≤ 2nu(y)

if x,y ∈ Ω1 and |x− y| ≤ r. Hence

=⇒ 1

2n
u(y) ≤ u(x) ≤ 2nu(y)

if x,y ∈ Ω1 and |x− y| ≤ r. 3



Harnack’s Inequality
Proof (Continued): It is given that Ω1 is connected and Ω1 ⊂⊂ Ω. Since Ω1 is
compact, we can cover Ω1 by a chain of finitely many balls {Bi}Ni=1 each of
which has radius r and Bi ∩Bi−1 ̸= ϕ for i = 2, 3, · · · , N . Hence

=⇒ 1

2nN
u(y) ≤ u(x)

for all x,y ∈ Ω1. Applying the infimum and supremum definition, the proof
follows.
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Harnack’s Inequality

Remarks
1. We have that

=⇒ 1

2n
u(y) ≤ u(x) ≤ 2nu(y)

2. In particular

=⇒ 1

C
u(y) ≤ u(x) ≤ Cu(y) for all x,y ∈ Ω1

3. The value of a nonnegative harmonic function within Ω1 is all
comparable.

4. The value of u can’t be very small or very large at any point of Ω1 unless u
is very small or very large everywhere in Ω1.
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Harnack’s Inequality

Remarks
1. Harnack’s inequality says that a positive harmonic function cannot

oscillate wildly — it has a form of “internal smoothness” or balance.
2. If u represents a steady-state temperature field in a metal plate

(harmonic because it satisfies Laplace’s equation), then inside any
region, the hottest and coldest points are not arbitrarily far apart — their
ratio is controlled.

3. Provides control between max and min values — implies local regularity.
4. Imagine zooming into any small ball inside the domain where u is

harmonic. The graph of u within that ball looks “flat-ish” compared to
arbitrary continuous functions, that is, no sudden spike or dip in values.
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Distribution
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Green’s Function
The Laplace Equation solution method is yet to be covered with Green’s
Function. However, as we have seen in the remarks, we have used a Dirac
measure. In a line of proof, we have mentioned that

u(x) =

ˆ

Rn

−∆xΦ(x− y)f(y)dy =

ˆ

Rn

δxf(y)dy

which arises from the distribution theory. A similar line of proof is required in
Green’s Function, for which a basic knowledge of distribution is required. Let
us see the distribution function and then have a look at it. Also, the
knowledge of distribution helps you with the weak derivative in the later part
of the course.
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Test Functions

Definition 1 (Support)
Let ϕ : Ω ⊂ Rn → R, we define the support as

support(ϕ) = {x ∈ Ω : ϕ(x) ̸= 0}

Here closure is w.r.to Ω

Definition 2 (Compact Support)
We say a function ϕ : Rn → R has a compact support if ϕ ≡ 0 outside a closed
and bounded set in Rn.

Definition 3 (Test Function)
We say ϕ is a test function if ϕ is an infinitely differentiable function with a
compact support.
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Distribution
Let D denote the set of all test functions. It is also denoted as C∞

c (Rn). Also

D(Ω) = C∞
c (Ω)

Definition 4 (Distribution)
We say F : D → R is a distribution if F is a continuous and linear functional.
(That is, it assigns a real number for every test function ϕ ∈ D). Let us denote
the real number associated with this distribution as (F, ϕ).
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Distribution

Example 2
Let g : R → R be any bounded function. We define the distribution associated
with g as the map Fg : D → R. Fg assigns a test function ϕ the real number

(Fg, ϕ) =

∞̂

−∞

g(x)ϕ(x)dx
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Distribution

Example 3
The Heaviside function is defined as

H(x) =

{
1 x ≥ 0

0 x < 0

The distribution associated with g as the map FH : D → R. Fg assigns a test
ϕ the real number

(FH , ϕ) =

∞̂

0

ϕ(x)dx
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Dirac Delta Function
There are many ways to define the Dirac Delta function
1. A generalized function from the limit of a class of delta sequences
2. Derivative of the Heaviside step function

d

dx
[H(x)] = δ(x)

3. A function on the real line which is zero except at the origin, where it is
infinite

4. But, it is not a function in the traditional sense

δ(x) =

{
+∞ x = 0

0 x ̸= 0
(1)

such that
∞̂

−∞

δ(x)dx = 1
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Distribution

Example 4
The delta function δ0 (not a function!) is the distribution δ0 : D → R assigns a
test function ϕ the real number ϕ(0)

(δ0, ϕ) = ϕ(0)

Sometimes we write ˆ

Rn

δ0(x)ϕ(x)dx = ϕ(0)

However, it is rather informal and not accurate, as δ0(x) is not a function.
Purely notational.
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Distribution
We can also define the delta function centered at a point other than 0.

δx(y) = δ(x− y) =

{
+∞ x = y

0 x ̸= y
(2)

For a fixed x ∈ Rn, we define δx : D → R to be the distribution which assigns
to a test function the real number ϕ(x)

(δx, ϕ) = ϕ(x)
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Dirac Delta Function Properties
There are three main properties for the Dirac Delta function
1. δx = δ(y − x) = 0, x ̸= y

2.
x+ϵˆ

x−ϵ

δ(y − x)dy = 1

3.
x+ϵˆ

x−ϵ

f(y)δ(y − x)dy = f(x)
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Derivatives of Distributions

Definition 5 (Derivative of the Distribution)
Let F : D → R be a distribution. We define the derivative of the distribution F
as the distribution G : D → R such that

(G,ϕ) = −(F, ϕ′)

for all ϕ ∈ D. If we denote F ′ = G, then

(F ′, ϕ) = −(F, ϕ′)

for all ϕ ∈ D.
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Derivatives of Distributions

Example 5
Let g : R → R be any bounded function and g ∈ C1(R). Fg : D → R.

(Fg, ϕ) =

∞̂

∞

g(x)ϕ(x)dx

Therefore, by integration by parts,

(Fg, ϕ
′) =

∞̂

−∞

g(x)ϕ′(x)dx = −
∞̂

−∞

g′(x)ϕ(x)dx = −(F ′
g, ϕ)

=⇒ (F ′
g, ϕ) = −(Fg, ϕ

′) =

∞̂

−∞

g′(x)ϕ(x)dx
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Derivatives of Distributions

Example 6
For the Heaviside Function also, the derivative of FH , denoted F ′

H , must satisfy

(F ′
H , ϕ) = −(FH , ϕ′)

= −
∞̂

0

ϕ′(x)dx = − lim
b→∞

bˆ

0

ϕ′(x)dx

= − lim
b→∞

[ϕ(x)]x=b
x=0

= ϕ(0) = (δ0, ϕ)

The derivative of the distribution associated with the Heaviside function is the
delta function.
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Derivatives of Distributions

Example 7
For Dirac Delta Function also, the derivative of δ0, denoted δ′0 must satisfy

(δ′0, ϕ) = −(δ0, ϕ
′) = −ϕ′(0)

ϕ(x) = x =⇒ (δ′0, ϕ) = −1

ϕ(x) = 4x2 − 1 =⇒ (δ′3, ϕ) = −ϕ′(3) = −24

ϕ(x) = (x− a)n =⇒ (δ(n)a , ϕ) = (−1)nϕ(n)(a) = (−1)nn!
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Convergence of Distributions

Definition 6 (Weak Convergence)
Let Fn : D → R be a sequence of distributions. We say Fn converges weakly
to F if

(Fn, ϕ) → (F, ϕ)

for all ϕ ∈ D.

Example 8

ηϵ(x) =
1

ϵ

n

η

(
|x|
ϵ

)
Then ηϵ

w−→ δ0

21



Convergence of Distributions

Example 9

Fn(x) = sin(nx)
w−→ 0

We denote the set of all distributions F : D → R as D′. Suppose u′ = 0 in
D′(R). Then u = constant in D′(R)

22



A few Theorems (without Proof)

Theorem 10
1. Let F be a continuous function satisfying (F, ϕ) = 0 for all ϕ ∈ D. Then

F ≡ 0.
2. Suppose u ∈ D′, then there exists a sequence Fn in D such that Fn

w−→ u
in D′. (Density Theorem)

3. If g ∈ L1
loc(Ω),then the function fϕ is integrable for any ϕ ∈ D(Ω) and

Fg ∈ D′.
4. If g ∈ C1(R), then F ′

g = Fg′

5. If F ∈ D′(Ω), there exists G ∈ D′(Ω) such that G′ = F .
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