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Harnack's Inequality



Harnack'’s Inequality

Theorem 1 (Harnack’s Inequality)
For each connected open set ; ccC €, there exists a positive constant C
depending on Q; such that

supu < C'infu

N 931

for all nonnegative harmonic function w in Q.

Proof:
Letr := 1dist(,09). Choose x,y € Q; such that |x — y| < r. Then




Harnack'’s Inequality

Proof (Continued):
— Sru(y) < u(x)

if x,y € Q; and |x — y| < r. On the other hand,

1 1
= = dz < 2" dz. = 2" d
u(x) ][ udz ()2 / udz < T / udz ][ udz

B(x,2r) B(x,2r) B(y,r) B(y,r)

= u(x) < 2"u(y)

if x,y € Q; and |x —y| < r. Hence
= -u(y) < u(x) < 2"u(y)

ifx,yeQand|x —y| <r.



Harnack'’s Inequality

Proof (Continued): It is given that ©; is connected and 2; cc . Since Q, is
compact, we can cover Q; by a chain of finitely many balls {Bl-}fil each of
which has radius rand B, N B;_1 # ¢ fori =2,3,--- | N. Hence

— yuly) < u()

forall x,y € Q. Applying the infimum and supremum definition, the proof
follows.




Harnack'’s Inequality

Remarks
1. We have that
= —u(y) < u(x) < 2"u(y)

2. In particular

= %u(y) <u(x) < Cu(y) forall x,y € Oy

3. The value of a nonnegative harmonic function within €2, is all
comparable.

4. The value of u can’t be very small or very large at any point of ©; unless u
is very small or very large everywhere in ;.




Harnack'’s Inequality

Remarks

1. Harnack’s inequality says that a positive harmonic function cannot
oscillate wildly — it has a form of “internal smoothness” or balance.

2. If u represents a steady-state temperature field in a metal plate
(harmonic because it satisfies Laplace’s equation), then inside any
region, the hottest and coldest points are not arbitrarily far apart — their
ratio is controlled.

3. Provides control between max and min values — implies local regularity.

4. Imagine zooming into any small ball inside the domain where u is
harmonic. The graph of u within that ball looks “flat-ish” compared to
arbitrary continuous functions, that is, no sudden spike or dip in values.




Distribution



Green’s Function

The Laplace Equation solution method is yet to be covered with Green's
Function. However, as we have seen in the remarks, we have used a Dirac
measure. In a line of proof, we have mentioned that

u(x) = / A8 (x— y)f(y)dy = / b f(y)dy
Rn R™

which arises from the distribution theory. A similar line of proof is required in
Green’s Function, for which a basic knowledge of distribution is required. Let
us see the distribution function and then have a look at it. Also, the
knowledge of distribution helps you with the weak derivative in the later part
of the course.



Test Functions

Definition 1 (Support)
Let ¢ : Q C R® — R, we define the support as

support(¢) = {x € Q: ¢(x) # 0}

Here closure is w.r.to Q

Definition 2 (Compact Support)
We say a function ¢ : R” — R has a compact support if ¢ = 0 outside a closed
and bounded set in R™.

Definition 3 (Test Function)
We say ¢ is a test function if ¢ is an infinitely differentiable function with a
compact support.




Distribution

Let D denote the set of all test functions. It is also denoted as C2°(R™). Also

D(©) = C=(9)

Definition 4 (Distribution)

We say F' : D — R is a distribution if F' is a continuous and linear functional.
(That is, it assigns a real number for every test function ¢ € D). Let us denote
the real number associated with this distribution as (F, ¢).



Distribution

Example 2
Let g : R — R be any bounded function. We define the distribution associated
with g as the map F, : D — R. F, assigns a test function ¢ the real number

(o 0]

(Ey 6) = / o(@)p()de

—00




Distribution

Example 3
The Heaviside function is defined as

1 >0
H(x):{o 2 <0

The distribution associated with g as the map F : D — R. F, assigns a test

¢ the real number
o0
FH’ / (b
0




Dirac Delta Function

There are many ways to define the Dirac Delta function
1. A generalized function from the limit of a class of delta sequences
2. Derivative of the Heaviside step function

d
—[H(x)] = b()
3. A function on the real line which is zero except at the origin, where it is
infinite
4. But, it is not a function in the traditional sense
400 =0
§(z) = M
0 x#0
such that -

/ O(z)dr =1



Distribution

Example 4
The delta function ¢, (not a function!) is the distribution §, : D — R assigns a
test function ¢ the real number ¢(0)

(%0, ¢) = #(0)

Sometimes we write

/ 50(x)p(x)dx = $(0)
Rn

However, it is rather informal and not accurate, as dy(z) is not a function.
Purely notational.




Distribution

We can also define the delta function centered at a point other than 0.

oo w=y 0)

5x(y)=5(w—y)={0 vty

For a fixed x € R", we define dx : D — R to be the distribution which assigns
to a test function the real number ¢(x)

(0x, ) = D(x)



Dirac Delta Function Properties

There are three main properties for the Dirac Delta function
1. 0,=0y—z)=0,z#y
Tr+e€
2. / 0y —ax)dy =1

T+e

xz
5. |
r—e€

fW)é(y — x)dy = f(z)




Derivatives of Distributions

Definition 5 (Derivative of the Distribution)
Let F : D — R be a distribution. We define the derivative of the distribution F
as the distribution G : D — R such that

(G? ¢> = _(Fv Qb/)
forall ¢ € D. If we denote F’ = G, then
(F,7¢) = _(Fa ¢,)

forall ¢ € D.




Derivatives of Distributions

Example 5
Let g : R — R be any bounded function and g € C*(R). F, : D — R.




Derivatives of Distributions

Example 6
For the Heaviside Function also, the derivative of I, denoted F7,, must satisfy

(Fir: ¢) = —(Fn, ¢')

o) b
. / # @)z =~ lim / ¢ ()de
0 0

= — lim [B(@)2}

= ¢(0) = (%, 9)

The derivative of the distribution associated with the Heaviside function is the
delta function.




Derivatives of Distributions

Example 7
For Dirac Delta Function also, the derivative of 9y, denoted ¢, must satisfy

(%, ¢) = —(d0,¢") = —4/(0)

@)=z = (B,¢) =1
o(a) = 4> —1 = (8,¢) = —¢/(3) = 24
6(z) = (@ —a)" = (6™, ¢) = (~1)"6™(a) = (=1)"n!




Convergence of Distributions

Definition 6 (Weak Convergence)
Let F,, : D — R be a sequence of distributions. We say F;, converges weakly
to Fif

(Fn, ¢) = (F, ¢)

forall ¢ € D.

Example 8

Then . = d




Convergence of Distributions

Example 9

Fo(z) = sin(nz) 20

We denote the set of all distributions F: D — R as D’. Suppose v’ = 0in
D'(R). Then u = constant in D'(R)




A few Theorems (without Proof)

Theorem 10

1. Let F be a continuous function satisfying (F, ¢) = 0 for all ¢ € D. Then
F=0.

2. Suppose u € D/, then there exists a sequence F,, in D such that F,, = «
in D’. (Density Theorem)

3. If g € L} .(Q2),then the function f¢ is integrable for any ¢ € D(Q2) and
FgeD.

4. If g e CY(R), then F, = F

5. If F € D'(Q), there exists G € D'(2) such that G’ = F.
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