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Recap



Recap

We say ¢ is a test function if ¢ is an infinitely differentiable function with a compact support.

I Definition 1 (Test Function)
D(Q) = CZ(Q)

Definition 2 (Distribution)

We say I : D — Ris a distribution if F is a continuous and linear functional. (That is, it assigns
areal number for every test function ¢ € D). Let us denote the real number associated with this
distribution as (F, ¢).

Definition 3 (Derivative of the Distribution)
Let F : D — R be a distribution. We define the derivative of the distribution ' as the distribution
G : D — Rsuchthat (G, ¢) = —(F,¢') V¢ € D.

Definition 4 (Weak Convergence)
Let F, : D — R be a sequence of distributions. We say F;, converges weakly to F if (F,, ¢) —
(F,¢) V¢ € D.




A few Theorems (without Proof)

Theorem 1
1. Let F be a continuous function satisfying (F, ¢) = 0 for all ¢ € D. Then
F=0.
2. Suppose u € D/, then there exists a sequence F,, in D such that F,, = u
in D’. (Density Theorem)
3. If g € L} (€),then the function f¢ is integrable for any ¢ € D(£2) and

loc

FgeD.
4. If g € C'(R), then F, = Fy
5. If F € D'(Q), there exists G € D'(2) such that G’ = F.




Green'’s Function



By Parts (Recall)

Remember! The following results in 1D

b b

/udv— [uv /vdu—/d uv) /vdu

b

/udv = /d uv) /vdu: [uv]ag—/vdu
Q/udzv = Q/ual(dv) = /
:/dudv /dvdu / uv

Q

d(udv) — /dudv

{O\

2




By Parts (Recall)

Remember! The following result in bounded 2 ¢ R
/[ud% — vd*u) = /d(udv — vdu)
Q Q

Remember! The following result in bounded Q2 ¢ R”

/[UVZU —vV2u]dx = /V.(qu —vVu)dx = /y.(qu —ovVu)dS
Q

Q [2}9]

The last expression is due to Gauss’s Divergence Theorem

/V.FdX:/F.VdS
Q o0




By Parts (Recall)

Remember! The following results in bounded Q ¢ R”

/[uV% —oV2u]dx = / <u% — v%) as
Q o0

/uV%dxz /vvzudx—i-/ (u@ —v%> ds
ov ov
Q Q

o0

—/vv2udX: —/UVQUdX—i—/ u@—v@ ds
ov ov

Q Q oN




Green’s Function

y" +p(@)y +q(x)y = r(z),y (x0) = yo,z > w0
yp(z) = /G(a:,t)r(t)dt

where the function G(z, t) is called the Green’s function.
The Green'’s function for an initial value problem is given by

G(z,t) = Y1 (t)y2(xl)/v—(t3;2(t)y1(x)




Green’s Function ODE

y" +p(@)y +q(@)y = r(z),y(a) = yo,y(b) = y1,z € [a,b]
The following Green’s function works for the boundary value problem.




Motivation

Now, let us find a general representation formula for the solution of Poisson’s
equation

(10)

—Au=h in Q
u=7f on 9N

Let u be a solution of (10). Then

u(x) = / uly)dy
Q



Green's Function Motivation
Fix x € 2. Suppose we can solve the problem

—AyG(x,y) =0x y€Q
G(x,y)=0 y € 0Q

Theorem 2 (Representation Formula using Green's Function)
If u € C?(9) solves the problem (10), then

u(z) = /h G, y)dy - /f 2% (x,y)dS(y) (12)

where G is called Green’s function.
Let us obtain G.




Green's Function Motivation

Proof:

u(x) =

\
\of,
£
<

/A G(x,y)u(y)dy (Use (2) with u=G,v =u)

/ny yu(y dy+/ny (y) — (;Cj

o0
/ny dy—/ayx,y
o2




Corrector Function

Definition 5 (Corrector Function)
Let ¢* = ¢*(y) be the solution of the following Laplace equation

y¢x = y €
¢*(y) =2(y —x) y €
The function ¢* is called the corrector function.
Then using (2) withu = ¢* and v = u

0
oy = [ Ay - [ |G- o5
Q Q

o0

J ast

(13)




Corrector Function

Hence, we obtain that

0= [Favumiay+ [ oty -5 - Suw)| as)
Q

0
Now, let us evaluate the tricky part of the following integral
[ o= vaguly)dy
Q

Since ®(x — y) has a singularity at y # x, we need to be careful while
integrating it.




Green's Function Motivation

Let u € C?(Q2) be an arbitrary function. Fix x € €, choose ¢ > 0 such that
B(x,€) C Q. Consider the region €2, := Q — B(x, ¢). Now, consider
u=®(y —x) and v = w in (2), then
0
—_——
[ o - 0avutiay = [ Baly =N vy - [ 5 - 0uly)is(y)
Qe Qe
ou
+ [ 2y -x)5 as()
99

/<I>(y —x)Ayu(y)dy = / [‘P(y = X)gz - gf(y - X)U(Y)} dS(y)

00

€




Green’s Function Motivation
Claim 1: (Follows immediately. )

lim [ ®(y — x)Ayu(y)dy = / (y — x)Ayu(y)dy

e—0

Qe Q
Claim 2:
lim { gf(y - X)U(y)ds(y)] = - gf(y —x)u(y)dS(y) — u(x)
o0 o0
Claim 3:




Green's Function Motivation

If we prove claim (2) and claim (3), then

[ —xavuty = - [ Ty -xutise) + [ ety -5
Qe e

[ ot =x8,umdy = - [ Sy —xuly)

Q o

Consequently




Green’s Function

(15)-(14) yields

e) =~ [0y =) - vy + [ |5 - Ty -0 utvyase
Q e}
0 —x) — ¢*
=- /[<I>(y —x) = ¢*(y)|Ayuly)dy — / 2y 81/) 0 ]U(y)dS(y)

Q o9

Definition 6 (Green's Function)

Define the function G(x,y) for given x,y €

G(x,y) = (y —x) — ¢* (16)

This is called Green'’s function for the region Q



Proof of Claim 2

Now, we are left with proving claims 2 and 3. For claim 2, reacall the K. proof
from previous lectures. We need to prove

0P

iy { iy~ x)u(y)ds<y>] = [ Dy~ xulx)dS(y) - u(x

o0

It is sufficient to prove.

0P

lim a(y —x)u(y)dS(y) = —u(x)

OB(x,¢)



Proof of Claim 2

Now,
qu)(Y) =
0P
E(y -x)=Vyd(y —x)v =
Hence,
[0}
im [ 9%y x)uly)as(y) =  lim




Proof of Claim 3

Now, we need to prove

lim [ &y — x)%dS(y) = /‘I)(y — x)a—ZdS(y)

e—0
Qe o0

/‘P(y—X)%ds(Y)=/<I>(y—><)5d5(y)— / ey —x)5-

0 o9 OB(x,€)

It is sufficient to prove that

e—0

Jim / B(y — x)a—:de(y) ~0




Proof of Claim 3

This is similar to L. in our previous lecture. We have

ou ou
)= < _ -
/ Oy —x)5 dS(y)| < / 20y = %)l | 5>
B(x,e) 0B(x,e)
ou
= |ov
Vipeo X,€
L(B(x, ))6B(X,E)
- Celloge| (n=2)
| Ce n>2
Hence 5
. u o
lim [ @y - x)5 () =0

OB(x,¢)

dS(y)

|®(y —x)[dS(y)




Representation Formula using Green's Function

Therefore, we proved the following

{—Au_h in Q )

u=f on 012

Theorem 3 (Representation Formula using Green’s Function)
If u € C?(Q) solves the problem (20), then

u() = [ h(y)Glx.y)dy - /f 2% (x,y)dS(y) (19)
Q

where G is called Green's function.




Representation Formula using Green's Function

Definition 7 (Green's Function)
Define the function G(x,y) for given x,y €

G(x,y) =0y —x) — ¢* (19)

This is called Green'’s function for the region Q




Representation Formula using Green's Function

We proved the following

{—Au_h in Q 20)

u=f on 012

Theorem 4 (Representation Formula using Green’s Function)
If u € C?(Q) solves the problem (20), then

UX)=/h(Y) (x,y)dy — /f a—nydS) (21)
Q

where G is called Green's function.




Representation Formula using Green's Function

If we have h = 0, then

{—Au:o in Q 22)

u=f on 92

As a corollary

Theorem 5 (Corollary)
If u € C2%(Q) solves the problem (22), then

/f 2 (x,)dS(y) (23)

where G is called Green's function.



Symmetry of Green's Function

Theorem 6 (Symmetry)
Forall x,y €  and x # y, we ave

G(x,y) = G(y,x) (24)

Proof: Fix, x,y € Q and x # y. Write
v(z) == G(x,2),w(z) == G(y,z), z€c
Then
Av(z) =0 z#x€e
v=>0 z € 0f)
Aw(z) =0 z#yec
w =20 z € 0}




Symmetry of Green's Function

Proof (continued): Claim:

v(y) = G(x,y) = G(y,x) = w(x), x,y€

Fix ¢ > 0 and consider Q2. = Q \ B(x,¢) U B(y, €). Then, by the identity which
we proved earlier, we have

ow ov
/[quw — wAv|dz = / <vf)1/ — (9V> as

Qe OB(x,6)UB(y,e€)
ow 81} ow ov
OB(x,¢) 9B(y,e)

ow ov ow
- / <vay — w) ds = / <w81/ — UBV) ds

8B(x 6) 8B(y75)




Symmetry of Green's Function

Proof (continued): Now, consider v(z) = ®(z — x) — ¢*(z), then by Claims 2
and 3 of the previous theorem, we can show that

Similarly, w(z) = ®(z — y) — ¢¥(z), then by Claims 2 and 3 of the previous
theorem, we can show that

Hence the proof.
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