MA612L-Partial Differential Equations

Lecture 25: Laplace Equation - Green's Function

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

October 8, 2025

Recap

Recap

Definition 1 (Test Function)

We say ϕ is a test function if ϕ is an infinitely differentiable function with a compact support.

$$D(\Omega) = C_c^{\infty}(\Omega)$$

Definition 2 (Distribution)

We say $F:\mathcal{D}\to\mathbb{R}$ is a distribution if F is a continuous and linear functional. (That is, it assigns a real number for every test function $\phi\in\mathcal{D}$). Let us denote the real number associated with this distribution as (F,ϕ) .

Definition 3 (Derivative of the Distribution)

Let $F:\mathcal{D}\to\mathbb{R}$ be a distribution. We define the derivative of the distribution F as the distribution $G:\mathcal{D}\to\mathbb{R}$ such that $(G,\phi)=-(F,\phi')\ \ \forall \phi\in\mathcal{D}.$

Definition 4 (Weak Convergence)

Let $F_n : \mathcal{D} \to \mathbb{R}$ be a sequence of distributions. We say F_n converges weakly to F if $(F_n, \phi) \to (F, \phi) \ \forall \phi \in \mathcal{D}$.

A few Theorems (without Proof)

Theorem 1

- 1. Let F be a continuous function satisfying $(F,\phi)=0$ for all $\phi\in\mathcal{D}.$ Then $F\equiv 0.$
- 2. Suppose $u \in \mathcal{D}'$, then there exists a sequence F_n in \mathcal{D} such that $F_n \xrightarrow{w} u$ in \mathcal{D}' . (Density Theorem)
- 3. If $g\in L^1_{loc}(\Omega)$,then the function $f\phi$ is integrable for any $\phi\in \mathcal{D}(\Omega)$ and $F_q\in \mathcal{D}'.$
- 4. If $g \in C^1(\mathbb{R})$, then $F'_g = F_{g'}$
- 5. If $F \in \mathcal{D}'(\Omega)$, there exists $G \in \mathcal{D}'(\Omega)$ such that G' = F.

Green's Function

By Parts (Recall)

Remember! The following results in 1D

$$\int_{a}^{b} u dv = [uv]_{a}^{b} - \int_{a}^{b} v du = \int_{a}^{b} d(uv) - \int_{a}^{b} v du$$

$$\int_{\Omega} u dv = \int_{\Omega} d(uv) - \int_{\Omega} v du = [uv]_{\partial\Omega} - \int_{a}^{b} v du$$

$$\int_{\Omega} u d^{2}v = \int_{\Omega} u d(dv) = \int_{\Omega} d(udv) - \int_{\Omega} du dv$$

$$= \int_{\Omega} d(udv) - \int_{\Omega} d(vdu) + \int_{\Omega} d^{2}uv$$

By Parts (Recall)

Remember! The following result in bounded $\Omega \subset \mathbb{R}$

$$\int_{\Omega} [ud^2v - vd^2u] = \int_{\Omega} d(udv - vdu)$$

Remember! The following result in bounded $\Omega \subset \mathbb{R}^n$

$$\int_{\Omega} [u\nabla^2 v - v\nabla^2 u] d\mathbf{x} = \int_{\Omega} \nabla \cdot (u\nabla v - v\nabla u) d\mathbf{x} = \int_{\partial\Omega} \nu \cdot (u\nabla v - v\nabla u) dS$$

The last expression is due to Gauss's Divergence Theorem

$$\int_{\Omega} \nabla . F d\mathbf{x} = \int_{\partial \Omega} F . \nu dS$$

By Parts (Recall)

Remember! The following results in bounded $\Omega \subset \mathbb{R}^n$

$$\int [u\nabla^2 v - v\nabla^2 u]d\mathbf{x} = \int \left(u\frac{\partial v}{\partial \nu} - v\frac{\partial u}{\partial \nu}\right)dS \tag{1}$$

$$\int_{\Omega} u \nabla^2 v d\mathbf{x} = \int_{\Omega} v \nabla^2 u d\mathbf{x} + \int_{\partial \Omega} \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \right) dS \tag{2}$$

$$-\int_{\Omega} v \nabla^2 u d\mathbf{x} = -\int_{\Omega} u \nabla^2 v d\mathbf{x} + \int_{\partial \Omega} \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \right) dS$$
 (3)

Green's Function

$$y'' + p(x)y' + q(x)y = r(x), y'(x_0) = y_0, x \ge x_0$$
(4)

$$y_p(x) = \int_{r_0}^x G(x,t)r(t)dt$$
 (5)

where the function G(x,t) is called the Green's function. The Green's function for an initial value problem is given by

$$G(x,t) = \frac{y_1(t)y_2(x) - y_2(t)y_1(x)}{W(t)}$$
 (6)

Green's Function ODE

$$y'' + p(x)y' + q(x)y = r(x), y(a) = y_0, y(b) = y_1, x \in [a, b]$$
(7)

The following Green's function works for the boundary value problem.

$$y_p(x) = \int_a^b G(x,t)r(t)dt$$
 (8)

$$G(x,t) = \begin{cases} \frac{y_1(t)y_2(x)}{W(t)} & a \le t \le x\\ \frac{y_2(t)y_1(x)}{W(t)} & x \le t \le b \end{cases}$$
 (9)

Motivation

Now, let us find a general representation formula for the solution of Poisson's equation

$$\begin{cases} -\Delta u = h & \text{in } \Omega \\ u = f & \text{on } \partial\Omega \end{cases} \tag{10}$$

Let u be a solution of (10). Then

$$u(\mathbf{x}) = \int_{\Omega} \delta_{\mathbf{x}} u(\mathbf{y}) d\mathbf{y}$$

Fix $x \in \Omega$. Suppose we can solve the problem

$$\begin{cases} -\Delta_{\mathbf{y}} G(\mathbf{x}, \mathbf{y}) = \delta_{\mathbf{x}} & \mathbf{y} \in \Omega \\ G(\mathbf{x}, \mathbf{y}) = 0 & \mathbf{y} \in \partial \Omega \end{cases}$$
(11)

Theorem 2 (Representation Formula using Green's Function)

If $u \in C^2(\overline{\Omega})$ solves the problem (10), then

$$u(x) = \int_{\Omega} h(\mathbf{y})G(\mathbf{x}, \mathbf{y})d\mathbf{y} - \int_{\partial\Omega} f(\mathbf{y})\frac{\partial G}{\partial\nu}(\mathbf{x}, \mathbf{y})dS(\mathbf{y})$$
(12)

where G is called Green's function.

Let us obtain G.

Proof:

$$\begin{split} u(\mathbf{x}) &= \int\limits_{\Omega} u(\mathbf{y}) \delta_{\mathbf{x}} d\mathbf{y} \\ &= -\int\limits_{\Omega} \Delta_{\mathbf{y}} G(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d\mathbf{y} \ (\mathsf{Use} \ (\mathbf{2}) \ \mathsf{with} \ u = G, v = u) \\ &= -\int\limits_{\Omega} G(\mathbf{x}, \mathbf{y}) \overbrace{\Delta_{\mathbf{y}} u(\mathbf{y})}^{h(\mathbf{y})} d\mathbf{y} + \int\limits_{\partial \Omega} \overbrace{G(\mathbf{x}, \mathbf{y})}^{0} \frac{\partial u}{\partial \nu} (\mathbf{y}) dS(\mathbf{y}) - \int\limits_{\partial \Omega} \frac{\partial G}{\partial \nu} (\mathbf{x}, \mathbf{y}) u(\mathbf{y}) dS(\mathbf{y}) \\ &= \int\limits_{\Omega} G(\mathbf{x}, \mathbf{y}) h(\mathbf{y}) d\mathbf{y} - \int\limits_{\partial \Omega} \frac{\partial G}{\partial \nu} (\mathbf{x}, \mathbf{y}) f(\mathbf{y}) dS(\mathbf{y}) \end{split}$$

Corrector Function

Definition 5 (Corrector Function)

Let $\phi^{\mathbf{x}} = \phi^{\mathbf{x}}(\mathbf{y})$ be the solution of the following Laplace equation

$$\begin{cases} -\Delta_{\mathbf{y}}\phi^{\mathbf{x}} = 0 & \mathbf{y} \in \Omega \\ \phi^{\mathbf{x}}(\mathbf{y}) = \Phi(\mathbf{y} - \mathbf{x}) & \mathbf{y} \in \partial\Omega \end{cases}$$
 (13)

The function $\phi^{\mathbf{x}}$ is called the corrector function.

Then using (2) with $u = \phi^{\mathbf{x}}$ and v = u

$$\int_{\Omega} \phi^{\mathbf{x}} \Delta_{\mathbf{y}} u(\mathbf{y}) d\mathbf{y} = \underbrace{\int_{\Omega} \Delta_{\mathbf{y}} \phi^{\mathbf{x}}(\mathbf{y}) u(\mathbf{y}) d\mathbf{y}}_{\Omega} - \int_{\partial \Omega} \left[\frac{\partial \phi^{\mathbf{x}}}{\partial \nu} u - \phi^{\mathbf{x}} \frac{\partial u}{\partial \nu} \right] dS(\mathbf{y})$$

Corrector Function

Hence, we obtain that

$$0 = -\int \phi^{\mathbf{x}} \Delta_{\mathbf{y}} u(\mathbf{y}) d\mathbf{y} + \int \left[\Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} - \frac{\partial \phi^{\mathbf{x}}}{\partial \nu} u(\mathbf{y}) \right] dS(\mathbf{y})$$
(14)

Now, let us evaluate the tricky part of the following integral

$$\int_{\Omega} \Phi(\mathbf{x} - \mathbf{y}) \Delta_{\mathbf{y}} u(\mathbf{y}) d\mathbf{y}$$

Since $\Phi(\mathbf{x}-\mathbf{y})$ has a singularity at $\mathbf{y} \neq \mathbf{x}$, we need to be careful while integrating it.

Let $u \in C^2(\overline{\Omega})$ be an arbitrary function. Fix $x \in \Omega$, choose $\epsilon > 0$ such that $B(\mathbf{x}, \epsilon) \subset \Omega$. Consider the region $\Omega_{\epsilon} := \Omega - B(\mathbf{x}, \epsilon)$. Now, consider $u = \Phi(\mathbf{y} - \mathbf{x})$ and v = u in (2), then

$$\int_{\Omega_{\epsilon}} \Phi(\mathbf{y} - \mathbf{x}) \Delta_{\mathbf{y}} u(\mathbf{y}) d\mathbf{y} = \int_{\Omega_{\epsilon}} \underbrace{\Delta_{\mathbf{y}} \Phi(\mathbf{y} - \mathbf{x})}_{\Omega_{\epsilon}} u(\mathbf{y}) d\mathbf{y} - \int_{\partial \Omega_{\epsilon}} \frac{\partial \Phi}{\partial \nu} (\mathbf{y} - \mathbf{x}) u(\mathbf{y}) dS(\mathbf{y})
+ \int_{\partial \Omega_{\epsilon}} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y})
\int_{\Omega_{\epsilon}} \Phi(\mathbf{y} - \mathbf{x}) \Delta_{\mathbf{y}} u(\mathbf{y}) d\mathbf{y} = \int_{\partial \Omega_{\epsilon}} \left[\Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} - \frac{\partial \Phi}{\partial \nu} (\mathbf{y} - \mathbf{x}) u(\mathbf{y}) \right] dS(\mathbf{y})$$

Claim 1: (Follows immediately.)

$$\lim_{\epsilon \to 0} \int \Phi(\mathbf{y} - \mathbf{x}) \Delta_{\mathbf{y}} u(\mathbf{y}) d\mathbf{y} = \int \Phi(\mathbf{y} - \mathbf{x}) \Delta_{\mathbf{y}} u(\mathbf{y}) d\mathbf{y}$$

Claim 2:

$$\lim_{\epsilon \to 0} \left[-\int_{\partial \Omega} \frac{\partial \Phi}{\partial \nu} (\mathbf{y} - \mathbf{x}) u(y) dS(\mathbf{y}) \right] = -\int_{\partial \Omega} \frac{\partial \Phi}{\partial \nu} (\mathbf{y} - \mathbf{x}) u(\mathbf{y}) dS(\mathbf{y}) - u(\mathbf{x})$$

Claim 3:

$$\lim_{\epsilon \to 0} \int_{\partial \Omega_{\epsilon}} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y}) = \int_{\partial \Omega} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y})$$

If we prove claim (2) and claim (3), then

$$\int_{\Omega_{\epsilon}} \Phi(\mathbf{y} - \mathbf{x}) \Delta_{\mathbf{y}} u(\mathbf{y}) d\mathbf{y} = -\int_{\partial \Omega_{\epsilon}} \frac{\partial \Phi}{\partial \nu} (\mathbf{y} - \mathbf{x}) u(\mathbf{y}) dS(\mathbf{y}) + \int_{\partial \Omega_{\epsilon}} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y})$$

$$\int_{\Omega} \Phi(\mathbf{y} - \mathbf{x}) \Delta_{\mathbf{y}} u(\mathbf{y}) d\mathbf{y} = -\int_{\partial \Omega} \frac{\partial \Phi}{\partial \nu} (\mathbf{y} - \mathbf{x}) u(\mathbf{y}) dS(\mathbf{y}) - u(\mathbf{x}) + \int_{\partial \Omega} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y})$$

Consequently

$$u(x) = -\int_{\Omega} \Phi(\mathbf{y} - \mathbf{x}) \Delta_{\mathbf{y}} u(\mathbf{y}) d\mathbf{y} + \int_{\partial \Omega} \left[\Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} - \frac{\partial \Phi}{\partial \nu} (\mathbf{y} - \mathbf{x}) u(y) \right] dS(\mathbf{y})$$
(15)

Green's Function

(15)-(14) yields

$$u(x) = -\int_{\Omega} \left[\Phi(\mathbf{y} - \mathbf{x}) - \phi^{\mathbf{x}}(\mathbf{y}) \right] \Delta_{\mathbf{y}} u(\mathbf{y}) d\mathbf{y} + \int_{\partial \Omega} \left[\frac{\partial \phi^{\mathbf{x}}}{\partial \nu} - \frac{\partial \Phi}{\partial \nu} (\mathbf{y} - \mathbf{x}) \right] u(\mathbf{y}) dS(\mathbf{y})$$
$$= -\int \left[\Phi(\mathbf{y} - \mathbf{x}) - \phi^{\mathbf{x}}(\mathbf{y}) \right] \Delta_{\mathbf{y}} u(\mathbf{y}) d\mathbf{y} - \int \frac{\partial \left[\Phi(\mathbf{y} - \mathbf{x}) - \phi^{\mathbf{x}} \right]}{\partial \nu} u(\mathbf{y}) dS(\mathbf{y})$$

Definition 6 (Green's Function)

Define the function $G(\mathbf{x}, \mathbf{y})$ for given $\mathbf{x}, \mathbf{y} \in \Omega$

$$G(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{y} - \mathbf{x}) - \phi^{\mathbf{x}}$$
(16)

This is called Green's function for the region $\boldsymbol{\Omega}$

Now, we are left with proving claims 2 and 3. For claim 2, reacall the K_{ϵ} proof from previous lectures. We need to prove

$$\lim_{\epsilon \to 0} \left| - \int_{\partial \Omega} \frac{\partial \Phi}{\partial \nu} (\mathbf{y} - \mathbf{x}) u(\mathbf{y}) dS(\mathbf{y}) \right| = - \int_{\partial \Omega} \frac{\partial \Phi}{\partial \nu} (\mathbf{y} - \mathbf{x}) u(\mathbf{y}) dS(\mathbf{y}) - u(\mathbf{x})$$

Since

$$-\int_{\partial\Omega_{\mathbf{r}}} \frac{\partial\Phi}{\partial\nu}(\mathbf{y} - \mathbf{x})u(\mathbf{y})dS(\mathbf{y}) = -\int_{\partial\Omega} \frac{\partial\Phi}{\partial\nu}(\mathbf{y} - \mathbf{x})u(\mathbf{y})dS(\mathbf{y}) + \int_{\partial B(\mathbf{x}, \mathbf{r})} \frac{\partial\Phi}{\partial\nu}(\mathbf{y} - \mathbf{x})u(\mathbf{y})dS(\mathbf{y})$$

It is sufficient to prove.

$$\lim_{\epsilon \to 0} \int_{\partial B(\mathbf{x}, \epsilon)} \frac{\partial \Phi}{\partial \nu} (\mathbf{y} - \mathbf{x}) u(\mathbf{y}) dS(\mathbf{y}) = -u(\mathbf{x})$$

Now,

$$\nabla_{\mathbf{y}}\Phi(\mathbf{y}) = -\frac{1}{n\alpha(n)}\frac{\mathbf{y}}{|\mathbf{y}|^n} \text{ and } \nu = \frac{\mathbf{y} - \mathbf{x}}{|\mathbf{y} - \mathbf{x}|}$$

$$\implies \frac{\partial \Phi}{\partial \nu}(\mathbf{y} - \mathbf{x}) = \nabla_{\mathbf{y}} \Phi(\mathbf{y} - \mathbf{x}) \cdot \nu = -\frac{1}{n\alpha(n)} \frac{1}{|\mathbf{y} - \mathbf{x}|^{n-1}} = -\frac{1}{n\alpha(n)} \frac{1}{\epsilon^{n-1}}$$

Hence,

$$\lim_{\epsilon \to 0} \int_{\partial B(\mathbf{x}, \epsilon)} \frac{\partial \Phi}{\partial \nu} (\mathbf{y} - \mathbf{x}) u(\mathbf{y}) dS(\mathbf{y}) = -\lim_{\epsilon \to 0} \frac{1}{n\alpha(n)} \frac{1}{\epsilon^{n-1}} \int_{\partial B(\mathbf{x}, \epsilon)} u(\mathbf{y}) dS(\mathbf{y})$$
$$= -\lim_{\epsilon \to 0} \int_{\partial B(\mathbf{x}, \epsilon)} u(\mathbf{y}) dS(\mathbf{y}) = -u(\mathbf{x})$$

 $\partial B(\mathbf{x}, \epsilon)$

Now, we need to prove

$$\lim_{\epsilon \to 0} \int_{\partial \Omega_{\epsilon}} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y}) = \int_{\partial \Omega} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y})$$

$$\int_{\partial \Omega} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y}) = \int_{\partial \Omega} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y}) - \int_{\partial \Omega(\mathbf{y}, \mathbf{x})} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y}),$$

It is sufficient to prove that

$$\lim_{\epsilon \to 0} \int_{\partial B(\mathbf{x}, \epsilon)} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y}) = 0$$

This is similar to L_{ϵ} in our previous lecture. We have

$$\left| \int_{\partial B(\mathbf{x},\epsilon)} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y}) \right| \leq \int_{\partial B(\mathbf{x},\epsilon)} |\Phi(\mathbf{y} - \mathbf{x})| \left| \frac{\partial u}{\partial \nu} \right| dS(\mathbf{y})$$

$$\leq \left| \frac{\partial u}{\partial \nu} \right|_{L^{\infty}(B(\mathbf{x},\epsilon))} \int_{\partial B(\mathbf{x},\epsilon)} |\Phi(\mathbf{y} - \mathbf{x})| dS(\mathbf{y})$$

$$\leq \begin{cases} C\epsilon |\log \epsilon| & (n=2) \\ C\epsilon & n > 2 \end{cases}$$

Hence

$$\lim_{\epsilon \to 0} \int_{\partial B(\mathbf{y}, \epsilon)} \Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \nu} dS(\mathbf{y}) = 0$$

Therefore, we proved the following

$$\begin{cases} -\Delta u = h & \text{in } \Omega \\ u = f & \text{on } \partial\Omega \end{cases} \tag{17}$$

Theorem 3 (Representation Formula using Green's Function)

If $u \in C^2(\overline{\Omega})$ solves the problem (20), then

$$u(\mathbf{x}) = \int_{\Omega} h(\mathbf{y})G(\mathbf{x}, \mathbf{y})d\mathbf{y} - \int_{\partial\Omega} f(\mathbf{y})\frac{\partial G}{\partial\nu}(\mathbf{x}, \mathbf{y})dS(\mathbf{y})$$
(18)

where G is called Green's function.

Definition 7 (Green's Function)

Define the function $G(\mathbf{x}, \mathbf{y})$ for given $\mathbf{x}, \mathbf{y} \in \Omega$

$$G(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{y} - \mathbf{x}) - \phi^{\mathbf{x}}$$
(19)

This is called Green's function for the region $\boldsymbol{\Omega}$

We proved the following

$$\begin{cases} -\Delta u = h & \text{in } \Omega \\ u = f & \text{on } \partial\Omega \end{cases} \tag{20}$$

Theorem 4 (Representation Formula using Green's Function)

If $u \in C^2(\overline{\Omega})$ solves the problem (20), then

$$u(\mathbf{x}) = \int_{\Omega} h(\mathbf{y})G(\mathbf{x}, \mathbf{y})d\mathbf{y} - \int_{\partial\Omega} f(\mathbf{y})\frac{\partial G}{\partial\nu}(\mathbf{x}, \mathbf{y})dS(\mathbf{y})$$
(21)

where G is called Green's function.

If we have $h \equiv 0$, then

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega \\ u = f & \text{on } \partial \Omega \end{cases}$$
 (22)

As a corollary

Theorem 5 (Corollary)

If $u \in C^2(\overline{\Omega})$ solves the problem (22), then

$$u(\mathbf{x}) = -\int_{\Omega} f(\mathbf{y}) \frac{\partial G}{\partial \nu}(\mathbf{x}, \mathbf{y}) dS(\mathbf{y})$$
 (23)

where G is called Green's function.

Symmetry of Green's Function

(24)

Theorem 6 (Symmetry)

For all $x, y \in \Omega$ and $x \neq y$, we ave

$$G(\mathbf{x}, \mathbf{y}) = G(\mathbf{y}, \mathbf{x})$$

Proof: Fix, $x, y \in \Omega$ and $x \neq y$. Write

$$v(\mathbf{z}) := G(\mathbf{x}, \mathbf{z}), w(\mathbf{z}) := G(\mathbf{y}, \mathbf{z}), \quad \mathbf{z} \in \Omega$$

Then

$$\begin{cases} \Delta v(\mathbf{z}) = 0 & \mathbf{z} \neq \mathbf{x} \in \Omega \\ v = 0 & \mathbf{z} \in \partial \Omega \\ \Delta w(\mathbf{z}) = 0 & \mathbf{z} \neq \mathbf{y} \in \Omega \\ w = 0 & \mathbf{z} \in \partial \Omega \end{cases}$$

Symmetry of Green's Function

Proof (continued): Claim:

$$v(\mathbf{y}) = G(\mathbf{x}, \mathbf{y}) = G(\mathbf{y}, \mathbf{x}) = w(\mathbf{x}), \quad \mathbf{x}, \mathbf{y} \in \Omega$$

Fix $\epsilon > 0$ and consider $\Omega_{\epsilon} = \Omega \setminus B(\mathbf{x}, \epsilon) \cup B(\mathbf{y}, \epsilon)$. Then, by the identity which we proved earlier, we have

$$\int_{\Omega_{\epsilon}} [v\Delta w - w\Delta v] d\mathbf{z} = \int_{\partial B(\mathbf{x}, \epsilon) \cup B(\mathbf{y}, \epsilon)} \left(v \frac{\partial w}{\partial \nu} - w \frac{\partial v}{\partial \nu} \right) dS$$

$$0 = \int_{\partial B(\mathbf{x}, \epsilon)} \left(v \frac{\partial w}{\partial \nu} - w \frac{\partial v}{\partial \nu} \right) dS + \int_{\partial B(\mathbf{y}, \epsilon)} \left(v \frac{\partial w}{\partial \nu} - w \frac{\partial v}{\partial \nu} \right) dS$$

$$\implies \int_{\partial B(\mathbf{x}, \epsilon)} \left(v \frac{\partial w}{\partial \nu} - w \frac{\partial v}{\partial \nu} \right) dS = \int_{\partial B(\mathbf{y}, \epsilon)} \left(w \frac{\partial v}{\partial \nu} - v \frac{\partial w}{\partial \nu} \right) dS$$

Symmetry of Green's Function

Proof (continued): Now, consider $v(\mathbf{z}) = \Phi(\mathbf{z} - \mathbf{x}) - \phi^{\mathbf{x}}(\mathbf{z})$, then by Claims 2 and 3 of the previous theorem, we can show that

$$\int_{\partial B(\mathbf{x},\epsilon)} \left(v \frac{\partial w}{\partial \nu} - w \frac{\partial v}{\partial \nu} \right) dS = w(\mathbf{x})$$

Similarly, $w(\mathbf{z}) = \Phi(\mathbf{z} - \mathbf{y}) - \phi^{\mathbf{y}}(\mathbf{z})$, then by Claims 2 and 3 of the previous theorem, we can show that

$$\int_{\partial B(\mathbf{y},\epsilon)} \left(w \frac{\partial v}{\partial \nu} - v \frac{\partial w}{\partial \nu} \right) dS = v(\mathbf{y})$$

Hence the proof.

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

