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Heat Equation:
Fundamental Solution
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Recap
So far, we have studied
• Transport Equation
• Burger’s Equation
• Wave Equation - d’Alembert’s formula - Kirchhoff’s formula - Poisson’s

formula
• Laplace Equation - Fundamental Solution - Mean Value Formula - Green’s

Function - Poisson’s formula - Dirichlet’s Principle
Now, let us study the heat equation with appropriate initial and boundary
conditions

ut −∆u = 0

and the inhomogeneous heat equation

ut −∆u = f
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Fundamental Solution

Theorem 1
If u is smooth and solve ut −∆u = 0 in Rn × (0,∞), then uλ(x, t) = u(λx, λ2t)
also solves the heat equation for each λ ∈ R

Proof:

∂uλ(x, t)

∂t
=

∂u

∂t
u(λx, λ2t) = λ2ut

∂2uλ(x, t)

∂x2i
=

∂u

∂t
u(λx, λ2t) = λ2uxixi

(uλ)t −∆uλ = 0
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Fundamental Solution

Corollary 1
v(x, t) := x.Du(x, t) + 2tut(x, t) solves the heat equation as well.

Proof: Differentiate uλ w.r.to λ, we have

∂uλ
∂λ

= x.Du(λx, λ2t) + 2tλut(λx, λ
2t)

If we set λ = 1, then

∂uλ
∂λ

= x.Du(x, t) + 2tut(x, t) = v(x, t)

Since uλ solves the heat equation

(uλ)t −∆uλ = 0,

by differentiating it w.r.to λ proves the corollary. (Fill the missing argument!) 4



Fundamental Solution
Missing Argument:
Because u is smooth we may interchange ∂λ with ∂t and ∆. Denote

wλ(x, t) := ∂λuλ(x, t).

Then
∂λ

[
(∂t −∆)uλ

]
= (∂t −∆)

(
∂λuλ

)
= (∂t −∆)wλ = 0.

Thus wλ satisfies the heat equation for every λ > 0.
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Fundamental Solution

Theorem 2
If u is smooth and solves ut − ∆u = 0 in Rn × (0,∞), then uλ(x, t) =
λαu(λβx, λt) also solves the heat equation for each λ ∈ R for β = 1

2 .
Proof:

∂u

∂t
uλ(x, t) = λα+1ut

∂2u

∂x2i
uλ(x, t) = λ(α+2β)uxixi

(uλ)t −∆uλ = 0

only if α+ 2β = α+ 1 =⇒ β = 1
2
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Fundamental Solution

Theorem 3
Let n = 1 and u(x, t) = v(x

2

t ). Then

ut = uxx

if and only if
4zv′′(z) + (2 + z)v′(z) = 0, z > 0 (1)

Further, the general solution of (1) is

v(z) = c

zˆ

0

e−s/4s−1/2ds+ d (2)
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Fundamental Solution
Proof:

u(x, t) = v

(
x2

t

)
=⇒ ut = −x2

t2
v′, ux =

2x

t
v′, uxx =

2

t
v′ +

4x2

t2
v′′

ut = uxx ⇐⇒ −x2

t2
v′ =

2

t
v′ +

4x2

t2
v′′

z =
x2

t
=⇒ 1

t
(4zv′′(z) + (2 + z)v′) = 0

Hence
ut = uxx ⇐⇒ 4zv′′(z) + (2 + z)v′(z) = 0, z > 0

Now, let us solve 4zv′′(z) + (2 + z)v′(z) = 0

v′′

v′
= − 1

2z
− 1

4
=⇒ log(v′) = − log

√
z − z

4
+ C
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Fundamental Solution
Proof:

v′ = ce−z/4 1√
z

=⇒ v(z) = c

zˆ

0

e−s/4

√
s

ds+ d

Hence the proof. From the above theorem, we have

v

(
x2

t

)
= c

x2

tˆ

0

e−s/4s−1/2ds+ d

and

v′
(
x2

t

)
= v′(z).dz = ce−x2/4t

√
t

x
.
2x

t
=

2c√
t
e−x2/4t
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Fundamental Solution
Now, let us choose c such that

2c√
t

∞̂

−∞

e−x2/4tdx = 1

Let y = x
2
√
t
, then dy = dx

2
√
t
. Using Γ

(
1
2

)
=

√
π, we get

4c

∞̂

−∞

e−y2dy = 1 =⇒ c =
1

4
√
π

=⇒ v′
(
x2

t

)
=

1

2
√
πt

e−x2/4t

We define the fundamental solution as

Φ(x, t) = v′
(
x2

t

)
=

1

2
√
πt

e−x2/4t
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Fundamental Solution
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Fundamental Solution
It is easy to verify that

Φt = Φxx

Definition 1
For n-dimensional case, the function

Φ(x, t) =

 1
(4πt)n/2 e

− |x|2
4t x ∈ Rn, t > 0

0 x ∈ Rn, t < 0

is called the fundamental solution of the heat equation.
Derivation: Define

u(x, t) =
1

tα
v
( x

tβ

)
, (x ∈ Rn, t > 0)

where we need to find constants α, β are constants and the function
v : Rn → R 12



Fundamental Solution
If we find a solution u of the heat equation invariant under dilation scaling,
that is,

u(x, t) = λαu(λβx, λt)

for all x ∈ Rn, t > 0, λ > 0. If we set λ = t−1, then

u(x, t) =
1

tα
u
( x

tβ
, 1
)

Hence
y =

x

tβ
=⇒ v(y) = u(y, 1) =⇒ u(x, t) =

1

tα
v(y)

Exercise: Prove that when β = 1
2 , v(y) satisfies

αv(y) +
1

2
y.Dv(y) + ∆v(y) = 0
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Fundamental Solution
Again assume that v to be radial, and v(y) = w(|y|) = w(r). Hence we get

αw +
1

2
rw′ + w′′ +

n− 1

r
w′ = 0

Let α = n
2 , then it becomes

n

2
w +

1

2
rw′ + w′′ +

n− 1

r
w′ = 0

Multiplying by rn−1, we get

rn−1n

2
w +

rn

2
w′ + rn−1w′′ + rn−2(n− 1)w′ = 0

1

2
[nrn−1w + rnw′] + [rn−1w′′ + rn−2(n− 1)w′] = 0
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Fundamental Solution

1

2
[rnw]′ + [rn−1w′]′ = 0 =⇒

[
1

2
rnw + rn−1w′

]′
= 0

=⇒ 1

2
rnw + rn−1w′ = c

Assuming lim
r→∞

w = 0, lim
r→∞

w′ = 0, we conclude that c = 0.

=⇒ w′ = −r

2
w =⇒ w = ke−r2/4

Hence
u(x, t) =

k

tn/2
e−

|x|2
4t

solves the heat equation. 15



Heat Equation:
Homogeneous IVP
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Fundamental Solution

Theorem 4
If we choose k = 1

(4π)n/2 , then

ˆ

Rn

Φ(x, t) = 1

for each time t > 0

For,
ˆ

Rn

Φ(x, t) =
1

(4πt)n/2

ˆ

Rn

e−
|x|2
4t dx =

1

(π)n/2

ˆ

Rn

e−|z|2dz =
1

(π)n/2

n∏
i=1

ˆ

R

e−z2i dzi = 1
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Fundamental Solution
Consider the following IVP{

ut −∆u = 0 in Rn × (0,∞)

u = f in Rn × {t = 0}

Then the solution of this equation is given by

u(x, t) =

ˆ

Rn

Φ(x− y, t)f(y)dy

u(x, t) =
1

(4πt)n/2

ˆ

Rn

e−
|x−y|2

4t f(y)dy (3)
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Heat Equation Solution IVP

Theorem 5
Assume f ∈ C(Rn) ∩ L∞(Rn) and define u by (3). Then
1. u ∈ C∞(Rn × (0,∞))

2. ut −∆u = 0 in Rn × (0,∞)

3. lim
(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = f(x0)

In (3) for each point x0 ∈ Rn
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Heat Equation Solution IVP

Proof: Since the function 1
(4πt)n/2 e

− |x|2
4t is infinitely differentiable, with

uniformly bounded derivatives of all orders on Rn × (0,∞). Hence, (1)
Follows. Since Φ solves the heat equation, we have

ut −∆u =

ˆ

Rn

Φt −∆xΦ(x− y, t)f(y)dy

= 0

Hence (2) follows.
Claim: |u(x, t)− f(x0)| < ϵ,∀ϵ > 0,x0 ∈ Rn whenever |x− x0| < δ, t > 0.
Fix x0 ∈ Rn, ϵ > 0. Choose δ > 0 such that

|g(y)− g(x0)| < ϵ

2
whenever |y − x0| < δ,y ∈ Rn
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Heat Equation Solution IVP
Proof(continued):

u(x, t)− f(x0) =

ˆ

Rn

Φ(x− y, t)f(y)dy − f(x0).1

=

ˆ

Rn

Φ(x− y, t)f(y)dy − f(x0)

ˆ

Rn

Φ(x− y, t)dy

=

ˆ

Rn

Φ(x− y, t)[f(y)− f(x0)]dy

=⇒ |u(x, t)− f(x0)| =

∣∣∣∣∣∣
ˆ

Rn

Φ(x− y, t)[f(y)− f(x0)]dy

∣∣∣∣∣∣
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Heat Equation Solution IVP
Proof(continued): Let |x− x0| < δ

2 , then

|u(x, t)− f(x0)| ≤
ˆ

B(x0,δ)

Φ(x− y, t)|f(y)− f(x0)|dy

+

ˆ

Rn\B(x0,δ)

Φ(x− y, t)|f(y)− f(x0)|dy

︸ ︷︷ ︸
J

≤
ˆ

B(x0,δ)

Φ(x− y, t)ϵdy + J = ϵ

ˆ

B(x0,δ)

Φ(x− y, t)dy + J

≤ ϵ+ J
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Heat Equation Solution IVP
Proof(continued): It is enough to claim J → 0 as t → 0. If |y − x0| ≥ δ, then

|y − x0| = |y − x+ x− x0|
≤ |y − x|+ |x− x0|

≤ |y − x|+ δ

2

≤ |y − x|+ 1

2
|y − x0|

=⇒ 1

2
|y − x0| ≤ |y − x|

J =

ˆ

Rn\B(x0,δ)

Φ(x− y, t)|f(y)− f(x0)|dy ≤ 2∥f∥L∞

ˆ

Rn\B(x0,δ)

Φ(x− y, t)dy
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Heat Equation Solution IVP
Proof(continued):

J ≤ C

tn/2

ˆ

Rn\B(x0,δ)

e−
|x−y|2

4t dy

≤ C

tn/2

ˆ

Rn\B(x0,δ)

e−
|y−x0|2

16t dy

≤ C

tn/2

∞̂

δ

e−
r2

16t rn−1dr → 0 as t → 0

Hence the proof.
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Heat Equation Solution IVP

Remarks
• Notice that if f is bounded and continuous and f ≥ 0, f ̸≡ 0, then u(x, t)

is positive for all points x ∈ Rn, t > 0, since the integrand is positive

u(x, t) =
1

(4πt)n/2

ˆ

Rn

e−
|x−y|2

4t f(y)dy (4)

• That is, the heat equation forces infinite propagation speed for
disturbances.

• If the initial temperature is positive somewhere, then the temperature at a
later time is everywhere positive. (For the wave equation, it is finite speed
propagation).
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Heat Equation Solution IVP

Remarks
Also, for Φ we can write{

Φt −∆Φ = 0 in Rn × (0,∞)

Φ = δ0 in Rn × {t = 0}

where δ0 denotes the Dirac measure on Rn giving unit mass to the point 0.
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