MA612L-Partial Differential Equations

Lecture 29-30: Heat Equation: Strong Maximum Principle (Self Study)

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

October 17, 2025

Heat Equation: Strong Maximum Principle

Theorem 1 (Strong Maximum Principle)

Assume $u \in C_1^2(\Omega_T) \cap C(\overline{\Omega}_T)$ solve the heat equation in Ω_T . Then

$$\max_{\overline{\Omega}_T} u = \max_{\Gamma_T} u \tag{1}$$

Furthermore, if Ω is connected and there exists a point $(\mathbf{x}_0,t_0)\in\Omega_T$ such that

$$u(\mathbf{x}_0, t_0) = \max_{\overline{\Omega}_T} u \tag{2}$$

then u is constant in $\overline{\Omega}_{t_0}$.

Proof: Let

$$M := \max_{\overline{\Omega}_{\sigma}} u$$

Suppose there exists a point $(x_0,t_0)\in\Omega_T$ with $u(\mathbf{x}_0,t_0)=M$. Then for all sufficiently small r>0, $E(\mathbf{x}_0,t_0;r)\subset\Omega_T$. By the mean value property, we obtain that

$$M = u(\mathbf{x}_0, t_0) = \frac{1}{4r^n} \iint_{E(\mathbf{x}_0, t_0; r)} u(\mathbf{y}, s) \frac{|\mathbf{x}_0 - \mathbf{y}|^2}{(t_0 - s)^2} d\mathbf{y} ds$$

However,

$$\frac{1}{4r^n} \iint_{E(\mathbf{x}_0, t_0; r)} \frac{|\mathbf{x}_0 - \mathbf{y}|^2}{(t_0 - s)^2} d\mathbf{y} ds = 1$$

$$\Longrightarrow M = u(\mathbf{x}_0, t_0) \le M$$

Proof: If u is identically equal to M within $E(\mathbf{x}_0, t_0; r)$, then

$$M = u(\mathbf{x}_0, t_0)$$

Therefore,

$$M = u(\mathbf{y}, s) \ \forall (\mathbf{y}, s) \in E(\mathbf{x}_0, t_0; r)$$

Now, draw a line segment L in Ω_T connecting (\mathbf{x}_0,t_0) with some other point $(\mathbf{y}_0,s_0)\in\Omega_T$ with $s_0< t_0$. Consider

$$r_0 = \min\{s \ge s_0 : u(\mathbf{x}, t) = M \ \forall (\mathbf{x}, t) \in L, s \le t \le t_0\}$$

Since u is continuous, the minimum is attained. Assume $r_0>s_0$. Then $\exists (\mathbf{z}_0,r_0)$ such that $u(\mathbf{z}_0,r_0)=M$

Proof: Further for all sufficiently small r > 0,

$$u \equiv M$$
 on $E(\mathbf{z}_0, r_0; r)$

Suppose $r_0 \neq s_0$, then there exists a small $\sigma > 0$ such that

$$L \cap \{r_0 - \sigma \le t \le r_0\} \subset E(\mathbf{z}_0, r_0; r) \Longrightarrow \longleftarrow$$

Hence, $r_0 = s_0$ and $u \equiv M$ on L.

If Ω is connected, let $\mathbf{x} \in \Omega$ and any time $0 \le t \le t_0$. Then there exists a sequence of points

$$\{\mathbf{x}_0,\mathbf{x}_1,\cdots,\mathbf{x}_m=\mathbf{x}\}$$

such that the line segments in \mathbb{R}^n connecting \mathbf{x}_{i-1} to \mathbf{x}_i lie in Ω for $i=1,2,\cdots,m$.

Proof: The above statement is true since the set points in Ω which can be so connected to \mathbf{x}_0 by a polygonal path are nonempty, open, and relatively closed in Ω . Select times $t_0 > t_1 > \cdots > t_m = t$. The line segments in \mathbb{R}^{n+1} connecting (x_{i-1}, t_{i-1}) to (x_i, t_i) , for $i = 1, 2, \cdots, m$ lie in Ω_T . Hence $u \equiv M$ on each such segment and hence $u(\mathbf{x}, t) = M$.

Remarks

- Similar proof can be done for the minimum principle.
- If u attains a maximum or minimum at an interior point, then u is constant at all earlier times.
- The solution will be constant on the time interval $[0, t_0]$ provided the initial and boundary conditions are constant
- The solution may change at times $t > t_0$, provided the boundary conditions alter after t_0 .
- The solution will not respond to changes in boundary conditions until these changes happen.

The strong maximum principle implies that if Ω is connected and $u \in C^2_1(\Omega_T) \cap C(\overline{\Omega}_T)$ satisfies

$$\begin{cases} u_t - \Delta u = 0 & \text{in} \quad \Omega_T \\ u = 0 & \text{on} \quad \partial \Omega \times [0, T] \\ u = f & \text{on} \quad \Omega \times \{t = 0\} \end{cases}$$

Here f > 0

Remarks

• if f > 0 somewhere in Ω then u is positive everywhere within Ω_T .

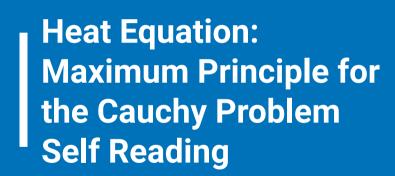
Uniqueness on bounded domains

Theorem 2 (Uniqueness on bounded domains)

Let $f\in C(\Gamma_T), h\in C(\Omega_T)$. Then there exists at most one solution $u\in C^2_1(\Omega_T)\cap C(\overline{\Omega}_T)$ of the initial and boundary value problem

$$\begin{cases} u_t - \Delta u = h & \text{in } \Omega_T \\ u = f & \text{on } \Gamma_T \end{cases}$$

Proof: Suppose u_1 and u_2 are two solutions of the above IBVP, then applying the strong maximum principle on $w=u_1-u_2$ proves the uniqueness.



Prove that

$$\Phi(\mathbf{x}, t) = \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|\mathbf{x}|^2}{4t}}$$

solves the heat equation

$$\Phi_t - \Phi_{xx} = 0$$

Proof:

$$\Phi_t = -\frac{n}{2t(4\pi t)^{n/2}} e^{-\frac{|\mathbf{x}|^2}{4t}} + \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|\mathbf{x}|^2}{4t}} \frac{|\mathbf{x}|^2}{4t^2}$$

$$= \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|\mathbf{x}|^2}{4t}} \left(\frac{|\mathbf{x}|^2}{4t^2} - \frac{n}{2t}\right) = \frac{1}{(4\pi t)^{n/2} 4t^2} e^{-\frac{|\mathbf{x}|^2}{4t}} \left(|\mathbf{x}|^2 - 2nt\right)$$

Proof (continued):

$$\Phi_{x} = -\frac{x}{2t(4\pi t)^{n/2}} e^{-\frac{|\mathbf{x}|^{2}}{4t}}$$

$$\implies \Phi_{xx} = -\frac{1}{2t(4\pi t)^{n/2}} e^{-\frac{|\mathbf{x}|^{2}}{4t}} + \frac{|\mathbf{x}|^{2}}{4t^{2}(4\pi t)^{n/2}} e^{-\frac{|\mathbf{x}|^{2}}{4t}}$$

$$= \frac{1}{(4\pi t)^{n/2} 4t^{2}} e^{-\frac{|\mathbf{x}|^{2}}{4t}} \left(|\mathbf{x}|^{2} - 2nt \right) = \Phi_{t}$$

Theorem 3 (Maximum Principle for the Cauchy Problem)

Suppose $u\in C^2_1(\mathbb{R}^n\times(0,T])\cap C(\mathbb{R}^n\times[0,T])$ solve the initial and boundary value problem

$$\begin{cases} u_t - \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, T) \\ u = f & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

and satisfies the growth estimate

$$u(\mathbf{x}, t) \le Ae^{a|\mathbf{x}|^2} \quad (\mathbf{x} \in \mathbb{R}^n, 0 \le t \le T)$$

for constants A, a > 0. Then

$$\sup_{\mathbb{R}^n \times [0,T]} u = \sup_{\mathbb{R}^n} f$$

Proof: Choose your a such that 4aT < 1. Then there exists $\epsilon > 0$ such that $4aT + 4a\epsilon < 1$. Define a new function $v(\mathbf{x},t)$ as follows:

$$v(\mathbf{x},t) := u(\mathbf{x},t) - \frac{\mu}{(T+\epsilon-t)^{n/2}} e^{\frac{|\mathbf{x}-\mathbf{y}|^2}{4(T+\epsilon-t)}} \quad (\mathbf{x} \in \mathbb{R}^n, t > 0)$$
(3)

We can observe that

$$v = u - \frac{\mu}{(T + \epsilon - t)^{n/2}} e^{\frac{|\mathbf{x} - \mathbf{y}|^2}{4(T + \epsilon - t)}}$$

$$\implies v_t = u_t - \frac{\mu}{4(T + \epsilon - t)^{n/2 + 2}} e^{\frac{|\mathbf{x} - \mathbf{y}|^2}{4(T + \epsilon - t)}} \left(|\mathbf{x}|^2 + 2n(T + \epsilon - t) \right)$$

$$\Delta v = \Delta v - \frac{\mu}{4(T + \epsilon - t)^{n/2 + 2}} e^{\frac{|\mathbf{x} - \mathbf{y}|^2}{4(T + \epsilon - t)}} \left(|\mathbf{x}|^2 + 2n(T + \epsilon - t) \right)$$

$$\implies v_t - \Delta v = 0$$

Proof: Fix r > 0 and set $U := B^0(\mathbf{y}, r)$, $\Omega_T = B^0(\mathbf{y}, r) \times (0, T]$. Then, as per the maximum principle, we have

$$\max_{\overline{\Omega}_T} u = \max_{\Gamma_T} u$$

Now, if $\mathbf{x} \in \mathbb{R}^n$

$$v(\mathbf{x}, 0) = u(\mathbf{x}, 0) - \frac{\mu}{(T+\epsilon)^{n/2}} e^{\frac{|\mathbf{x} - \mathbf{y}|^2}{4(T+\epsilon)}}$$
$$\leq u(\mathbf{x}, 0) = f(\mathbf{x})$$

Now, if $|\mathbf{x} - \mathbf{y}| = r, 0 \le t \le T$, then

$$v(\mathbf{x},t) = u(\mathbf{x},t) - \frac{\mu}{(T+\epsilon-t)^{n/2}} e^{\frac{r^2}{4(T+\epsilon-t)}}$$

Proof: Now, if $|\mathbf{x} - \mathbf{v}| = r$, 0 < t < T, then

$$v(\mathbf{x},t) = u(\mathbf{x},t) - \frac{\mu}{(T+\epsilon-t)^{n/2}} e^{\frac{r^2}{4(T+\epsilon-t)}}$$

$$\leq Ae^{a|\mathbf{x}|^2} - \frac{\mu}{(T+\epsilon-t)^{n/2}} e^{\frac{r^2}{4(T+\epsilon-t)}}$$

$$\leq Ae^{a(|\mathbf{y}|+r)^2} - \frac{\mu}{(T+\epsilon)^{n/2}} e^{\frac{r^2}{4(T+\epsilon)}}$$

Since $4a(T+\epsilon)<1$, we have $a<\frac{1}{4(T+\epsilon)}$. Therefore, there exists $\gamma>0$ such that $a+\gamma=\frac{1}{4(T+\epsilon)}$. Hence, for sufficiently large r. we have

$$v(\mathbf{x}, t) \le Ae^{a(|\mathbf{y}|+r)^2} - \mu(4(a+\gamma)^{n/2})e^{(a+\gamma)r^2} \le \sup_{\mathbb{R}^n} g$$

Proof: Therefore, we have

$$v(y,t) \le \sup_{\mathbb{R}^n} g$$

for all $\mathbf{y} \in \mathbb{R}^n, 0 \le t \le T$ (provided you find a). If $\mu \to 0$, we obtain a theorem. Suppose, there exists no a such that 4aT < 1, then repeatedly apply the result above on time time intervals $[0,T_1],[T_1,2T_1]\cdots$ for $T_1=\frac{1}{8a}$. Hence the theorem.

Uniqueness for the Cauchy Problem

Theorem 4 (Uniqueness for the Cauchy Problem)

Suppose $f\in C(\mathbb{R}^n), h\in C(\mathbb{R}^n\times[0,T])$. Then there exists at most one solution $u\in C^2_1(\mathbb{R}^n\times(0,T])\cap C(\mathbb{R}^n\times[0,T])$ that solves the initial and boundary value problem

$$\begin{cases} u_t - \Delta u = h & \text{in } \mathbb{R}^n \times (0, T) \\ u = f & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

satisfying the growth estimate

$$u(\mathbf{x}, t) \le Ae^{a|\mathbf{x}|^2} \quad (\mathbf{x} \in \mathbb{R}^n, 0 \le t \le T)$$

for constants A, a > 0. Then

Proof: Apply above theorem on $w = u_1 - u_2$ and claim w = 0.

Heat Equation: Regularity

Closed Circular Cylinder

Already, we have seen the parabolic cylinder.

Definition 1 (Closed Circular Cylinder)

The closed circular cylinder of radius r and height r^2 is given by

$$C(\mathbf{x}, t; r) = \{(\mathbf{y}, s) : |\mathbf{x} - \mathbf{y}| \le r, t - r^2 \le s \le t\}$$
 (4)

where (\mathbf{x},t) denote the top center point of the $C(\mathbf{x},t;r)$

Theorem 5 (Smoothness)

Suppose $u \in C^2_1(\Omega_T)$ solves the heat equation in Ω_T , then

$$u \in C^{\infty}(\Omega_T)$$

Proof:Now, fix an $(\mathbf{x}_0,t_0)\in\Omega_T$ and choose r>0 so small that $C:=C(\mathbf{x}_0,t_0;r)\subset\Omega_T$. Define also the smaller cylinders $C':=C(\mathbf{x}_0,t_0;\frac{3}{4}r)$, $C'':=C(\mathbf{x}_0,t_0;\frac{1}{2}r)$. Select a smooth cutoff function $\zeta=\zeta(\mathbf{x},t)$ such that

$$\begin{cases} 0 \leq \zeta \leq 1, \zeta \equiv 1 & \text{on} C' \\ \zeta \equiv 0 & \text{near the parabolic boundary of} C \end{cases}$$

Extend
$$\zeta \equiv 0$$
 in $(\mathbb{R}^n \times [0, t_0]) \setminus C$

Proof: Now define

$$K(\mathbf{x}, \mathbf{y}, t, s) := \Phi(\mathbf{x} - \mathbf{y}, t - s)(\zeta_s(\mathbf{y}, s) + \Delta \zeta(\mathbf{y}, s)) + 2D_{\mathbf{y}}\Phi(\mathbf{x} - \mathbf{y}, t - s).D\zeta(\mathbf{y}, s)$$
(5)

Since $\zeta \equiv 1$ on C', we have

$$K(x, y, t, s) = 0$$

for all points $(y,s) \in C'$. Since Φ is smooth and we have selected our ζ as smooth, it is obvious that K is smooth on $C \setminus C'$.

Question

How do we obtain the function K?

Now, if we set

$$u(\mathbf{x},t) = \iint_C K(\mathbf{x}, \mathbf{y}, t, s) u(\mathbf{y}, s) d\mathbf{y} ds$$
 (6)

Then, obtain that u is C^{∞} within C''.

Let us answer the question by the following assumption. Suppose $u \in C^{\infty}$, then define

$$v(\mathbf{x},t) := \zeta(\mathbf{x},t)u(\mathbf{x},t) \quad (\mathbf{x} \in \mathbb{R}^n, 0 \le t \le t_0)$$

Then

$$v_t = \zeta u_t + \zeta_t u \tag{7}$$

$$\Delta v = \zeta \Delta u + 2D\zeta . Du + u\Delta \zeta \tag{8}$$

Proof:

Note that

$$v = 0$$
 on $\mathbb{R}^n \times \{t = 0\}$

and

$$v_t - \Delta v = \zeta_t u - 2D\zeta . Du - u\Delta \zeta =: \overline{h} \text{ in } \mathbb{R}^n \times (0, t_0)$$

Now, set

$$\overline{v}(\mathbf{x},t) := \int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(\mathbf{x} - \mathbf{y}, t - s) \overline{h}(\mathbf{y}, s) d\mathbf{y} ds$$

Proof: Then according to inhomogeneous IVP problem, \overline{v} solves the following problem

$$\begin{cases} \overline{v}_t - \Delta \overline{v} = \overline{h} & \text{in } \mathbb{R}^n \times (0, t_0) \\ \overline{v} = 0 & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

Since $|v|,|\overline{v}|\leq A$ for some constant A , by uniqueness theorem, we get $v\equiv\overline{v}$ Hence

$$v(\mathbf{x},t) := \int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(\mathbf{x} - \mathbf{y}, t - s) \overline{h}(\mathbf{y}, s) d\mathbf{y} ds$$

Proof: If $(\mathbf{x},t) \in C''$, as $\zeta \equiv 0$ outside the cylinder C, we get

$$u(\mathbf{x},t) = \iint_{C} \Phi(\mathbf{x} - \mathbf{y}, t - s)(\zeta_{s}u - 2D\zeta.Du - u\Delta\zeta)(\mathbf{y}, s)d\mathbf{y}ds$$
$$= \iint_{C} \Phi(\mathbf{x} - \mathbf{y}, t - s)[(\zeta_{s}(\mathbf{y}, s) - \Delta\zeta(\mathbf{y}, s))u(\mathbf{y}, s)d\mathbf{y}ds$$
$$- \iint_{C} \Phi(\mathbf{x} - \mathbf{y}, t - s)2D\zeta(\mathbf{y}, s).Du(\mathbf{y}, s)d\mathbf{y}ds$$

Proof: By applying integration by parts, we obtain that

$$u(\mathbf{x},t) = \iint_{C} \Phi(\mathbf{x} - \mathbf{y}, t - s) [(\zeta_{s}(\mathbf{y}, s) - \Delta \zeta(\mathbf{y}, s)) u(\mathbf{y}, s) d\mathbf{y} ds$$

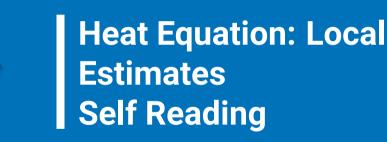
$$+ \iint_{C} 2D_{y} \Phi(\mathbf{x} - \mathbf{y}, t - s) .D\zeta(\mathbf{y}, s) u(\mathbf{y}, s) d\mathbf{y} ds$$

$$+ \iint_{C} 2\Phi(\mathbf{x} - \mathbf{y}, t - s) \Delta \zeta(\mathbf{y}, s) u(\mathbf{y}, s) d\mathbf{y} ds$$

Proof: By applying integration by parts, we obtain that

$$u(\mathbf{x},t) = \iint_{C} [\Phi(\mathbf{x} - \mathbf{y}, t - s)(\zeta_{s}(\mathbf{y}, s) + \Delta\zeta(\mathbf{y}, s)) + 2D_{\mathbf{y}}\Phi(\mathbf{x} - \mathbf{y}, t - s).D\zeta(\mathbf{y}, s)])u(\mathbf{y}, s)d\mathbf{y}ds$$

Now, if $u\in C^2_1(\Omega_T)$, then we have obtained the above equation. By using $u^\epsilon=\eta_\epsilon*u$ and $\epsilon\to 0$, we obtain the result.



Theorem 6 (Local Estimates)

For each pair of integers $k, l = 0, 1, \cdots$, there exists a constant C_{kl} such that

$$\max_{C(\mathbf{x},t;r/2)} |D_{\mathbf{x}}^k D_t^l u| \leq \frac{C_{kl}}{r^{k+2l+n+2}} \|u\|_{L^1(C(\mathbf{x},t;r))}$$

for all cylinders $C(\mathbf{x},t;r/2)\subset C(\mathbf{x},t;r)\subset \Omega_T$ and all solutions of the heat equation in Ω_T .

Proof: Now, fix an $(\mathbf{x}_0,t_0)\in\Omega_T$. By shifting the coordinates, we get the point as $(\mathbf{0},0)$. Let $C(1):=C(\mathbf{0},0;1)$ and $C\left(\frac{1}{2}\right):=C\left(\mathbf{0},0;\frac{1}{2}\right)$. Suppose $C(1)\subset\Omega_T$, then as in the previous theorem, for some smooth function K, we have

$$u(\mathbf{x},t) = \iint_{C(1)} K(\mathbf{x}, \mathbf{y}, t, s) u(\mathbf{y}, s) d\mathbf{y} ds \quad ((\mathbf{x}, t) \in C\left(\frac{1}{2}\right))$$
 (9)

Proof (continued): Therefore,

$$|D_{\mathbf{x}}^k D_t^l u(\mathbf{x}, t)| \le \iint\limits_{C(1)} |D_{\mathbf{x}}^k D_t^l |K(\mathbf{x}, \mathbf{y}, t, s)| |u(\mathbf{y}, s)| d\mathbf{y} ds \quad ((\mathbf{x}, t) \in C\left(\frac{1}{2}\right))$$

$$\le C_{kl} ||u||_{L^1(C(1))}$$

for some constant C_{kl} . Now, instead of C(1), let us consider $C(r):=C(\mathbf{0},0;r)\subset\Omega_T$ and $C\left(\frac{r}{2}\right):=C\left(\mathbf{0},0;\frac{r}{2}\right)$. Define

$$v(\mathbf{x},t) := u(r\mathbf{x}, r^2t)$$

Then

$$v_t - \Delta v = 0$$
 in $C(1)$

Proof (continued): Therefore,

$$|D_{\mathbf{x}}^{k}D_{t}^{l}v(\mathbf{x},t)| \le C_{kl}||v||_{L^{1}(C(1))} \quad ((\mathbf{x},t) \in C\left(\frac{1}{2}\right))$$

But $D^k_{\mathbf{x}}D^l_tv(\mathbf{x},t)=r^{2l+k}D^k_{\mathbf{x}}D^l_tu(r\mathbf{x},r^2t)$ and

$$||v||_{L^1(C(1))} = \frac{1}{r^{n+2}} ||u||_{L^1(C(r))}$$

Therefore,

$$D_{\mathbf{x}}^{k} D_{t}^{l} u(\mathbf{x}, t) = \frac{C_{kl}}{r^{2l+k+n+2}} ||u||_{L^{1}(C(r))}$$

Remarks

If u solves the heat equation in Ω_T , then for each fixed time $0 < t \le T$, the mapping $\mathbf{x} \to u(\mathbf{x},t)$ is analytic. However, $t \to u(\mathbf{x},t)$ is not in general analytic.

Heat Equation: Energy Methods

Energy Methods

As we did in the Laplace equation, let us prove the uniqueness of the following IBVP using energy methods

$$\begin{cases} u_t - \Delta u = h & \text{in } \Omega_T \\ u = f & \text{on } \Gamma_T \end{cases}$$
 (10)

Theorem 7 (Energy Methods)

Assume that $\Omega\subset\mathbb{R}^n$ is open, bounded and that $\partial\Omega$ is C^1 . Suppose the terminal time T>0 is given. Then there exists at most one solution $u\in C^2_1(\overline{\Omega}_T)$ for (10).

Proof: Suppose u_1 and u_2 are two solutions of (10). Define $w = u_1 - u_2$

Energy Methods

Proof: Then w solve the following problem

$$\begin{cases} w_t - \Delta w = 0 & \text{in } \Omega_T \\ w = 0 & \text{on } \Gamma_T \end{cases}$$

(11)

Now, set

$$e(t) := \int_{\Omega} w^2(\mathbf{x}, t) d\mathbf{x}, \quad (0 \le t \le T)$$

Then

$$\dot{e}(t) = 2 \int ww_t d\mathbf{x} = 2 \int w\Delta w d\mathbf{x} = -2 \int |Dw^2| d\mathbf{x} \le 0$$

Hence $e(t) \le e(0) = 0$. Therefore, $w \equiv 0$ and hence the proof.

Backward Uniqueness

Suppose u and \tilde{u} are two smooth solutions of the heat equation in Ω_T with same boundary conditions on $\partial\Omega$:

$$\begin{cases} u_t - \Delta u = 0 & \text{in } \Omega_T \\ u = f & \text{on } \Gamma_T \end{cases} \tag{12}$$

$$\begin{cases} \tilde{u}_t - \Delta \tilde{u} = 0 & \text{in } \Omega_T \\ \tilde{u} = f & \text{on } \Gamma_T \end{cases}$$
 (13)

for some function f. The proof of the following theorem is left as an exercise. [Refer to Evans Book]

Backward Uniqueness

Theorem 8 (Backward Uniqueness)

Suppose $u, \tilde{u} \in C^2(\overline{\Omega}_T)$ solves (12) and (13). If

$$u(\mathbf{x}, T) = \tilde{u}(\mathbf{x}, T) \quad (\mathbf{x} \in \Omega)$$

then

$$u \equiv \tilde{u}$$
 within Ω_T

Interpretation

• If two temperature distributions on Ω agree at some time T>0 and have had the same boundary values for time $0 \le t < T$, then these temperatures must have been identically equal within Ω at all earlier times

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

