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Heat Equation: Strong
Maximum Principle
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Strong Maximum Principle

Theorem 1 (Strong Maximum Principle)
Assume u ∈ C2

1 (ΩT ) ∩ C(ΩT ) solve the heat equation in ΩT . Then

max
ΩT

u = max
ΓT

u (1)

Furthermore, if Ω is connected and there exists a point (x0, t0) ∈ ΩT such that

u(x0, t0) = max
ΩT

u (2)

then u is constant in Ωt0 .
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Strong Maximum Principle
Proof: Let

M := max
ΩT

u

Suppose there exists a point (x0, t0) ∈ ΩT with u(x0, t0) = M . Then for all
sufficiently small r > 0, E(x0, t0; r) ⊂ ΩT . By the mean value property, we
obtain that

M = u(x0, t0) =
1

4rn

¨

E(x0,t0;r)

u(y, s)
|x0 − y|2

(t0 − s)2
dyds

However,
1

4rn

¨

E(x0,t0;r)

|x0 − y|2

(t0 − s)2
dyds = 1

=⇒ M = u(x0, t0) ≤ M 3



Strong Maximum Principle
Proof: If u is identically equal to M within E(x0, t0; r), then

M = u(x0, t0)

Therefore,
M = u(y, s) ∀(y, s) ∈ E(x0, t0; r)

Now, draw a line segment L in ΩT connecting (x0, t0) with some other point
(y0, s0) ∈ ΩT with s0 < t0. Consider

r0 = min{s ≥ s0 : u(x, t) = M ∀(x, t) ∈ L, s ≤ t ≤ t0}

Since u is continuous, the minimum is attained. Assume r0 > s0. Then
∃(z0, r0) such that u(z0, r0) = M
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Strong Maximum Principle
Proof: Further for all sufficiently small r > 0,

u ≡ M on E(z0, r0; r)

Suppose r0 ̸= s0, then there exists a small σ > 0 such that

L ∩ {r0 − σ ≤ t ≤ r0} ⊂ E(z0, r0; r) =⇒⇐=

Hence, r0 = s0 and u ≡ M on L.
If Ω is connected, let x ∈ Ω and any time 0 ≤ t ≤ t0. Then there exists a
sequence of points

{x0,x1, · · · ,xm = x}

such that the line segments in Rn connecting xi−1 to xi lie in Ω for
i = 1, 2, · · · ,m.
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Strong Maximum Principle
Proof: The above statement is true since the set points in Ω which can be so
connected to x0 by a polygonal path are nonempty, open, and relatively closed
in Ω. Select times t0 > t1 > · · · > tm = t. The line segments in Rn+1

connecting (xi−1, ti−1) to (xi, ti), for i = 1, 2, · · · ,m lie in ΩT . Hence u ≡ M on
each such segment and hence u(x, t) = M .
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Strong Maximum Principle

Remarks
• Similar proof can be done for the minimum principle.
• If u attains a maximum or minimum at an interior point, then u is

constant at all earlier times.
• The solution will be constant on the time interval [0, t0] provided the

initial and boundary conditions are constant
• The solution may change at times t > t0, provided the boundary

conditions alter after t0.
• The solution will not respond to changes in boundary conditions until

these changes happen.
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Strong Maximum Principle
The strong maximum principle implies that if Ω is connected and
u ∈ C2

1 (ΩT ) ∩ C(ΩT ) satisfies
ut −∆u = 0 in ΩT

u = 0 on ∂Ω× [0, T ]

u = f on Ω× {t = 0}

Here f ≥ 0

Remarks
• if f > 0 somewhere in Ω then u is positive everywhere within ΩT .

8



Uniqueness on bounded domains

Theorem 2 (Uniqueness on bounded domains)
Let f ∈ C(ΓT ), h ∈ C(ΩT ). Then there exists at most one solution u ∈
C2
1 (ΩT ) ∩ C(ΩT ) of the initial and boundary value problem{

ut −∆u = h in ΩT

u = f on ΓT

Proof: Suppose u1 and u2 are two solutions of the above IBVP, then applying
the strong maximum principle on w = u1 − u2 proves the uniqueness.

9



Heat Equation:
Maximum Principle for
the Cauchy Problem
Self Reading
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Maximum Principle for the Cauchy Problem
Prove that

Φ(x, t) =
1

(4πt)n/2
e−

|x|2
4t

solves the heat equation
Φt − Φxx = 0

Proof:

Φt = − n

2t(4πt)n/2
e−

|x|2
4t +

1

(4πt)n/2
e−

|x|2
4t

|x|2

4t2

=
1

(4πt)n/2
e−

|x|2
4t

(
|x|2

4t2
− n

2t

)
=

1

(4πt)n/24t2
e−

|x|2
4t

(
|x|2 − 2nt

)

11



Maximum Principle for the Cauchy Problem
Proof (continued):

Φx = − x

2t(4πt)n/2
e−

|x|2
4t

=⇒ Φxx = − 1

2t(4πt)n/2
e−

|x|2
4t +

|x|2

4t2(4πt)n/2
e−

|x|2
4t

=
1

(4πt)n/24t2
e−

|x|2
4t

(
|x|2 − 2nt

)
= Φt
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Maximum Principle for the Cauchy Problem

Theorem 3 (Maximum Principle for the Cauchy Problem)
Suppose u ∈ C2

1 (Rn × (0, T ]) ∩ C(Rn × [0, T ]) solve the initial and boundary
value problem {

ut −∆u = 0 in Rn × (0, T )

u = f on Rn × {t = 0}

and satisfies the growth estimate

u(x, t) ≤ Aea|x|
2

(x ∈ Rn, 0 ≤ t ≤ T )

for constants A, a > 0. Then

sup
Rn×[0,T ]

u = sup
Rn

f
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Maximum Principle for the Cauchy Problem
Proof: Choose your a such that 4aT < 1. Then there exists ϵ > 0 such that
4aT + 4aϵ < 1. Define a new function v(x, t) as follows:

v(x, t) := u(x, t)− µ

(T + ϵ− t)n/2
e

|x−y|2
4(T+ϵ−t) (x ∈ Rn, t > 0) (3)

We can observe that

v = u− µ

(T + ϵ− t)n/2
e

|x−y|2
4(T+ϵ−t)

=⇒ vt = ut −
µ

4(T + ϵ− t)n/2+2
e

|x−y|2
4(T+ϵ−t)

(
|x|2 + 2n(T + ϵ− t)

)
∆v = ∆v − µ

4(T + ϵ− t)n/2+2
e

|x−y|2
4(T+ϵ−t)

(
|x|2 + 2n(T + ϵ− t)

)
=⇒ vt −∆v = 0
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Maximum Principle for the Cauchy Problem
Proof: Fix r > 0 and set U := B0(y, r), ΩT = B0(y, r)× (0, T ]. Then, as per
the maximum principle, we have

max
ΩT

u = max
ΓT

u

Now, if x ∈ Rn

v(x, 0) = u(x, 0)− µ

(T + ϵ)n/2
e

|x−y|2
4(T+ϵ)

≤ u(x, 0) = f(x)

Now, if |x− y| = r, 0 ≤ t ≤ T , then

v(x, t) = u(x, t)− µ

(T + ϵ− t)n/2
e

r2

4(T+ϵ−t)
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Maximum Principle for the Cauchy Problem
Proof: Now, if |x− y| = r, 0 ≤ t ≤ T , then

v(x, t) = u(x, t)− µ

(T + ϵ− t)n/2
e

r2

4(T+ϵ−t)

≤ Aea|x|
2 − µ

(T + ϵ− t)n/2
e

r2

4(T+ϵ−t)

≤ Aea(|y|+r)2 − µ

(T + ϵ)n/2
e

r2

4(T+ϵ)

Since 4a(T + ϵ) < 1, we have a < 1
4(T+ϵ) . Therefore, there exists γ > 0 such

that a+ γ = 1
4(T+ϵ) . Hence, for sufficiently large r. we have

v(x, t) ≤ Aea(|y|+r)2 − µ(4(a+ γ)n/2)e(a+γ)r2 ≤ sup
Rn

g
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Maximum Principle for the Cauchy Problem
Proof: Therefore, we have

v(y, t) ≤ sup
Rn

g

for all y ∈ Rn, 0 ≤ t ≤ T (provided you find a). If µ → 0, we obtain a theorem.
Suppose, there exists no a such that 4aT < 1, then repeatedly apply the result
above on time time intervals [0, T1], [T1, 2T1] · · · for T1 =

1
8a . Hence the

theorem.

17



Uniqueness for the Cauchy Problem

Theorem 4 (Uniqueness for the Cauchy Problem)
Suppose f ∈ C(Rn), h ∈ C(Rn× [0, T ]). Then there exists at most one solution
u ∈ C2

1 (Rn × (0, T ]) ∩ C(Rn × [0, T ]) that solves the initial and boundary value
problem {

ut −∆u = h in Rn × (0, T )

u = f on Rn × {t = 0}

satisfying the growth estimate

u(x, t) ≤ Aea|x|
2

(x ∈ Rn, 0 ≤ t ≤ T )

for constants A, a > 0. Then
Proof: Apply above theorem on w = u1 − u2 and claim w = 0.
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Heat Equation:
Regularity
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Closed Circular Cylinder
Already, we have seen the parabolic cylinder.

Definition 1 (Closed Circular Cylinder)
The closed circular cylinder of radius r and height r2 is given by

C(x, t; r) = {(y, s) : |x− y| ≤ r, t− r2 ≤ s ≤ t} (4)

where (x, t) denote the top center point of the C(x, t; r)
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Smoothness

Theorem 5 (Smoothness)
Suppose u ∈ C2

1 (ΩT ) solves the heat equation in ΩT , then

u ∈ C∞(ΩT )

Proof:Now, fix an (x0, t0) ∈ ΩT and choose r > 0 so small that
C := C(x0, t0; r) ⊂ ΩT . Define also the smaller cylinders C ′ := C(x0, t0;

3
4r),

C ′′ := C(x0, t0;
1
2r). Select a smooth cutoff function ζ = ζ(x, t) such that{

0 ≤ ζ ≤ 1, ζ ≡ 1 onC ′

ζ ≡ 0 near the parabolic boundary ofC

Extend ζ ≡ 0 in (Rn × [0, t0]) \ C 21



Smoothness
Proof: Now define

K(x,y, t, s) : = Φ(x− y, t− s)(ζs(y, s) + ∆ζ(y, s))

+ 2DyΦ(x− y, t− s).Dζ(y, s) (5)

Since ζ ≡ 1 on C ′, we have

K(x, y, t, s) = 0

for all points (y, s) ∈ C ′. Since Φ is smooth and we have selected our ζ as
smooth, it is obvious that K is smooth on C \ C ′.

Question
How do we obtain the function K?
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Smoothness
Now, if we set

u(x, t) =

¨

C

K(x,y, t, s)u(y, s)dyds (6)

Then, obtain that u is C∞ within C ′′.
Let us answer the question by the following assumption. Suppose u ∈ C∞,
then define

v(x, t) := ζ(x, t)u(x, t) (x ∈ Rn, 0 ≤ t ≤ t0)

Then

vt = ζut + ζtu (7)
∆v = ζ∆u+ 2Dζ.Du+ u∆ζ (8)
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Smoothness
Proof:
Note that

v = 0 on Rn × {t = 0}

and
vt −∆v = ζtu− 2Dζ.Du− u∆ζ =: h in Rn × (0, t0)

Now, set

v(x, t) :=

tˆ

0

ˆ

Rn

Φ(x− y, t− s)h(y, s)dyds
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Smoothness
Proof: Then according to inhomogeneous IVP problem, v solves the following
problem {

vt −∆v = h in Rn × (0, t0)

v = 0 on Rn × {t = 0}

Since |v|, |v| ≤ A for some constant A, by uniqueness theorem, we get v ≡ v
Hence

v(x, t) :=

tˆ

0

ˆ

Rn

Φ(x− y, t− s)h(y, s)dyds
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Smoothness
Proof: If (x, t) ∈ C ′′, as ζ ≡ 0 outside the cylinder C , we get

u(x, t) =

¨

C

Φ(x− y, t− s)(ζsu− 2Dζ.Du− u∆ζ)(y, s)dyds

=

¨

C

Φ(x− y, t− s)[(ζs(y, s)−∆ζ(y, s))u(y, s)dyds

−
ẗ

C

Φ(x− y, t− s)2Dζ(y, s).Du(y, s)dyds
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Smoothness
Proof: By applying integration by parts, we obtain that

u(x, t) =

¨

C

Φ(x− y, t− s)[(ζs(y, s)−∆ζ(y, s))u(y, s)dyds

+

ẗ

C

2DyΦ(x− y, t− s).Dζ(y, s)u(y, s)dyds

+

ẗ

C

2Φ(x− y, t− s)∆ζ(y, s)u(y, s)dyds
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Smoothness
Proof: By applying integration by parts, we obtain that

u(x, t) =

¨

C

[Φ(x− y, t− s)(ζs(y, s) + ∆ζ(y, s))

+ 2DyΦ(x− y, t− s).Dζ(y, s)])u(y, s)dyds

Now, if u ∈ C2
1 (ΩT ), then we have obtained the above equation. By using

uϵ = ηϵ ∗ u and ϵ → 0, we obtain the result.
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Heat Equation: Local
Estimates
Self Reading
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Local Estimates

Theorem 6 (Local Estimates)
For each pair of integers k, l = 0, 1, · · · , there exists a constant Ckl such that

max
C(x,t;r/2)

|Dk
xD

l
tu| ≤

Ckl

rk+2l+n+2
∥u∥L1(C(x,t;r))

for all cylinders C(x, t; r/2) ⊂ C(x, t; r) ⊂ ΩT and all solutions of the heat
equation in ΩT .

Proof: Now, fix an (x0, t0) ∈ ΩT . By shifting the coordinates, we get the point
as (0, 0). Let C(1) := C(0, 0; 1) and C

(
1
2

)
:= C

(
0, 0; 12

)
. Suppose C(1) ⊂ ΩT ,

then as in the previous theorem, for some smooth function K , we have

u(x, t) =

¨

C(1)

K(x,y, t, s)u(y, s)dyds ((x, t) ∈ C

(
1

2

)
) (9)
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Local Estimates
Proof (continued): Therefore,

|Dk
xD

l
tu(x, t)| ≤

¨

C(1)

|Dk
xD

l
t|K(x,y, t, s)||u(y, s)|dyds ((x, t) ∈ C

(
1

2

)
)

≤ Ckl∥u∥L1(C(1))

for some constant Ckl. Now, instead of C(1), let us consider
C(r) := C(0, 0; r) ⊂ ΩT and C

(
r
2

)
:= C

(
0, 0; r2

)
. Define

v(x, t) := u(rx, r2t)

Then
vt −∆v = 0 in C(1)
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Local Estimates
Proof (continued): Therefore,

|Dk
xD

l
tv(x, t)| ≤ Ckl∥v∥L1(C(1)) ((x, t) ∈ C

(
1

2

)
)

But Dk
xD

l
tv(x, t) = r2l+kDk

xD
l
tu(rx, r

2t) and

∥v∥L1(C(1)) =
1

rn+2
∥u∥L1(C(r))

Therefore,
Dk

xD
l
tu(x, t) =

Ckl

r2l+k+n+2
∥u∥L1(C(r))
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Local Estimates

Remarks
If u solves the heat equation in ΩT , then for each fixed time 0 < t ≤ T , the
mapping x → u(x, t) is analytic. However, t → u(x, t) is not in general analytic.
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Heat Equation: Energy
Methods
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Energy Methods
As we did in the Laplace equation, let us prove the uniqueness of the
following IBVP using energy methods{

ut −∆u = h in ΩT

u = f on ΓT

(10)

Theorem 7 (Energy Methods)
Assume thatΩ ⊂ Rn is open, bounded and that ∂Ω isC1. Suppose the terminal
time T > 0 is given. Then there exists at most one solution u ∈ C2

1 (ΩT ) for
(10).

Proof: Suppose u1 and u2 are two solutions of (10). Define w = u1 − u2
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Energy Methods
Proof: Then w solve the following problem{

wt −∆w = 0 in ΩT

w = 0 on ΓT

(11)

Now, set
e(t) :=

ˆ

Ω

w2(x, t)dx, (0 ≤ t ≤ T )

Then

ė(t) = 2

ˆ

Ω

wwtdx = 2

ˆ

Ω

w∆wdx = −2

ˆ

Ω

|Dw2|dx ≤ 0

Hence e(t) ≤ e(0) = 0. Therefore, w ≡ 0 and hence the proof. 36



Backward Uniqueness
Suppose u and ũ are two smooth solutions of the heat equation in ΩT with
same boundary conditions on ∂Ω:{

ut −∆u = 0 in ΩT

u = f on ΓT

(12)

{
ũt −∆ũ = 0 in ΩT

ũ = f on ΓT

(13)

for some function f . The proof of the following theorem is left as an exercise.
[Refer to Evans Book]
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Backward Uniqueness

Theorem 8 (Backward Uniqueness)
Suppose u, ũ ∈ C2(ΩT ) solves (12) and (13). If

u(x, T ) = ũ(x, T ) (x ∈ Ω)

then
u ≡ ũ within ΩT

Interpretation
• If two temperature distributions on Ω agree at some time T > 0 and have

had the same boundary values for time 0 ≤ t < T , then these
temperatures must have been identically equal within Ω at all earlier
times.
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