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Heat Equation: Strong
Maximum Principle



Strong Maximum Principle

Theorem 1 (Strong Maximum Principle)
Assume u € CZ(Qr) N C(Qr) solve the heat equation in Q7. Then

max v = max u (M
ﬁT Lp

Furthermore, if Q2 is connected and there exists a point (xg, ty) € Q7 such that

u(xo, to) = maxu (2
Qr

then w is constant in Q.




Strong Maximum Principle

Proof: Let

M := maxu
Qr

Suppose there exists a point (zg, tg) € Q7 with u(xg,ty) = M. Then for all
sufficiently small » > 0, E(xq, to; ) C Q. By the mean value property, we

obtain that
M = u(xq,t9) = // ‘ X0 y|2dyds
E(xo,to;r) )
However,
— // [x O_deyds—l
() — S

E(xo0,to;r)

= M = U(Xo,to) < M




Strong Maximum Principle

Proof: If « is identically equal to M within E(xq, to; ), then
M = u(xo, o)

Therefore,
M = u(y,s) Y(y,s) € E(xo,t0;7)

Now, draw a line segment L in Q7 connecting (xg, ty) with some other point
(¥0, 80) € Qp with sy < to. Consider

ro = min{s > sp : u(x,t) = M V(x,t) € L,s <t <ty}

Since u is continuous, the minimum is attained. Assume r¢ > so. Then
3(zg, ro) such that u(zg, 7o) = M




Strong Maximum Principle

Proof: Further for all sufficiently small » > 0,
u=M on E(zg,1o;T)
Suppose ry # sg, then there exists a small o > 0 such that
LN{rg—o <t<rg} C E(zg,r0;1) =><=

Hence, ro = sp andu = M on L.
If Q is connected, let x € 2 and any time 0 < ¢ < ty. Then there exists a
sequence of points

{x0,X1, " ,Xm = X}

such that the line segments in R™ connecting x; ;1 to x; lie in Q for
i=1,2,---,m.




Strong Maximum Principle

Proof: The above statement is true since the set points in Q which can be so
connected to x( by a polygonal path are nonempty, open, and relatively closed
in Q. Selecttimes tg > t; > --- > t,,, = t. The line segments in R"+!
connecting (z;_1,t;—1) to (z;,¢;), fori =1,2,--- ;mliein Qr. Hence u = M on
each such segment and hence u(x,t) = M.



Strong Maximum Principle

Remarks

Similar proof can be done for the minimum principle.

If 4 attains a maximum or minimum at an interior point, then « is
constant at all earlier times.

The solution will be constant on the time interval [0, ¢,] provided the
initial and boundary conditions are constant

The solution may change at times ¢ > tg, provided the boundary
conditions alter after ¢.

The solution will not respond to changes in boundary conditions until
these changes happen.




Strong Maximum Principle

The strong maximum principle implies that if Q is connected and
u € C%(Qr) N C(Qr) satisfies

w—Au=0 in Qp
u=0 on 90 x[0,T]
u=f on Qx{t=0}

Here f > 0

Remarks
e if f > 0 somewhere in 2 then « is positive everywhere within Q.




Uniqueness on bounded domains

Theorem 2 (Uniqueness on bounded domains)
Let f € C(T'p),h € C(Qr). Then there exists at most one solution u €
C%(Q7) N C(Q7) of the initial and boundary value problem

u— Au=~h in Qp
u=f on I'r

Proof: Suppose 1, and us are two solutions of the above IBVP, then applying
the strong maximum principle on w = u; — uo proves the uniqueness.




Heat Equation:
Maximum Principle for
the Cauchy Problem
Self Reading
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Maximum Principle for the Cauchy Problem

Prove that ) ,
_ X7
O(x,t) = W@ it

solves the heat equation

(I)t - (Daza: =0
Proof:

T n = n 1 =l Ix|2
=———¢€ e —
LT ot(4mt)n/? (4mt)n/2 A2

1 =2 X n 1 TGP
= 72¢ "\ o ) T et ¢ (|x| - 2nt)
(4mt) 4t 2t (4mt)n/24¢




Maximum Principle for the Cauchy Problem

Proof (continued):

x Ix|2
o, = —ar
‘ 2t (4rt)n/2
N X
o 2t (4rrt)n/2 4t2(4mt)n/2
1 [x|?

_ X 2 o
arpyrgee () = &




Maximum Principle for the Cauchy Problem

Theorem 3 (Maximum Principle for the Cauchy Problem)
Suppose u € CZ(R"™ x (0,T]) N C(R™ x [0,7]) solve the initial and boundary
value problem

w—Au=0 in R"x(0,7)

u=f on R" x {t =0}

and satisfies the growth estimate
u(x,t) < Aeol? (xeR"0<t<T)
for constants A,a > 0. Then

sup u =supf
R”x[0,T] R




Maximum Principle for the Cauchy Problem

Proof: Choose your a such that 4¢T" < 1. Then there exists € > 0 such that
4aT + 4ae < 1. Define a new function v(x, t) as follows:
(x,t) :==u(x,t) — S 42;112” (x e R",t>0)
v(X, 1) = u(x, (T—{—e—t)"/26 ,

We can observe that
‘2

VvV =Uu— Leél(l;;z—t)
(T +e—t)n/?
= v =u — a 64(‘;?642) (|X|2 +2n(T + € —t))
A(T + € — t)n/2+2
0 |x—y!|? 9
Av = Av — e =0 (|x[* + 2n(T + € — t))

4(T de— t)n/2+2
= yu—Av=0




Maximum Principle for the Cauchy Problem

Proof: Fix r > 0 and set U := B%(y,r), Qr = B%(y,r) x (0,7]. Then, as per
the maximum principle, we have

maxu = maxu

QT I—‘T
Now, if x € R™
(x,0) = u(x, 0) - —1- ¥
VX, = U(X, (T n E)n/Ze
< u(x,0) = f(x)
Now, if [x —y| =7,0 <t < T, then
2 r
v(x,t) = u(x,t) — ————eiTT0

(T +e—t)n/2




Maximum Principle for the Cauchy Problem

Proof: Now, if |x —y| =r,0 <t < T, then

2

1% __r~
00, 1) = ulx, 1) = (e
2
< 1460,‘X|2 — $€m
B (T + € —t)n/?
2
< Aealyl+n? B qirrg
B (T + €)n/?

Since 4a(T + e) < 1,wehavea < 4(T+6 Therefore, there exists v > 0 such
thata + v = 4(T+€) Hence, for sufficiently large r. we have

v(x, 1) < A" — py(4(a + 7))l < supg
Rn




Maximum Principle for the Cauchy Problem

Proof: Therefore, we have
v(y,t) <supg
Rn

forally e R", 0 <t < T (provided you find a). If © — 0, we obtain a theorem.
Suppose, there exists no a such that 4¢T" < 1, then repeatedly apply the result
above on time time intervals [0, 71], [T}, 2T] - - - for T} = &-. Hence the
theorem.



Uniqueness for the Cauchy Problem

Theorem 4 (Uniqueness for the Cauchy Problem)

Suppose f € C(R™),h € C(R™ x [0,T]). Then there exists at most one solution
u € C2(R™ x (0,7T]) N C(R™ x [0, 7)) that solves the initial and boundary value
problem

ug—Au=h in R"x(0,T)
u=f on R™ x {t =0}

satisfying the growth estimate
u(x,t) < A"’ (x eRM0<t<T)

for constants A,a > 0. Then
Proof: Apply above theorem on w = u; — uy and claim w = 0.




Heat Equation:
Regularity
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Closed Circular Cylinder

Already, we have seen the parabolic cylinder.

Definition 1 (Closed Circular Cylinder)
The closed circular cylinder of radius r and height 2 is given by

Cx,t;r) ={(y,s): |x—y|<rt—r?<s<t} (4)

where (x,t) denote the top center point of the C'(x, ¢; )




Smoothness
Theorem 5 (Smoothness)
Suppose u € CZ(Q2r) solves the heat equation in Q7, then

u e C™(Qy)

Proof:Now, fix an (xo, tp) € Qr and choose r > 0 so small that
C := C(xq,to;r) C Qr. Define also the smaller cylinders C’ := C(xq, to; %r),
C" := C(xo, to; 37). Select a smooth cutoff function ¢ = ((x, t) such that

0<¢<1,(=1 onC’
(=0 near the parabolic boundary ofC'

Extend ¢ =0in (R™ x [0,t0]) \ C



Smoothness

Proof: Now define

K(XaY7t7 S) P (I)(X - y7t - 5)(CS(Y7 S) + AC(y7 5))
+ 2Dy ®(x —y,t —s).D{(y,s)

Since ( = 1 on C’, we have
K(z,y,t,s) =0

for all points (y, s) € C’. Since ® is smooth and we have selected our ¢ as
smooth, it is obvious that K is smooth on C'\ C’.

Question
How do we obtain the function K?




Smoothness

Now, if we set

u(x,t) = //K(x,y,t,s)u(y,s)dyds (6)
C

Then, obtain that « is C*° within C”'.
Let us answer the question by the following assumption. Suppose v € C*,
then define

v(x,t) = ((x, t)u(x,t) (x e R",0 <t <t)

Then

Vt = C’Z,Lt + Ctu (7)
Av = (Au + 2D¢.Du + uAl (8)



Smoothness

Proof:
Note that
v=0 on R" x {t=0}
and B
vy — Av = Gu — 2D(.Du —uA( =:h in R" x (0,tp)
Now, set

B, 1) = /t / B(x — y,t — s)h(y, s)dyds

0 R»




Smoothness

Proof: Then according to inhomogeneous IVP problem, v solves the following
problem

Uy — Av=h in R" x (0,tg)
=0 on R" x {t=0}

Since |v|, [u] < A for some constant 4, by uniqueness theorem, we getv =v
Hence

o(x, 1) ::j/@(x—y,t—s)h(y,s)dyds

0 R»



Smoothness

Proof: If (x,¢) € C”, as ( = 0 outside the cylinder C, we get

u(x,t) = // O(x —y,t —8)((su—2D(.Du— ulAl)(y, s)dyds

Q

// B(x— y.t — 8)[(C(y. 3) — AC(y. 5))uly. s)dyds

Q

t
@ X Yy, t—s 2DC(Y7 ) Du(y7 S)dyds

o§




Smoothness

Proof: By applying integration by parts, we obtain that

u(x,1) // (x =y, t — )[(Caly,8) — A(y, ))uly, s)dyds

+ Z/2Dy<1>(x —y,t—3s).D((y,s)uly, s)dyds

t

+ // 20(x — y,t — s)AC(y, s)uly, s)dyds

C




Smoothness
Proof: By applying integration by parts, we obtain that
u(x,t) // x—y,t—3)(G(y,s) + Ay, )

+2D yO(x =y, t = s).DC(y, s)])uly, s)dyds

Now, if u € C%(27), then we have obtained the above equation. By using
u® = ne * uw and e — 0, we obtain the result.




Heat Equation: Local
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Local Estimates

Theorem 6 (Local Estimates)
For each pair of integers k,1 = 0,1, - - -, there exists a constant C},; such that

max | D¥Dlu| <

Clxtir/2) mHuIIL1 (Clxtir))

for all cylinders C(x,¢;7/2) € C(x,t;r) C Qp and all solutions of the heat
equation in Q.

Proof: Now, fix an (xg, tg) € Q. By shifting the coordinates, we get the point
s (0,0). Let C(1) := C(0,0;1) and C (%) := C (0,0; 3). Suppose C(1) C Qr,
then as in the previous theorem, for some smooth function K, we have
1
ut) = [[ Koeytsutyavis @eoec(3)) @

c(1)



Local Estimates

Proof (continued): Therefore,

1
DEDlux o) <[] IDEDIK (vt layds (e (3)
c(1)

< Crllull L1 ey

for some constant Cy;. Now, instead of C(1), let us consider
C(r):=C(0,0;7) C Qp and C (%) := C (0,0; %). Define

v(x,t) = u(rx, rt)

Then
vy —Av=0 in C(1)




Local Estimates

Proof (continued): Therefore,
1
IDED(x 0] < ey (k.0 €€ (5))

But D Dlu(x,t) = r?*+* Dk Dlu(rx, r2t) and

1
[vllzrcay = Sz llulliem)

Therefore,
Cu

kol
Dy Dyu(x,t) = mHUHLl(C(r))




Local Estimates

Remarks
If u solves the heat equation in Qr, then for each fixed time 0 < ¢ < T, the
mapping x — u(x,t) is analytic. However, t — u(x,t) is not in general analytic.




Heat Equation: Energy
Methods
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Energy Methods

As we did in the Laplace equation, let us prove the uniqueness of the
following IBVP using energy methods

(10)

w—Au=~h in Qr
u=f on I'p

Theorem 7 (Energy Methods)

Assume that 2 ¢ R" is open, bounded and that 92 is C'. Suppose the terminal
time 7' > 0 is given. Then there exists at most one solution v € C?(Qr) for
(10).

Proof: Suppose u; and us are two solutions of (10). Define w = u; — us




Energy Methods

Proof: Then w solve the following problem

{wt—Aw:O in QT

w =20 on I'p
Now, set
e(t) == /w2(x, tydx, (0<t<T)
Q
Then

é(t) = 2/wwtdx = Q/wAwdx = —2/ | Dw?|dx < 0
Q Q Q

Hence e(t) < ¢(0) = 0. Therefore, w = 0 and hence the proof.




Backward Uniqueness

Suppose u and @ are two smooth solutions of the heat equation in Q7 with
same boundary conditions on 99:

{ut—Auzo in Qp (12)

u=7f on I'p

{atm:o in Qp (13)

u=f on I'p

for some function f. The proof of the following theorem is left as an exercise.
[Refer to Evans Book]



Backward Uniqueness

Theorem 8 (Backward Uniqueness)
Suppose u, & € C%(Q7) solves (12) and (13). If

ux,T)=u(x,T) (x€Q)

then
uw=u within Qp

Interpretation

e |f two temperature distributions on (2 agree at some time 7" > 0 and have
had the same boundary values for time 0 < ¢ < T, then these
temperatures must have been identically equal within 2 at all earlier
times.
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