
MA612L-Partial Differential Equations
Lecture 3 : Applications and Classifications

Panchatcharam Mariappan1

1Associate Professor
Department of Mathematics and Statistics

IIT Tirupati, Tirupati

August 6, 2025



Recap

1



PDE-Notations
Independent Variables: Let us denote the independent variable by
x = (x1, x2, · · · , xn) ∈ Ω ⊂ Rn, n ≥ 2
Dependent Variables: Let us denote the dependent variable or unknown
function by u = (u1, u2, · · · , up) ∈ Rp, p ≥ 1
Let α = (α1, α2, · · · , αn) ∈ Zn

+ and

|α| =
n∑

i=1

αi

Then Dαu denotes
Dαu =

∂αu

∂α1x1∂α2x2 · · · ∂αnxn
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PDE

Definition 1 (PDE-Formal Definition)
Let Ω ⊂ Rn,m ∈ N and

F : Ω× Rp × Rnp × Rn2p × · · · × Rnmp → Rq

A system of partial differential equations of orderm is defined by the equation

F (x,u, Du, D2u, · · · , Dmu) = 0 or F (x, (∂αu)|α| ≤ m) = 0

Here, some mth order derivative of the function u appears in the system of
equations.
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PDE
If u = (u1) is the only dependent variable and F is real-valued, then the above
definition can be written as

Definition 2 (PDE-Formal Definition, p = 1, q = 1)
Let Ω ⊂ Rn,m ∈ N and

F : Ω× R× Rn × Rn2 × · · · × Rnm → R

The partial differential equation of order m is defined by the equation

F (x, u,Du,D2u, · · · , Dmu) = 0

Here, some mth order derivative of the function u appears in the equation.
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Four Important Linear PDEs

• Transport Equation
ut + aux = 0

• Heat Equation
ut = α2uxx

• Wave Equation
utt = c2uxx

• Laplace Equation
uxx + uyy = 0

In all problems in this presentation, valid domains for time, space, and
function space are assumed.
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A few more PDEs
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A few more · · ·
The following are a few important PDEs that arise from physical problems
• Burgers’ Equation (Dynamic Gases)

ut + uux = 0 or ut + uux = µuxx, t > 0, x ∈ R

• Eikonal Equation (Pedestrian, Robotic Path)

u2x + u2y = 1

• Shock Waves (Aerospace, Hypersonic Aircraft, Detonations, Tsunami
Prediction)

ux + uuy = 0
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A few more · · ·

• Biharmonic (Bending of Thin Elastic Plates)

uxxxx + 2uxxyy + uyyyy = 0

• Wave equation with interaction ()

utt = uxx − u3

• Born-Infeld (nonlinear electrodynamics, minimal surfaces, Cosmology,
Modified Gravity)

(1− u2t )uxx + 2uxutuxt − (1 + u2x)utt = 0
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A few more · · ·

• Monge-Ampere (Differential Geometry, Optimal Transport, Optics, CG)

u2xy − uxxuyy = f(x, y)

• Klein-Gordon (Quantum Physics, QFT, Soliton Theory)

utt − c2∇2u+
m2c4u

ℏ2
= 0

• Hamilton-Jacobi (Quantum/Classical Mechanics, Field Theory)

−ut = H(q, uq, t)
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A few more · · ·

• Schrodinger’s Equation(time independent,Quantum mechanics)

iut = − ℏ
2m

∆u+ V (x)u(t, x) = 0, t > 0, x ∈ R

• Euler-Bernoulli Beam Equation

utt + α4uxxxx = 0, t > 0, x ∈ R

• Korteweg-de Vries Equation (Shallow water Waves, Plasma Physics,
Optics)

ut + uxxx + uux = 0, t > 0, x ∈ R
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A few more · · ·

• Benjamin-Bona-Mahony equation (Shallow Water, Nonlinear Wave)

ut + ux + utxx + uux = 0, t > 0, x ∈ R

• Vlasov-Poisson equation (Plasma Physics, Astrophysics, kinetic theory)

ft + v.∇xf + E.∇vf = 0, t > 0, x ∈ Rn, v ∈ Rn

E = ∇xV,∆V =

∫
Rn

f(t, x, v)dv, V = V (x), f ≥ 0
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Maxwell’s equation

∇.D = ρv

∇.B = 0

∇×E = −∂B

∂t

∇×H =
∂H

∂t
+ J
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Sloshing Dynamics
The following equations are used in the hydrodynamic analysis of partially
filled liquid tanks

∆u = 0 (1)
∇.n−∇η.∇u = ηt (2)

ut + gη +
1

2
(∇u)2 = 0 (3)
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Shallow Water Equation

∂h

∂t
+

∂

∂x

(
(H + h)u

)
+

∂

∂y

(
(H + h)v

)
= 0, (4)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g

∂h

∂x
− bu+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
, (5)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g

∂h

∂y
− bv + ν

(
∂2v

∂x2
+

∂2v

∂y2

)
, (6)
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Reynolds Transport
Reynolds Transport Theorem

Df

Dt
=

∂f

∂t
+ v.∇f
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Euler equation

Dρ

Dt
= 0

Du

Dt
= −∇p

ρ
+ g

∇.u = 0
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Navier-Stokes
Continuity Equation (Conservation of Mass)

∂ρ

∂t
+∇.(ρu) = 0 (7)

Momentum Equation (Conservation of Momentum)

∂

∂t
(ρu) +∇ · (ρu⊗ u) = −∇p̄+ µ∇2u+ 1

3µ∇(∇ · u) + ρg (8)

Energy Equation (Conservation of Energy)

∂

∂t
(ρ e) +∇.[ρue+ q̇s − τ .u] = p∇.u+ fb.u+ q̇u (9)
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Weather Prediction

Momentum:
∂v

∂t
+V.∇V + 2Ω×V +

1

ρ
∇p = F+ g (10)

Continuity:
∂ρ

∂t
+∇.(ρV ) = 0 (11)

Water substance:
dq

gt
= S (12)

Hydrostatic:
∂p

∂z
+ gρ = 0 (13)
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Drones/Helicopter Rotor

(Ω.∇)v =
DΩ

Dt
(14)

∂Ω

∂t
+ v.∇Ω = (Ω.∇)v (15)

Ω = ∇× v (16)
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Minimal Surface

(1 + |∇u|2)∆u−
n∑

i,j=1

uxiuxjuxixj = 0
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Goals
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Goals
When an industrial problem or real-world, or physical problem is posted to
you, you need to model it mathematically. In case your mathematical model
falls under the scope of partial differential equations. Then one of the
fundamental questions is "Which PDEs should I choose?". No general answer!

• Discussion of some important physical systems (dated back to the 18th
and 19th centuries)

• Existence and Uniqueness
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Goals
Let us try to answer the following questions in this lecture:
• Does the PDE have any solutions?
• What are all the necessary conditions to solve a PDE?
• Are the solutions unique for a given data?
• What are the basic qualitative properties of the solution?
• What is the nature of singularities, if any?
• How does a small perturbation in the input data affect the solution?
• What types of quantitative estimates can be obtained for a given

solution?
• How can we define the norm of a solution and find its error estimates

with respect to the norm?
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Clay Math Problem:
Million Dollar Question
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Universal Solution??

• It is not necessary that all PDEs have a solution. For example, u2x + 1 = 0
has no real solution.

• We can’t expect a general existence theorem for a general PDE
• Remember: We do not expect a solution for all PDES as we do in linear

algebra or matrices in school days.
• Recall: All polynomials or systems of linear equations, or implicit

functions, do not always have solutions.
• From Linear Algebra/Matrix Theory: Under certain conditions, a linear

system of equations has solution(s). We characterize them depending
on the rank of the matrix and the corresponding augmented matrix

• How about non-linear equations?
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Universal Solution??
In the ODE course:
• Peano’s existence theorem
• Picard’s existence and uniqueness theorem
• These theorems address the existence of solutions of IVP for first-order

ODEs
• Extends this to study any ODE in normal form

In PDE:
• Can you expect a similar one for PDE? Not possible
• Different types of problems have different conditions
• Let us see one of the million-dollar questions
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Clay Mathematics

• Clay Mathematics was founded by T.Clay and his wife in 1998, stating 7
unsolved problems in 2000 called the Millennium Prize Problems

• The Correct solutions discoverer of any of these 7 problems will get 1
Million US dollars

• Poincaré Conjecture is the only problem solved so far (by Perelman,
2003, but he declined the money)

• Navier-Stokes existence and smoothness is one of the Millennium
problems in the remaining 6 unsolved problems.

Source: Rest of the contents for this presentation is taken from the following link: http://claymath.org/sites/default/files/navierstokes.pdf
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Navier-Stokes
Consider the following three-dimensional Navier-Stokes equation

ut + uux + vuy + wuz = −px + ν(uxx + uyy + uzz) + f1(x, y, z, t)

vt + uvx + vvy + wvz = −py + ν(vxx + vyy + vzz) + f2(x, y, z, t) (17)
wt + uwx + vwy + wwz = −pz + ν(wxx + wyy + wzz) + f3(x, y, z, t)

ux + vy + wz = 0 (18)

It is a second-order PDE with four variables u(x, y, t, z), v(x, y, z, t),w(x, y, z, t), p(x, y, z, t), ν kinematic
viscosity of the fluid. fis are external force. We restrict to incompressible (ρ is constant) fluids, which is
represented by the last equation. ν = 0 implies Euler equations.
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Navier-Stokes

• The Navier-Stokes equations are fundamental in fluid mechanics.
• Difficult to solve either analytically or numerically
• When the initial condition

u(x, y, z, 0) = u0(x, y, z) (19)

is Finding the existence or nonexistence of solutions for all future times
is a major unresolved problem in mathematics

Let x = (x, y, z) ∈ R3, u(x, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) ∈ R3,
p(x, t) ∈ R and f(x, t) = (f1(x, y, z, t), f2(x, y, z, t), f3(x, y, z, t)) ∈ R3.
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Navier-Stokes
For physically reasonable, we would like to make sure u(x, t) does not grow
large as |x| → ∞. Let us keep some restrictions on f and u0.

|∂α
xu0(x)| ≤ CαK(1 + |x|)−K , on R3, for any α,K (20)

|∂α
x∂tf(x, t)| ≤ CαmK(1 + |x|+ t)−K , on R3, t ≥ 0 for any α,m,K (21)

Solution of (17), (18) and (19) is accepted as physically reasonable only if it
satisfies

p,u ∈ C∞(R3, [0,∞)) (22)∫
R3

|u(x, t)|2dx < C, for all t ≥ 0 (23)
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Navier-Stokes
If problems at infinity are ruled out, we can look for spatially periodic
solutions. Therefore, restriction on f and u0 becomes

u0(x+ ej) = u0(x), f(x+ ej, t) = f(x, t), 1 ≤ j ≤ 3 (24)
|∂α

x∂tf(x, t)| ≤ CαmK(1 + t)−K , on R3, t ≥ 0 for any α,m,K (25)

Solution of (17) is accepted as physically reasonable only if it satisfies

u(x+ ej, t) = u(x, t) on R3 × [0,∞) for 1 ≤ j ≤ 3 (26)

p,u ∈ C∞(R3, [0,∞)) (27)
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Millennium Problem

Unsolved Problems 2.1 (Existence and Uniqueness of NS Solution-A)
Let ν > 0. Let u0(x) be any smooth function, that is, u0 ∈ C∞(R3), divergence
free vector field which satisfies the condition (20). Let f = 0. Then there exist
smooth functions p(x, t), u(x, t),v(x, t), w(x, t) on R3 × [0,∞) that satisfy the
above (17), (18), (19), (22) and (23).
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Millennium Problem

Unsolved Problems 2.2 (Existence and Uniqueness of NS Solution-B)
Let ν > 0. Let u0(x) be any smooth, that is, u0 ∈ C∞(R3), divergence free
vector field which satisfies the condition (24). Let f = 0. Then there exist
smooth functions p(x, t), u(x, t),v(x, t), w(x, t) on R3 × [0,∞) that satisfy the
above (17), (18), (19), (26) and (27).
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Millennium Problem

Unsolved Problems 2.3 (Breakdown of NS Solution-C)
Let ν > 0. Then there exist a smooth, divergence free vector field u0(x), that
is u0 ∈ C∞(R3), and a smooth f(x, t) on R3 × [0,∞) satisfying (20) and (21)
for which there exist no solutions (p,u) of (17), (18), (19), (22) and (23) onR3×
[0,∞)
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Millennium Problem

Unsolved Problems 2.4 (Breakdown of NS Solution-D)
Let ν > 0. Then there exist a smooth, divergence free vector field u0(x), that
is u0 ∈ C∞(R3), and a smooth f(x, t) on R3 × [0,∞) satisfying (24) and (25),
for which there exist no solutions (p,u) of (17), (18), (19), (26) and (27) on R3×
[0,∞)
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Classification of PDEs
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Why Classification

• Based on the number of properties, we can group families of similar
equations

• In fact, a few researchers see no advantage in the classification process
• Some classifications are given a few branding, like Navier-Stokes, Heat

Equation, etc
• Some classifications help to identify or guess, or predict the properties of

solutions of PDEs in that class.
• Some classification helps to identify the allowable initial and boundary

conditions
• A few classification helps to select an effective numerical method
• Classifications are done using characteristics, order, linearity, and so on.
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PDE

Definition 1 (PDE-Formal Definition)
Let Ω ⊂ Rn,m ∈ N and

F : Ω× Rp × Rnp × Rn2p × · · · × Rnmp → Rq

A system of partial differential equations of orderm is defined by the equation

F (x,u, Du, D2u, · · · , Dmu) = 0 (28)

Here, some mth order derivative of the function u appears in the system of
equations.
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Classification-I - System
Based on the number of equations, we can classify PDEs.

Definition 2
If a PDE (28) consists of more than one equation, it is called a system of PDEs.
Otherwise, it is called a single PDE or a scalar PDE, or simply PDE.

Exercise 1:

Classify all PDEs given in our last class into a system of PDEs and a
single PDE
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Classification-II - Order
Based on the highest order derivative, we can classify PDEs.

Definition 3
If the highest order derivative appearing in the PDE is m, then such PDEs are
classified as mth order PDEs.

Exercise 2:

Find the order of PDEs of all PDEs discussed in our last class.
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Classification-III - Linear/Nonlinear
Through algebra, we can also classify PDEs. In algebra, we categorize
algebraic equations as linear and nonlinear equations. To define linearity, let
us rewrite the equation (28) as

Lu = f (29)

where L is an operator which assigns u a new function Lu. Here f is a
function of x only.

Definition 4
The operator L is called linear if

L(αu+ βv) = αLu+ βLv (30)

for any function u and v and constants α and β.
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Classification-III - Linear

Definition 5
If the operator L in (29) is linear, then the PDE is called a linear PDE. Equiva-
lently, an mth-order PDE is linear if it can be written as∑

|α|≤m

aα(x)D
αu = f(x) (31)

Here aα’s are functions of x only.

Example 3
1. ut + ux = 0

2. uxx + uyy = 0

3. ut + x2ux = 0
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Classification-III - Nonlinear

Definition 6
If the operator L in (29) is not linear (or equivalently, it can’t be written in the
form of (31)), then the PDE is called a nonlinear PDE.

Example 4
1. ut + uux = 0

2. u2x + u2y = 0

Exercise 3:

Identify the list of linear and nonlinear PDEs from all PDEs discussed in
our last class.
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Classification-IV - Quasilinear
We have categorized PDEs as linear and nonlinear already. The PDEs can be
further categorized based on the linearity of different derivatives. For
example,
• Quasilinear
• Non-Quasilinear or Fully nonlinear

Definition 7
The equation (28) of order m is called quasilinear if it is linear in the deriva-
tives of order m with coefficients that depend on the independent variables
and derivatives of the unknown function of order strictly less than m.
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Classification-IV - Quasilinear

Definition 8
Equivalently, an mth order PDE is quasilinear if it can be written in the form∑

|α|=m

aα(x, u,Du, · · ·Dm−1u)Dαu+ a0(x, u,Du, · · ·Dm−1u) = 0 (32)

Here aα’s are functions of x and derivatives of the unknown function of order
less than m.

Definition 9
An mth order PDE is called fully nonlinear if it is not linear in the derivatives of
order m. Equivalently, a PDE that is not quasilinear is called a fully nonlinear
PDE.
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Classification-IV - Quasilinear

Definition 10
The equation (28) of order m is called quasilinear if it is linear in the deriva-
tives of order m with coefficients that depend on the independent variables
and derivatives of the unknown function of order strictly less than m. Equiva-
lently,∑

|α|=m

aα(x, u,Du, · · ·Dm−1u)Dαu+ a0(x, u,Du, · · ·Dm−1u) = 0 (33)

An mth order PDE is called fully nonlinear if it is not linear in the derivatives of
order m. Equivalently, a PDE that is not quasilinear is called a fully nonlinear
PDE.
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Quasilinear
Example,

ux + uuy = 0

For,

(c1u1x + c2u2x) + u(c1u1y + c2u2y) = c1u1x + c2u2x + c1uu1y + c2uu2y

Example 5
1. ux + uuy = 0 is quasilinear
2. ut + a(u)ux = 0 is quasilinear
3. u2x + u2y = 0 is not quasilinear. It is fully nonlinear

4. div

(
∇u√

1+|∇u|2

)
is fully nonlinear

5. ut + u2x − u = cos(xt) is fully nonlinear
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Classification-V - Semilinear
Quasilinear PDEs are further categorized into
• Semilinear
• Non-semilinear

Definition 11
A quasilinear PDE of order m is called a semilinear PDE if the coefficients of
derivatives of order m are functions of the independent variables alone.
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Classification-V - Semilinear

Definition 12
A quasilinear PDE of order m is called a semilinear PDE if the coefficients of
derivatives of orderm are functions of the independent variables alone. Equiv-
alently ∑

|α|=m

aα(x)D
αu+ a0(x, u,Du, · · ·Dm−1u) = 0 (34)

Here aα’s are functions of x alone.
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Classification-V - Semilinear

Definition 13
Equivalently, an mth order PDE is semilinear if it can be written in the form∑

|α|=m

aα(x)D
αu+ a0(x, u,Du, · · ·Dm−1u) = 0 (35)

Here aα’s are functions of x alone.

Example 6
1. ut + ux + u2 = 0 is semilinear
2. ut + uxxx + uux = 0 is semilinear
3. xux + yuy = u is semilinear
4. ut + uux = 0 is not semilinear
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Classification-VI - Almost linear

Definition 14
An mth order semilinear PDE is called almost linear if it can be written in the
form ∑

|α|≤m

aα(x)D
αu+ f(x, u) = 0 (36)

Here aα’s are function of x alone or if it is of the form

Lu = f(x, u) (37)

where f(x, u) is a nonlinear functionwith respect to u andL is a linear operator.

Example 7
1. ut + ux + u2 = 0 is almost linear
2. xux + yuy = u is almost linear
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Classification-VII - In/Homogeneous
Suppose (28) can be written in the following form

D(u) = f(x) (38)

Definition 15
If f ≡ 0 in (38), then the PDE is called a homogeneous PDE. If f ̸= 0, then the
PDE is an inhomogeneous PDE1.

Example 8
1. ut + uux = 0 is homogeneous
2. 2uy − 5u3 = x is inhomogeneous
3. urr +

1
rur +

1
r2
uθθ = f(r, θ) is inhomogeneous if f ̸= 0

1In some textbooks it is also called nonhomogeneous PDE. Also, many textbooks usually
classify only linear PDE as homogeneous and nonhomogeneous 52



Examples

Example 9

PDE O Lin AL Sem Qua HG FNL

ut + ux + u2 = 0 1 ✗ ✓ ✓ ✓ ✓ ✗

uxx + uyy = 0 2 ✓ ✓ ✓ ✓ ✓ ✗

u2x + u2y = x2 + y2 1 ✗ ✗ ✗ ✗ ✗ ✓

ux + 5u = x2y 1 ✓ ✓ ✓ ✓ ✗ ✗

O - Order, Lin - Linear, AL - Almost linear, Sem - Semilinear, Qua - Quasilinear,
HG - Homogeneous, FNL - Fully nonlinear.
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First-order PDEs in Two Variables
The general first-order PDEs in two variables can be written in the form

F (x, y, u, ux, uy) = 0 (39)

The first-order linear PDE is of the form

a(x, y)ux + b(x, y)uy = c(x, y)u+ f(x, y) (40)

The first-order semilinear PDE is of the form

a(x, y)ux + b(x, y)uy = c(x, y, u) (41)

The first-order quasilinear PDE is of the form

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (42)
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Second-order PDEs in Two Variables
The general second-order PDEs in two variables can be written in the form

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0

The second-order linear PDE is of the form

a1(x, y)uxx+ a2(x, y)uxy + a3(x, y)uyy + a4(x, y)ux+ a5uy + a6(x, y)u = f(x, y)

The second-order semilinear PDE is of the form

a1(x, y)uxx + a2(x, y)uxy + a3(x, y)uyy = f(x, y, u, ux, uy)

The second-order quasilinear PDE is of the form

a1(x, y, u, ux, uy)uxx+a2(x, y, u, ux, uy)uxy+a3(x, y, u, ux, uy)uyy = f(x, y, u, ux, uy)
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Classification

Remarks 1
A few authors classify
• only linear PDE as homogeneous and nonhomogeneous
• nonlinear PDE as semilinear and non-semilinear
• non-semilinear PDE as quasilinear and non-quasilinear/fully nonlinear

Later, we will see some more classifications like parabolic, elliptic, and hyper-
bolic when we discuss second-order PDE, which can be extended further for
higher-order PDEs.

Remarks 2
One can prove that

Linaer PDE ⊊ Semilinear PDE ⊊ Quasilinear PDE ⊊ PDE

(Prove that the inclusion is strict!) 56



Exercise

Exercise 4: Hard

Create a table like Example 9 and fill in the tick marks accordingly.
1. uxxx − 4uxxyy + uyyzz = 0

2. u2xutt − 0.5u = 1− u2

3. uttuxxx − uxuttt = x2 + t2

4. euxtt − uxtuxxx + u2 = 0

5. 2 cos(xt)ut − xetux − 9u = et sinx

6. uut + u2ux + u = ex

7.
√

1 + x2y2uxyy − cos(xy3)uxxy + e−y3ux − (5x2 − 2xy + 3y2)u = 0
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