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Directional Derivative
The derivative of f at P0(x0, y0) in the
direction of the unit vector u = (u1, u2)
is the number

(Duf)P0 =

(
df

ds

)
u,P0

= lim
s→0

f(x0 + su1, y0 + su2)− f(x0, y0)

s
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motion along the curve. If the curve is a straight line and t is the arc length parameter 
along the line measured from P0 in the direction of a given unit vector u, then dƒ >dt is the 
rate of change of ƒ with respect to distance in its domain in the direction of u. By varying 
u, we find the rates at which ƒ changes with respect to distance as we move through P0 in 
different directions. We now define this idea more precisely.

Suppose that the function ƒ(x, y) is defined throughout a region R in the xy-plane, that 
P0(x0 , y0) is a point in R, and that u = u1 i + u2 

 

j is a unit vector. Then the equations

x = x0 + su1,  y = y0 + su2

parametrize the line through P0 parallel to u. If the parameter s measures arc length from 
P0 in the direction of u, we find the rate of change of ƒ at P0 in the direction of u by calcu-
lating dƒ >ds at P0 (Figure 14.27).

Figure 14.26  Contours within Yosemite National Park in California 
show streams, which follow paths of steepest descent, running perpendicular 
to the contours. (Source: Yosemite National Park Map from U.S. Geological 
Survey, http://www.usgs.gov)
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u = u1i + u2 j
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Figure 14.27  The rate of change of ƒ 
in the direction of u at a point P0 is the rate 
at which ƒ changes along this line at P0.

Definition  The derivative of f at P0(x0 , y0) in the direction of the unit vec-
tor u = u1i + u2 j is the number

	 adƒ
ds
b

u, P0

= lim
sS0

 
ƒ(x0 + su1, y0 + su2) - ƒ(x0 , y0)

s ,� (1)

provided the limit exists.

The directional derivative defined by Equation (1) is also denoted by

(Du ƒ)P0
.  “The derivative of ƒ at P0 

in the direction of u”

The partial derivatives ƒx(x0 , y0) and ƒy(x0 , y0) are the directional derivatives of ƒ at P0 in 
the i and j directions. This observation can be seen by comparing Equation (1) to the defi-
nitions of the two partial derivatives given in Section 14.3.

Figure 1: Source: Thomas’ Calculus
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Interpretation of Directional Derivatives
The vertical plane that passes through
P and P0(x0, y0) parallel to u
intersects the graph S in a curve C.
The rate of change of f in the direction
of u is the slope of the tangent to C at
P in the right-handed system formed
by the vectors u and z-axis.
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Example  1    Using the definition, find the derivative of

ƒ(x, y) = x2 + xy

at P0(1, 2) in the direction of the unit vector u = 11>222i + 11>222j.

Solution  Applying the definition in Equation (1), we obtain¢dƒ
ds

≤
u, P0

= lim
sS0

 
ƒ(x0 + su1, y0 + su2) - ƒ(x0 , y0)

s   Eq. (1)

= lim
sS0

 

ƒ¢1 + s # 122
, 2 + s # 122

≤ - ƒ(1, 2)

s

= lim
sS0

 

¢1 + s22
≤2

+ ¢1 + s22
≤ ¢2 + s22

≤ - (12 + 1 # 2)

s

= lim
sS0

 

¢1 + 2s22
+ s2

2
≤ + ¢2 + 3s22

+ s2

2
≤ - 3

s

= lim
sS0

 

5s22
+ s2

s = lim
sS0

 ¢ 522
+ s≤ = 522

.

The rate of change of ƒ(x, y) = x2 + xy at P0(1, 2) in the direction u is 5>22.�

Interpretation of the Directional Derivative

The equation z = ƒ(x, y) represents a surface S in space. If z0 = ƒ(x0 , y0), then the 
point P(x0 , y0 , z0) lies on S. The vertical plane that passes through P and P0(x0 , y0) par-
allel to u intersects S in a curve C (Figure 14.28). The rate of change of ƒ in the direc-
tion of u is the slope of the tangent to C at P in the right-handed system formed by the 
vectors u and k.

When u = i, the directional derivative at P0 is 0ƒ>0x evaluated at (x0 , y0). When 
u = j, the directional derivative at P0 is 0ƒ>0y evaluated at (x0 , y0). The directional deriva-
tive generalizes the two partial derivatives. We can now ask for the rate of change of ƒ in 
any direction u, not just the directions i and j.

For a physical interpretation of the directional derivative, suppose that T = ƒ(x, y) is 
the temperature at each point (x, y) over a region in the plane. Then ƒ(x0 , y0) is the tem-
perature at the point P0(x0, y0) and (Du ƒ)P0

 is the instantaneous rate of change of the tem-
perature at P0 stepping off in the direction u.

Calculation and Gradients

We now develop an efficient formula to calculate the directional derivative for a differen-
tiable function ƒ. We begin with the line

	 x = x0 + su1 ,  y = y0 + su2 ,� (2)

z

x

yC

Q

s

Surface S:
z = f(x, y)

f(x0 + su1, y0 + su2) − f(x0, y0)

Tangent line

P(x0, y0, z0)

P0(x0, y0) u = u1i + u2j

(x0 + su1, y0 + su2)

Figure 14.28  The slope of the trace 
curve C at P0 is lim

QSP
 slope (PQ); this is the 

directional derivative

adƒ
ds
b

u, P0

= (Du ƒ)P0
.

Figure 2: Source: Thomas’ Calculus
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Partial Derivatives as Directional Derivatives
	 14.3  Partial Derivatives	 811

An equivalent expression for the partial derivative is

d
dx

 ƒ(x, y0) 2
x = x0

.

The slope of the curve z = ƒ(x, y0) at the point P(x0 , y0 , ƒ(x0 , y0)) in the plane y = y0 
is the value of the partial derivative of ƒ with respect to x at (x0 , y0). (In Figure 14.16 this 
slope is negative.) The tangent line to the curve at P is the line in the plane y = y0 that 
passes through P with this slope. The partial derivative 0ƒ>0x at (x0 , y0) gives the rate of 
change of ƒ with respect to x when y is held fixed at the value y0.

We use several notations for the partial derivative:

0ƒ
0x (x0 , y0) or ƒx(x0 , y0),  

0z
0x

2
(x0, y0) 

,    and     ƒx ,  
0ƒ
0x ,  zx , or  

0z
0x .

The definition of the partial derivative of ƒ(x, y) with respect to y at a point (x0 , y0) is 
similar to the definition of the partial derivative of ƒ with respect to x. We hold x fixed at 
the value x0 and take the ordinary derivative of ƒ(x0 , y) with respect to y at y0.

x
y

z

0

 

Tangent line

The curve z = f(x, y0)
in the plane y = y0

P(x0, y0, f(x0, y0))

Vertical axis in
the plane y = y0

z = f(x, y)

y0

x0

Horizontal axis in the plane y = y0

(x0 + h,  y0)
(x0, y0)

Figure 14.16  The intersection of the plane y = y0 
with the surface z = ƒ(x, y), viewed from above the first 
quadrant of the xy-plane.

Definition  The partial derivative of ƒ(x, y)  with respect to x at the point 
(x0 , y0)  is

0ƒ
0x `

(x0, y0)
= lim

hS0
 
ƒ(x0 + h, y0) - ƒ(x0 , y0)

h
,

provided the limit exists.

Definition  The partial derivative of ƒ(x, y)  with respect to y at the point 
(x0 , y0)  is

0ƒ
0y `

(x0, y0)
= d

dy
 ƒ(x0 , y) `

y = y0

= lim
hS0

 
ƒ(x0 , y0 + h) - ƒ(x0 , y0)

h
,

provided the limit exists.

Figure 3: Source: Thomas’ Calculus
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The slope of the curve z = ƒ(x0 , y) at the point P(x0 , y0 , ƒ(x0 , y0)) in the vertical 
plane x = x0 (Figure 14.17) is the partial derivative of ƒ with respect to y at (x0 , y0). The 
tangent line to the curve at P is the line in the plane x = x0 that passes through P with this 
slope. The partial derivative gives the rate of change of ƒ with respect to y at (x0, y0) when 
x is held fixed at the value x0 .

The partial derivative with respect to y is denoted the same way as the partial deriva-
tive with respect to x:

0ƒ
0y (x0 , y0),  ƒy(x0 , y0),  

0ƒ
0y ,  ƒy .

Notice that we now have two tangent lines associated with the surface z = ƒ(x, y) at 
the point P(x0, y0, ƒ(x0, y0)) (Figure 14.18). Is the plane they determine tangent to the sur-
face at P? We will see that it is for the differentiable functions defined at the end of this 
section, and we will learn how to find the tangent plane in Section 14.6. First we have to 
learn more about partial derivatives themselves.

x

y

z

This tangent line
has slope fy(x0, y0). This tangent line

has slope fx(x0, y0).

The curve z = f(x, y0)
in the plane y = y0

z =  f(x, y)

x = x0y = y0 (x0, y0)

The curve z = f(x0, y)
in the plane x = x0

 P(x0, y0, f(x0, y0))

Figure 14.18  Figures 14.16 and 14.17 combined. The tangent 
lines at the point (x0 , y0 , ƒ(x0 , y0)) determine a plane that, in this 
picture at least, appears to be tangent to the surface.

Calculations

The definitions of 0ƒ>0x and 0ƒ>0y give us two different ways of differentiating ƒ at a 
point: with respect to x in the usual way while treating y as a constant and with respect to y 
in the usual way while treating x as a constant. As the following examples show, the values 
of these partial derivatives are usually different at a given point (x0, y0).

Example  1    Find the values of 0ƒ>0x and 0ƒ>0y at the point (4, -5) if

ƒ(x, y) = x2 + 3xy + y - 1.

Solution  To find 0ƒ>0x, we treat y as a constant and differentiate with respect to x:

0ƒ
0x = 0

0x (x2 + 3xy + y - 1) = 2x + 3 # 1 # y + 0 - 0 = 2x + 3y.

The value of 0ƒ>0x at (4, -5) is 2(4) + 3(-5) = -7.

x

z

y

P(x0, y0, f(x0, y0))

y0x0

(x0, y0)

(x0, y0 + k)

The curve z = f(x0, y)
in the plane

x = x0

Horizontal axis
in the plane x = x0

 z = f(x, y)

Tangent line

Vertical axis
in the plane

x = x0

0

Figure 14.17  The intersection of the 
plane x = x0 with the surface z = ƒ(x, y), 
viewed from above the first quadrant of 
the xy-plane.

Figure 4: Source: Thomas’ Calculus
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Gradient
The gradient vector (gradient) of f(x, y) at a point P0(x0, y0) is the vector

grad f = ∇f =

(
∂f

∂x
,
∂f

∂y

)
obtained by evaluating the partial derivatives of f at P0.

∇f is read as “gradient of f ” or “grad f ” or “del f ”.
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Directional Derivative and Gradient
Let f(x, y) be a differentiable function. For the vector u = (u1, u2), consider
the line

x = x0 + su1 y = y0 + su2

Then by chain rule(
df

ds

)
u,P0

=

[(
∂f

∂x

)(
dx

ds

)
+

(
∂f

∂y

)(
dx

ds

)]
u,P0

=

(
∂f

∂x

)
P0

u1 +

(
∂f

∂y

)
P0

u2

=

[(
∂f

∂x

)
P0

i⃗+

(
∂f

∂y

)
P0

j⃗

]
.
[
u1⃗i+ u2j⃗

]
= (∇f)P0

· u
6



Directional Derivative as a Dot Product

Theorem
If f(x, y) be a differentiable function in an open region containingP0 = (x0, y0),
then the directional derivative along the unit vector u is(

df

ds

)
u,P0

= (∇f)P0
· u = |∇f | cos θ

where θ is the angle between the vectors u and ∇f .
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Properties of the directional derivative

• The function f increases most rapidly when cos θ = 1 or when θ = 0 and
u is the direction of ∇f . The derivative in this direction is

Duf = (∇f) · u = |∇f | cos(0) = |∇f |

• The function f decreases most rapidly when cos θ = −1 or when θ = −π
and u is the direction of −∇f . The derivative in this direction is

Duf = (∇f) · u = |∇f | cos(π) = − |∇f |

• Any direction u orthogonal to a gradient ∇f ̸= 0 is a direction of zero
change in f because θ then equals π/2 and

Duf = (∇f) · u = |∇f | cos(π/2) = 0

8



Directional Derivative
Recall the directional derivative definition
Definition 1 (Directional Derivative)
Let f(x, y) be a function defined in a domain Ω ⊂ R2. Let (x0, y0) ∈ Ω. The
directional derivative of f(x, y) in the direction of a unit vector v = ai + bj at
(x0, y0) is given by

(Dvf)(x0, y0) =

(
df

ds

)
v

∣∣∣∣
(x0,y0)

= lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h

HereDv denotes the directional derivative in the direction of v
From Rudin: If v =

∑
viei, then

Dvf(x) =
n∑

i=1

∂

∂xi
f(x)vi

9



Gradient

Definition 2 (Gradient)
The vector operator

∇ ≡
n∑

i=1

∂

∂xi
ei

is called the gradient. The gradient of a function f(x1, x2, · · · , xn) is

∇f ≡ gradf :≡
n∑

i=1

∂f

∂xi
ei

where f : Rn → R
In 2D case,

∇f ≡ ∂f

∂x
i+

∂f

∂y
j

10



Gradient

Remark

Dvf |(x0,y0) = gradf |(x0,y0).v

Dvf(x) = ∇f.v

If v = ai+ bj,
Dvf = fxa+ fyb = (fxi+ fyj).(ai+ bj)

IfDvf = 0, then f is constant in the direction of the vector v. The gradient of a
function at a point is a vector that points in the direction in which the function
increases most rapidly.
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Divergence

Definition 3 (Divergence)
The divergence of a vector field is the flux per unit time. It is defined as an inner
product between the gradient operator and the vector field

∇.v ≡
n∑

i=1

∂vi
∂xi

where v : Rn → Rn

In 3D, if v = (v1, v2, v3), then

∇.v ≡ ∂v1
∂x

+
∂v2
∂y

+
∂v3
∂z

12



Laplacian

Definition 4 (Laplacian)
The Laplacian of a scalar-valued function is defined as

∆f ≡ ∇2f = ∇.(∇f) =
n∑

i=1

∂2f

∂x2i

where f : Rn → R

Definition 5 (Laplacian of a vector)
The Laplacian of a vector-valued function is defined as

∆v ≡ ∇2v = ∇.(∇v) =
n∑

i=1

∂2vi
∂x2i

ei

where v : Rn → Rn

13



Boundary Conditions
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IVP

Definition 6 (Initial Value Problem)
A partial differential equation subject to certain conditions in the form of initial
conditions is known as initial value problem or in short IVP. Usually the initial
conditions are given as u(x, t0) = f(x).

Example 1 {
ut − ux = 0, −∞ < x <∞, t > 0

u(x, 0) = ϕ(x), −∞ < x <∞, t = 0

15



BVP

Definition 7 (Boundary Value Problem)
A partial differential equation subject to certain conditions in the form of
boundary conditions is known as boundary value problem or in short BVP. Usu-
ally, the boundary conditions are given as the values on the boundary ∂Ω.

Example 2 {
uxx + uyy = 0, (x, y) ∈ Ω

u(x, y) = ϕ(x, y), (x, y) ∈ ∂Ω

16



Dirichlet Boundary Condition
There are three types of boundary conditions usually prescribed (although
other conditions, like periodic, inlet, and outlet, are also available)
Dirichlet Boundary Condition: The solution is known at the boundary of the
domain, or the values of u are prescribed at each point of the boundary ∂Ω

u(x, t) = f(x), x ∈ ∂Ω, t > 0

Example 3 {
uxx + uyy = 0, (x, y) ∈ Ω

u(x, y) = ϕ(x, y), (x, y) ∈ ∂Ω

This is also called as Fixed or Essential Boundary Condition or boundary
conditions of the first kind. 17



Neumann Boundary Condition
Neumann Boundary Condition: The derivative of the solution is given in a
direction at the boundary of the domain or the values of the normal derivative
of u are prescribed at each point of the boundary ∂Ω

∂u

∂n
= n.∇u = f(x), x ∈ ∂Ω

Here n = n(x) is the outward unit normal to ∂Ω at x ∈ ∂Ω

Example 4 {
uxx + uyy = 0, (x, y) ∈ Ω
∂u
∂n = ψ(x, y), (x, y) ∈ ∂Ω

This is also called as Natural Boundary Condition or boundary conditions of
the second kind. 18



Robin Boundary Condition
Robin Boundary Condition: It is a linear combination of Dirichlet and
Neumann boundary conditions or when the values of a linear combination of
u and its normal derivative are prescribed at each point of the boundary ∂Ω

α
∂u

∂n
+ βu(x) = f(x), x ∈ ∂Ω

Example 5 {
uxx + uyy = 0, (x, y) ∈ Ω

α ∂u
∂n + βu = g(x, y), (x, y) ∈ ∂Ω

This is also called as impedance or convective boundary condition or
boundary conditions of the third kind.

19



Classification of PDEs
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Why Classification

• Based on the number of properties, we can group families of similar
equations

• In fact, a few researchers see no advantage in the classification process
• Some classifications are given a few branding, like Navier-Stokes, Heat

Equation, etc
• Some classifications help to identify or guess, or predict the properties of

solutions of PDEs in that class.
• Some classification helps to identify the allowable initial and boundary

conditions
• A few classification helps to select an effective numerical method
• Classifications are done using characteristics, order, linearity, and so on.

21



PDE

Definition 8 (PDE-Formal Definition)
Let Ω ⊂ Rn,m ∈ N and

F : Ω× Rp × Rnp × Rn2p × · · · × Rnmp → Rq

A system of partial differential equations of orderm is defined by the equation

F (x,u, Du, D2u, · · · , Dmu) = 0 (1)

Here, some mth order derivative of the function u appears in the system of
equations.

22



Classification-I - System
Based on the number of equations, we can classify PDEs.

Definition 9
If a PDE (1) consists of more than one equation, it is called a system of PDEs.
Otherwise, it is called a single PDE or a scalar PDE, or simply PDE.

Exercise 1:

Classify all PDEs given in our last class into a system of PDEs and a
single PDE

23



Classification-II - Order
Based on the highest order derivative, we can classify PDEs.

Definition 10
If the highest order derivative appearing in the PDE is m, then such PDEs are
classified asmth order PDEs.

Exercise 2:

Find the order of PDEs of all PDEs discussed in our last class.

24



Classification-III - Linear/Nonlinear
Through algebra, we can also classify PDEs. In algebra, we categorize
algebraic equations as linear and nonlinear equations. To define linearity, let
us rewrite the equation (1) as

Lu = f (2)

where L is an operator which assigns u a new function Lu. Here f is a
function of x only.

Definition 11
The operator L is called linear if

L(αu+ βv) = αLu+ βLv (3)

for any function u and v and constants α and β.

25



Classification-III - Linear

Definition 12
If the operatorL in (2) is linear, then the PDE is called a linear PDE. Equivalently,
anmth-order PDE is linear if it can be written as∑

|α|≤m

aα(x)D
αu = f(x) (4)

Here aα’s are functions of x only.

Example 6
1. ut + ux = 0

2. uxx + uyy = 0

3. ut + x2ux = 0

26



Classification-III - Nonlinear

Definition 13
If the operator L in (2) is not linear (or equivalently, it can’t be written in the
form of (4)), then the PDE is called a nonlinear PDE.

Example 7
1. ut + uux = 0

2. u2x + u2y = 0

Exercise 3:

Identify the list of linear and nonlinear PDEs from all PDEs discussed in
our last class.
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Classification-IV - Quasilinear
We have categorized PDEs as linear and nonlinear already. The PDEs can be
further categorized based on the linearity of different derivatives. For
example,
• Quasilinear
• Non-Quasilinear or Fully nonlinear

Definition 14
The equation (1) of orderm is called quasilinear if it is linear in the derivatives of
ordermwith coefficients that depend on the independent variables and deriva-
tives of the unknown function of order strictly less thanm.

28



Classification-IV - Quasilinear

Definition 15
Equivalently, anmth order PDE is quasilinear if it can be written in the form∑

|α|=m

aα(x, u,Du, · · ·Dm−1u)Dαu+ a0(x, u,Du, · · ·Dm−1u) = 0 (5)

Here aα’s are functions of x and derivatives of the unknown function of order
less thanm.

Definition 16
Anmth order PDE is called fully nonlinear if it is not linear in the derivatives of
order m. Equivalently, a PDE that is not quasilinear is called a fully nonlinear
PDE.

29



Quasilinear
Example,

ux + uuy = 0

For,

(c1u1x + c2u2x) + u(c1u1y + c2u2y) = c1u1x + c2u2x + c1uu1y + c2uu2y

Example 8
1. ux + uuy = 0 is quasilinear
2. ut + a(u)ux = 0 is quasilinear
3. u2x + u2y = 0 is not quasilinear. It is fully nonlinear

4. div
(

∇u√
1+|∇u|2

)
is fully nonlinear

5. ut + u2x − u = cos(xt) is fully nonlinear
30



Classification-V - Semilinear
Quasilinear PDEs are further categorized into
• Semilinear
• Non-semilinear

Definition 17
A quasilinear PDE of order m is called a semilinear PDE if the coefficients of
derivatives of orderm are functions of the independent variables alone.
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Classification-V - Semilinear

Definition 18
A quasilinear PDE of order m is called a semilinear PDE if the coefficients of
derivatives of orderm are functions of the independent variables alone. Equiv-
alently ∑

|α|=m

aα(x)D
αu+ a0(x, u,Du, · · ·Dm−1u) = 0 (6)

Here aα’s are functions of x alone.

Example 9
1. ut + ux + u2 = 0 is semilinear
2. ut + uxxx + uux = 0 is semilinear
3. xux + yuy = u is semilinear
4. ut + uux = 0 is not semilinear
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Classification-VI - Almost linear

Definition 19
An mth order semilinear PDE is called almost linear if it can be written in the
form ∑

|α|≤m

aα(x)D
αu+ f(x, u) = 0 (7)

Here aα’s are function of x alone or if it is of the form

Lu = f(x, u) (8)

where f(x, u) is a nonlinear functionwith respect to u andL is a linear operator.

Example 10
1. ut + ux + u2 = 0 is almost linear
2. xux + yuy = u is almost linear
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Classification-VII - In/Homogeneous
Suppose (1) can be written in the following form

D(u) = f(x) (9)

Definition 20
If f ≡ 0 in (9), then the PDE is called a homogeneous PDE. If f ̸= 0, then the
PDE is an inhomogeneous PDE1.

Example 11
1. ut + uux = 0 is homogeneous
2. 2uy − 5u3 = x is inhomogeneous
3. urr + 1

rur +
1
r2
uθθ = f(r, θ) is inhomogeneous if f ̸= 0

1In some textbooks it is also called nonhomogeneous PDE. Also, many textbooks usually
classify only linear PDE as homogeneous and nonhomogeneous 34



Examples

Example 12

PDE O Lin AL Sem Qua HG FNL

ut + ux + u2 = 0 1 ✗ ✓ ✓ ✓ ✓ ✗

uxx + uyy = 0 2 ✓ ✓ ✓ ✓ ✓ ✗

u2x + u2y = x2 + y2 1 ✗ ✗ ✗ ✗ ✗ ✓

ux + 5u = x2y 1 ✓ ✓ ✓ ✓ ✗ ✗

O - Order, Lin - Linear, AL - Almost linear, Sem - Semilinear, Qua - Quasilinear,
HG - Homogeneous, FNL - Fully nonlinear.
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