MA612L-Partial Differential Equations

Lecture 41: Nonlinear PDE - Sobolev Spaces

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

November 14, 2025

Hölder Spaces

Motivation

We know the hierarchy:

$$C^1(\Omega) \subset C^0(\Omega) \subset L^{\infty}(\Omega)$$

but how do we measure how smooth a continuous function is?

• Consider these two functions on (0, 1):

$$f_1(x) = x, \quad f_2(x) = \sqrt{x}.$$

Both are continuous, but f_1 is "smoother" near x = 0 than f_2 .

We want a way to measure this degree of continuity.

Hölder Continuity

Assume $\Omega \subset \mathbb{R}^n$ is open and $0 < \gamma \le 1$. We consider the class of Lipschitz continuous functions $u: \Omega \to \mathbb{R}$ which by definition satisfies

$$|u(\mathbf{x}) - u(\mathbf{y})| \le C|\mathbf{x} - \mathbf{y}| \quad (\mathbf{x}, \mathbf{y} \in \Omega)$$

for some constant ${\cal C}.$ Let us consider the u satisfying the variant of this condition, namely.

$$|u(\mathbf{x}) - u(\mathbf{y})| \le C|\mathbf{x} - \mathbf{y}|^{\gamma} \quad (\mathbf{x}, \mathbf{y} \in \Omega)$$

for some constant C. This function is said to be a Hölder continuous with exponent γ .

Hölder Continuity

Definition (Hölder Continuous Function)

A function $u:\Omega\to\mathbb{R}$ is said to be **Hölder continuous of order** γ , where $0<\gamma\leq 1$, if there exists C>0 such that

$$|u(x) - u(y)| \le C|x - y|^{\gamma} \quad \forall x, y \in \Omega.$$

- $\gamma = 1$: Lipschitz continuous.
- $0 < \gamma < 1$: Hölder continuous but not Lipschitz.
- Example:

$$u(x) = \sqrt{x} \implies |u(x) - u(y)| \le |x - y|^{1/2},$$

so
$$u \in C^{0,1/2}(0,1)$$
.

Hölder Norm

Definition 1 (Hölder norm)

If $u:\Omega\to\mathbb{R}$ is bounded and continuous, we write

$$||u||_{C(\Omega)} := \sup_{\mathbf{x} \in \Omega} |u(\mathbf{x})|$$

The γ^{th} -Hölder seminorm of $u:\Omega\to\mathbb{R}$ is

$$[u]_{C^{0,\gamma}(\overline{\Omega})} := \sup_{\substack{\mathbf{x}, \mathbf{y} \in \Omega \\ \mathbf{x} \neq \mathbf{y}}} \left\{ \frac{|u(\mathbf{x}) - u(\mathbf{y})|}{|\mathbf{x} - \mathbf{y}|^{\gamma}} \right\}$$

and the γ^{th} -Hölder norm is

$$\|u\|_{C^{0,\gamma}(\overline{\Omega})}:=\|u\|_{C(\overline{\Omega})}+[u]_{C^{0,\gamma}(\overline{\Omega})}$$

Hölder Spaces

Definition 2 (Hölder Space)

The Hölder Space

$$C^{k,\gamma}(\overline{\Omega})$$

consists of all functions $u \in C^k(\overline{\Omega})$ for which the norm

$$\|u\|_{C^{k,\gamma}(\overline{\Omega})}:=\sum_{|\alpha|\leq k}\|D^{\alpha}u\|_{C(\overline{\Omega})}+\sum_{|\alpha|k}[D^{\alpha}u]_{C^{0,\gamma}(\overline{\Omega})}$$

is finite.

Theorem 1 (Banach Space)

The space of function $C^{k,\gamma}(\overline{\Omega})$ is a Banach space.

Hölder Spaces

Remarks

- Increasing $\alpha \Rightarrow$ stronger smoothness.
- $C^{0,0} = C^0$ (continuous functions).
- $C^{0,1} = \text{Lipschitz functions}$.
- $C^{1,0} = C^1$, and so on.
- Hölder spaces interpolate between C^k and C^{k+1} .
- Hölder spaces measure smoothness in a pointwise sense.

Next, we'll see Sobolev spaces measure regularity in an averaged (integrable) sense.

Motivation

- Classical calculus requires functions to be differentiable.
- But in PDEs, many natural solutions are not classically differentiable.
- Example: u(x) = |x| on (-1, 1)
 - Continuous everywhere
 - Not differentiable at x = 0
- Still, we can make sense of its derivative almost everywhere.
- We need a function space that allows "derivatives in an averaged sense."

Goal

Find a space where both \boldsymbol{u} and its **generalized derivatives** are integrable.

Idea

If u is not differentiable, but there exists $v \in L^2(\Omega)$ such that

$$\int_{\Omega} u(x)\phi'(x) dx = -\int_{\Omega} v(x)\phi(x) dx \quad \forall \ \phi \in \mathcal{D}(\Omega),$$

then v is called the **weak derivative** of u.

Example 2

Let

$$u(x) = \begin{cases} x, & 0 < x \le 1, \\ 1, & 1 < x < 2. \end{cases} \Rightarrow v(x) = \begin{cases} 1, & 0 < x \le 1, \\ 0, & 1 < x < 2. \end{cases}$$

Then v is the weak derivative of u.

Remember:

Let $\mathcal{D}=C_c^\infty(\Omega)$ denote the space of infinitely differentiable functions $\phi:\Omega\to\mathbb{R}$ with compact support in Ω . We call ϕ a test function. Let $u\in C^1(\Omega)$. Then if $\phi\in\mathcal{D}$, by integration by parts, we have

$$\int_{\Omega} u\phi_{x_i} d\mathbf{x} = -\int_{\Omega} u_{x_i} \phi d\mathbf{x}, \quad (i = 1, 2, \dots, n)$$

Let $u \in C^k(\Omega)$ and $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n)$ is a multiindex of order $|\alpha| = \sum_{i=1}^n \alpha_i = k$. Then if $\phi \in \mathcal{D}$, by integration by parts, we have

$$\int_{\Omega} u D^{\alpha} \phi d\mathbf{x} = (-1)^{|\alpha|} \int_{\Omega} D^{\alpha} u \phi d\mathbf{x}$$

Definition 3 (Weak Derivatives)

Suppose $u,v\in L^1_{loc}$ and α is a multiindex. We say that v is the α^{th} -weak partial derivative of u, which is written as

$$D^{\alpha}u = v$$

if

$$\int_{\Omega} u D^{\alpha} \phi d\mathbf{x} = (-1)^{|\alpha|} \int_{\Omega} v \phi d\mathbf{x}$$

for all test functions $\phi \in C_c^\infty(\Omega)$

Theorem 3 (Uniqueness of Weak Derivatives)

A weak α^{th} -partial derivative of u, if it exists, is uniquely defined up to a set of measure zero

Proof:

Let $u,v_1,v_2\in L^1_{loc}(\Omega)$ satisfy

$$\int_{\Omega} u D^{\alpha} \phi d\mathbf{x} = (-1)^{|\alpha|} \int_{\Omega} v_1 \phi d\mathbf{x} = (-1)^{|\alpha|} \int_{\Omega} v_2 \phi d\mathbf{x} \quad \forall \phi \in \mathcal{D}$$

The rest of the proof follows immediately.

Example 4

Let $n=1,\Omega=(0,2)$ and

$$u = \begin{cases} x, & 0 < x \le 1 \\ 1, & 1 \le x < 2 \end{cases}$$

Define

$$v = \begin{cases} 1, & 0 < x \le 1 \\ 0, & 1 \le x < 2 \end{cases}$$

Then u' = v in a weak sense.

For, let $\phi \in \mathcal{D}(\Omega)$. Then we need to prove that

$$\int_{0}^{2} u\phi' dx = -\int_{0}^{2} v\phi dx$$

This follows immediately as

$$\int_{0}^{2} u\phi' dx = \int_{0}^{1} x\phi' dx + \int_{1}^{2} \phi' dx = [x\phi]_{0}^{1} - \int_{0}^{1} \phi dx + \phi(2) - \phi(1)$$
$$= \phi(1) - \int_{0}^{1} \phi dx + \phi(2) - \phi(1) = -\int_{0}^{2} v\phi dx$$

Example 5

Let $n=1,\Omega=(0,2)$ and

$$u = \begin{cases} x, & 0 < x \le 1\\ 2, & 1 \le x < 2 \end{cases}$$

For this, u^\prime does not exist in the weak sense.

Suppose there exists v such that

$$\int_{0}^{2} u\phi' dx = -\int_{0}^{2} v\phi dx$$

for all $\phi \in \mathcal{D}$, then

$$-\int_{0}^{2} v\phi dx = \int_{0}^{2} u\phi' dx = \int_{0}^{1} x\phi' dx + 2\int_{1}^{2} \phi' dx = -\int_{0}^{1} \phi dx - \phi(1)$$

Choose a sequence $\{\phi_m\}_{m=1}^{\infty}$ of smooth functions satisfying

$$0 \le \phi_m \le 1, \forall x \text{ and } m, \phi_m(1) = 1, \forall m, \phi_m(x) \to 0 \forall x \ne 1$$

Using this ϕ_m , we obtain

$$1 = \lim_{m \to \infty} \phi_m(1) = \lim_{m \to \infty} \left[\int_0^2 v \phi_m dx - \int_0^1 \phi_m dx \right] = 0$$

It is a contradiction.

Fix $1 \le p \le \infty$ and k be a nonnegative integer.

Definition 4 (Sobolev Spaces)

The Sobolev space $W^{k,p}(\Omega)$ consists of all locally summable functions $u:\Omega\to\mathbb{R}$ such that for each multiindex α with $|\alpha|\le k, D^\alpha u$ exists in the weak sense and belongs to $L^p(\Omega)$.

Remarks

• If p=2, we get

$$H^k(\Omega) = W^{k,2}(\Omega), \quad (k = 0, 1, \cdots)$$

- *H* is used because it is a Hilbert space.
- $\bullet \ H^0(\Omega) = L^2(\Omega)$

Definition 5 (Essential Supremum)

Let $f:\Omega\to\mathbb{R}$ be measurable. The **essential supremum** of f is

$$\operatorname*{ess\,sup}_{x\in\Omega}f(x)=\inf\{M\in\mathbb{R}:f(x)\leq M\text{ for a.e. }x\in\Omega\}.$$

It is the smallest upper bound that f does not exceed, except on a set of measure zero.

Example 6

lf

$$f(x) = \begin{cases} 0, & x \neq 0, \\ 100, & x = 0, \end{cases}$$

then $\sup f = 100$ but $\operatorname{ess\,sup} f = 0$.

Definition 6 (Sobolev Norm)

If $u \in W^{k,p}(\Omega)$, its norm is defined by

$$||u||_{W^{k,p}(\Omega)} := \begin{cases} \left(\sum_{|\alpha| \le k} \int_{\Omega} |D^{\alpha}u(x)|^p dx\right)^{1/p}, & 1 \le p < \infty, \\ \sum_{|\alpha| \le k} \operatorname{ess sup} |D^{\alpha}u(x)|, & p = \infty. \end{cases}$$

Intuition and Importance

Norm (Energy Norm)

$$||u||_{H^1}^2 = \int_{\Omega} (|u|^2 + |\nabla u|^2) dx.$$

- $H^1(\Omega)$ is also called the **energy space**.
- If u represents displacement, $|\nabla u|^2$ measures stored elastic energy.
- Finite energy $\Leftrightarrow u, \nabla u \in L^2(\Omega)$.
- Hence Sobolev spaces are the natural setting for weak (variational) solutions of PDEs.

Intuition and Importance

Example: Poisson Equation

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\Omega} f \phi \, dx \quad \forall \phi \in H_0^1(\Omega).$$

This makes sense even when $u^{\prime\prime}$ doesn't exist classically!

Geometric Picture and Hierarchy

Sobolev spaces extend the notion of differentiability:

$$C_0^1(\Omega) \subset H_0^1(\Omega) \subset L^2(\Omega)$$
.

- ullet They are complete under the H^1 -norm, hence Hilbert spaces.
- Sobolev Embedding (1D intuition):

$$H^1(0,1) \hookrightarrow C^{0,1/2}(0,1),$$

meaning H^1 functions are automatically continuous.

 Thus, Sobolev spaces bridge pure and applied analysis, connecting geometry, energy, and weak solutions.

Definition 7 (Convergence)

Let $\{u_m\}_{m=1}^{\infty}, u \in W^{k,p}(\Omega)$. We say that u_m converges to u in $W^{k,p}(\Omega)$, written

$$u_m \to u$$
 in $W^{k,p}(\Omega)$

if

$$\lim_{m \to \infty} \|u_m - u_n\|_{W^{k,p}(\Omega)} = 0$$

We write

$$u_m \to u$$
 in $W^{k,p}_{loc}(\Omega)$

to mean

$$u_m \to u$$
 in $W^{k,p}(V)$

for each $V \subset\subset \Omega$

Here $V\subset\subset\Omega$ denotes that V is compactly contained in Ω

Definition 8 (Closure) We denote by $W^{k,p}_0(\Omega)$ the closure of $\mathcal D$ in $W^{k,p}(\Omega)$

It claims that $u \in W^{k,p}_0(\Omega)$ if and only if there exists function $u_m \in \mathcal{D}(\Omega)$ such that $u_m \to u$. We interpret $W_0^{k,p}(\Omega)$ as comprising those function $u \in W^{k,p}(\Omega)$ such that

$$D^{\alpha}u=0$$
 on $\partial\Omega, \forall |\alpha| \leq k-1$

Remarks

- \bullet $H_0^k(\Omega) = W_0^{k,2}(\Omega)$
- If n=1 and Ω is an open interval in \mathbb{R} , then $u\in W^{1,p}(\Omega)$ if and only if uequals a.e. an absolutely continuous function whose derivative (which exists a.e.) belongs to $L^p(\Omega)$.
- In general, a function can belong to a Sobolev space, and yet be discontinuous and/or unbounded.

Example 7

Let $\Omega = B^0(0,1)$, the open unit ball in \mathbb{R}^n and

$$u(\mathbf{x}) = |\mathbf{x}|^{-\alpha}, \quad \mathbf{x} \in \Omega, \mathbf{x} \neq 0$$

For which values of $\alpha > 0, n, p$ does $u \in W^{1,p}(\Omega)$? Note that u is smooth away from 0.

$$u_{x_i}(\mathbf{x}) = \frac{-\alpha x_i}{|\mathbf{x}|^{\alpha+2}}, \quad \mathbf{x} \neq 0$$

and

$$|D^{\alpha}u(\mathbf{x})| = \frac{|\alpha|}{|\mathbf{x}|^{\alpha+1}}, \quad \mathbf{x} \neq 0$$

Let $\phi \in \mathcal{D}$ and fix $\epsilon > 0$.

Then

$$\int_{\Omega - B(0,\epsilon)} u\phi_{x_i} d\mathbf{x} = -\int_{\Omega - B(0,\epsilon)} u_{x_i} \phi d\mathbf{x} + \int_{\partial B(0,\epsilon)} u\phi \nu^i dS$$

Now, if $\alpha + 1 < n, |Du(\mathbf{x})| \in L^1(\Omega)$. In this case,

$$\left| \int_{\partial B(0,\epsilon)} u\phi \nu^i dS \right| \le \|\phi\|_{L^{\infty}} \int_{\partial B(0,\epsilon)} \epsilon^{-\alpha} \phi \nu^i dS \le C \epsilon^{n-1-\alpha} \to 0$$

Hence

$$\int_{\Omega} u\phi_{x_i} d\mathbf{x} = -\int_{\Omega} u_{x_i} \phi d\mathbf{x} \quad \forall \phi \in \mathcal{D}(\Omega), 0 \le \alpha < n - 1$$

Further,

$$|D^{\alpha}u(\mathbf{x})| = \frac{|\alpha|}{|\mathbf{x}|^{\alpha+1}} \in L^p(\Omega)$$
 if and only if $(\alpha+1)p < n$

Therefore,

$$u \in W^{1,p}(\Omega) \quad \text{if and only if} \quad \alpha < \frac{n-p}{p}$$

In particular,

$$u \not\in W^{1,p}(\Omega)$$
 for each $p \ge n$

Example 8

Let $r_{k_{k-1}}^{\infty}$ be a countable dense subset of $\Omega = B^0(0,1)$. Write

$$u(\mathbf{x}) = \sum_{k=1}^{\infty} \frac{1}{2^k} |x - r_k|^{-\alpha}, \quad x \in \Omega$$

Then

$$u \in W^{1,p}(\Omega) \quad \text{if and only if} \quad \alpha < \frac{n-p}{p}$$

If $0<\alpha<\frac{n-p}{p}$, we can observe that $u\in W^{1,p}(\Omega)$ and yet is unbounded on each open subset of $\Omega.$

Theorem 9 (Properties of Weak Derivatives)

Assume $u, v \in W^{k,p}(\Omega), |\alpha| \leq k$. Then

1. $\forall \alpha, \beta$ with $|\alpha| + |\beta| \le k$,

$$D^{\alpha}u \in W^{k-|\alpha|,p}(\Omega)$$
 and $D^{\beta}(D^{\alpha}u) = D^{\alpha}(D^{\beta}u)$,

2. For each $\lambda, \mu \in \mathbb{R}$,

$$\lambda u + \mu v \in W^{k,p}(\Omega)$$
, and $D^{\alpha}(\lambda u + \mu v) = \lambda D^{\alpha} u + \mu D^{\alpha} v, |\alpha| \leq k$

- 3. If V is an open set of Ω , then $u \in W^{k,p}(V)$
- **4**. If $\zeta \in \mathcal{D}$, then $\zeta u \in W^{k,p}(\Omega)$ and

$$D^{\alpha}(\zeta u) = \sum_{\beta \le \alpha} {\alpha \choose \beta} D^{\beta} \zeta D^{\alpha - \beta} u$$

Theorem 10 (Sobolev Spaces as function spaces)

For each $k=1,2,\cdots$, and $1\leq p\leq \infty$, the Sobolev space $W^{k,p}(\Omega)$ is a Banach space.

Theorem 11 (Trace Theorem)

Assume Ω is bounded and $\partial\Omega$ is $C^1.$ Then there exists a bounded linear operator

$$T: W^{1,p}(\Omega) \to L^p(\partial\Omega)$$

such that

- 1. $Tu = u|_{\partial\Omega}$ is $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$
- 2.

$$||Tu||_{L^p}(\partial\Omega) \le C||u||_{W^{1,p}(\Omega)}$$

for each $u \in W^{1,p}(\Omega)$ with constant C depending only on p and Ω .

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

