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Transport Equation
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The Ant and the Dove Story
One quiet morning, an ant was collecting food along the edge of a river.
Suddenly, it slipped and fell into the flowing water. The river began to carry it
downstream. A dove, watching from a nearby tree, noticed the ant struggling.
Acting quickly, the dove dropped a leaf into the water just ahead of the ant.

The leaf floated with the river’s current. The ant climbed onto the leaf and
was carried safely to the riverbank. The ant survived, not because the water
stopped, but because something carried it safely across the stream.

Ant and Dove
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The Ant and the Dove Story
This story serves as a metaphor for the transport equation in physics and
mathematics:
• The river flow is the velocity field (constant in this case).
• The leaf is the carrier — like a parcel of mass or temperature.
• The ant represents a quantity (e.g., pollutant, energy) that is being

transported.
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Mathematical Derivation-1D Transport Equation
Let u(x, t) represent the quantity (e.g., temperature, concentration) being
transported along a 1D line, where:
• x is the spatial coordinate,
• t is time,
• c is the constant velocity of transport (e.g., river flow speed).

Now, let u(x, t) denote the concentration of the pollutant in kg/m (unit mass
per unit length) at time t. The amount of pollutant in the interval [a, b] at time t
is then ∫ b

a
u(x, t)dx
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Transport Equation - Derivation
Due to conservation of mass, the above quantity must be equal to the amount
of the pollutant after some time δt. After the time δt, the pollutant would have
flown to the interval [a+ cδt, b+ cδt], thus the conservation of mass gives∫ b

a
u(x, t)dx =

∫ b+cδt

a+cδt
u(x, t+ δt)dx

Differentiating with respect to b we get

u(b, t) = u(b+ cδt, t+ δt)
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Transport Equation - Derivation

u(b, t) = u(b+ cδt, t+ δt)

This equation asserts that the concentration at the point b at time t is equal to
the concentration at the point b+ cδt at time t+ δt, which is to be expected as
the water containing the pollutant particles flows with constant speed. Since
b is arbitrary, we can replace it with x. So, it becomes

u(x, t) = u(x+ cδt, t+ δt)
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Transport Equation - Derivation
Now,

u(x+ cδt, t+ δt)− u(x, t) = 0 =⇒ u(x+ cδt, t+ δt)− u(x, t)

δt
= 0

When δt → 0 and taking v = (c, 1), we obtain that

Dvu = 0 =⇒ (c, 1).(ux, ut) = 0 =⇒ cux + ut = 0
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First-Order linear PDEs
with constant Coefficients
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First-Order linear PDEs with Const. Coeff.
Consider the general first-order linear PDE

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y), (x, y) ∈ Ω ⊂ R2 (1)

• We are expecting an u(x, y) such that u ∈ C1(Ω), and u satisfies (1).
• We expect u = u(x, y) is an explicit function of x and y or an implicit form

of the solution U(x, y, u) = 0 which is known as integral surface or
solution surface.

Let us look at how to solve the problem when a and b are constants, that is,

aux + buy = 0 (2)

where a and b are constants such that a2 + b2 ̸= 0. Equation (2) is often called
the convection or advection or transport equation.
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Geometric View Point to get Solution
Equation (2) can be rewritten in the dot product in R2 as follows

(a, b).(ux, uy) = 0 or (a, b).∇u = 0 (3)

What does equation (3) represent geometrically? Let v = (a, b), then (3) can
be rewritten as

Dvu(x, y) = 0 (4)

where Dvu denotes the directional derivative of u in the direction of the
vector v. Therefore, the solution (4) must be constant in the direction of the
vector v = (a, b) and hence for (3) and (2).
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Geometric View Point to get Solution
A line parallel to the vector v = (a, b) and through a point (x1, y1) is given by
(from School Mathematics on Geometry)

x− x1
a

=
y − y1

b

=⇒ bx− ay = c

Any line parallel to the vector v has the equation bx− ay = c. Since
(b,−a).(a, b) = 0, (b,−a) is a normal vector to the lines parallel to v. Since c is
an arbitrary constant, bx− ay = c determines the particular line in the family
of parallel lines. These lines are called characteristic lines for the equation
(2). Refer to the Figure in the next slide.
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Characteristic Lines
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Solutions
Since u(x, y) is constant in the direction of v and hence along the lines
bx− ay = c. The line containing the point (x, y) is determined by bx− ay = c.
Therefore, u will depend only on bx− ay, that is,

u(x, y) = f(bx− ay)

where f is an arbitrary function. You can verify that aux + buy = 0.
If we compare this with the transport equation

cux + ut = 0

we can see that a = c, b = 1, x = x, y = t, therefore

u(x, t) = f(x− ct)

13



Method of Characteristics

aux + buy = 0 (5)

The underlying concept of the Method of Characteristics is to convert the
PDEs into a system of ODEs. In order to have an ODE, let us eliminate one of
the partial derivatives in the equation (5). Since the directional derivative
vanishes in the direction of v = (a, b), let us transform the coordinate system
such that its x-axis is parallel to v. Let (ξ, η) be the transformed coordinate
system. That is,

ξ = ξ(x, y)

η = η(x, y)

In this coordinate system we have,

(ξ, η) = ((x, y).(a, b), (x, y).(b,−a)) = (ax+ by, bx− ay)
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Method of Characteristics

ξ(x, y) = ax+ by

η(x, y) = bx− ay

Let us convert (5) in (ξ, η) coordinate system

ux = uξξx + uηηx = auξ + buη

uy = uξξy + uηηy = buξ − auη

=⇒ aux + buy = (a2 + b2)uξ = 0

Since a2 + b2 ̸= 0, we have
uξ = 0

=⇒ u(ξ, η) = f(η) =⇒ u(x, y) = f(bx− ay)
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Characteristics
We obtained the same solution as we obtained from our geometrical view.
• This method is called method of characteristics
• The coordinates given below are called characteristic coordinates

ξ = ξ(x, y)

η = η(x, y)

Definition 1 (Method of Characteristics)
The reduction of a PDE to an ODE along its characteristics is called themethod
of characteristics.

Recall
In our Lecture-2, we mentioned that ux + uy = 0 has a general solution of the
form u = f(x− y). 16



First-Order Quasilinear
PDEs
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First-Order Quasilinear PDEs
Consider the following quasilinear PDE

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (6)

where a, b, c ∈ C1(Ω). Let Ω0 denote the projection of Ω in the xy−plane. As
we did earlier, the solution of (6) defines an integral surface.

Definition 2 (Integral Surface)
Let D ⊂ Ω0 and u : D → R be a solution of the equation (6). The surface S
represented by u = u(x, y) in the Euclidean space (x, y, u) is called an integral
surface corresponding to a given solution u.
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First-Order Quasilinear PDEs
The normal to this surface at the point P (x, y, u) is the vector (ux, uy,−1) and
v = (a(x, y), b(x, y), u(x, y)). v is also known as the Characteristic vector field
of the equation (6). Let us define the characteristic curves as

Γ :


x = x(s)

y = y(s) s ∈ I

u = u(s)

As we did earlier, the integral curves of the characteristic system are given by

dx

ds
= a(x, y, u),

dy

ds
= b(x, y, u),

du

ds
= c(x, y, u) (7)
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First-Order Quasilinear PDEs
The characteristic system can be rewritten as

dx

a(x, y, u)
=

dy

b(x, y, u)
=

du

c(x, y, u)

This is an autonomous system of ODEs. If a, b, c ∈ C1(Ω), then by the
existence and uniqueness theorem of ODEs, through each point
P0(x0, y0, u0) ∈ Ω passes exactly one characteristic curve Γ0. The solutions
of the characteristic system (7) are called the characteristic curves of the
quasilinear equation (6).

Definition 3 (Monge’s Equation)
The above characteristic equations are also known as Monge’s Equations
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Monge’s Curves

Definition 4 (Monge’s Curves)
The solution of the above Monge’s1 equations form a 2-parameter family
of curves in the (x, y, u)-space are called Monge curves. The projection of
Monge’s curves on xy− plane are two parameter family of characteristic
curves.

Definition 5 (Monge’s direction)
The characteristic direction (a, b, c) is also called Monge’s direction.

1Gaspard Monge is known as the father of differential geometry. 21



First-Order Quasilinear PDEs

Theorem 1
Let the characteristic curve

Γ0 :


x = x0(s)

y = y0(s) s ∈ I

u = u0(s)

intersect the integral surface S at the point P0(x0, y0, u0) ∈ Ω. Then Γ0 ⊂ S
which means

u0(s) = u(x0(s), y0(s)), s ∈ I
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First-Order Quasilinear PDEs
Proof:
Let U(s) = u0(s)− u(x0(s), y0(s)). As P0(x0, y0, u0) ∈ S ∩ Γ0, ∃s0 ∈ I ∋

x0 = x0(s0), y0 = y0(s0), u0 = u0(s0), U(s0) = 0

Now

dU

ds
=

du0
ds

− ux
dx0
ds

− uy
dy0
ds

= c(x0(s), y0(s), u0(s))− a(x0(s), y0(s), u0(s))ux − b(x0(s), y0(s), u0(s))uy

= c(x0(s), y0(s), U(s) + u(s))− a(x0(s), y0(s), U(s) + u(s))ux

−b(x0(s), y0(s), U(s) + u(s))uy

= f(s, U)
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First-Order Quasilinear PDEs
Proof (contd):
The above equation is an ODE with initial condition U(s0) = 0. Since a, b, c are
continuously differentiable, and the function u defining the surface u = u(x, y)
is assumed to be continuously differentiable, the function f(s, U) is locally
Lipschitz w.r.to U . Since U(s) ≡ 0 is a solution of the ODE. Therefore, by the
uniqueness theorem for the Cauchy problem or IVP for ODE, it follows that

U ≡ 0 =⇒ u0(s)− u(x0(s), y0(s)) = 0, s ∈ I

24



First-Order Quasilinear PDEs

Theorem 2
Let D ⊂ Ω0 and S : u = u(x, y) be a surface in R3 where u : D → R and
u ∈ C1(D). Then the following statements are equivalent
1. The surface S is an integral surface of the equation (6)
2. The surface S is the union of characteristic curves of the equation (6)

Corollary 1
Let S1 and S2 be two integral surfaces that P ∈ S1 ∩S2. Then some part of the
characteristics passing through P lies on both S1 and S2

Corollary 2
If two integral surfaces intersect without touching and the intersection is a
curve Γ, then Γ is a characteristic curve.
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First-Order Quasilinear PDEs

Exercise 1: Theorems and Corollary

1. Prove theorem (2). (1) =⇒ (2) follows from Theorem (1).
2. Prove corollary (1)
3. Prove corollary (2)
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First-Order linear PDEs
with Constant Coefficients
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First-Order linear PDEs with Const. Coeff.
Consider the following PDE

aux + buy + cu = 0 (8)

Use the same change of coordinates

ξ(x, y) = ax+ by, η(x, y) = bx− ay

then the corresponding canonical form is given by

(a2 + b2)uξ + cu = 0

This can be solved using standard ODE methods.
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First-Order linear PDEs with Const. Coeff.

(a2 + b2)uξ + cu = 0 =⇒ uξ +
c

a2 + b2
u = 0

The solution is given by
u(ξ, η) = e

− cξ

a2+b2 f(η)

u(x, y) = e
− c(ax+by)

a2+b2 f(bx− ay)
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First-Order linear PDEs with Const. Coeff.
Consider the following PDE

aux + buy + cu = f(x, y) (9)

Use the same change of coordinates

ξ(x, y) = ax+ by, η(x, y) = bx− ay

then the corresponding canonical form is given by

(a2 + b2)uξ + cu = f(ξ, η)

This can be solved using standard ODE methods.
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First-Order linear PDEs with Const. Coeff.

(a2 + b2)uξ + cu = f(ξ, η) =⇒ uξ +
c

a2 + b2
u =

f(ξ, η)

a2 + b2

The solution is given by

u(ξ, η) = e
− cξ

a2+b2

(
g(η) +

∫
f(ξ, η)

a2 + b2
e
− cξ

a2+b2

)
To find the solution in terms of (x, y), first do the integration in ξ in the above
formula and substitute the values of ξ and η.
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First-Order linear PDEs with Const. Coeff.

Example 3
Solve:

−2ux − 4uy + 5u = ex+3y

Solution: a = −2, b = 4, c = 5, f = ex+3y, a2 + b2 = 20

u(x, y) = e−
2x−4y

4

(
g(4x+ 2y) +

e
2x+16y

4

15

)
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First-Order linear PDEs
with Variable Coefficients
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First-Order linear PDEs with Var. Coeff.
Consider the following PDE

a(x, y)ux + b(x, y)uy = 0 (10)

Consider a curve with geometric representation x = x(s), y = y(s) given by
the ODE

dx

ds
= a(x, y),

dy

ds
= b(x, y)

then the tangent direction of the curve is given by(
dx

ds
,
dy

ds

)
= (a(x, y), b(x, y))

This can be solved using standard ODE methods.
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First-Order linear PDEs with Var. Coeff.
Consider the following probkem

u(x(s), y(s)) =⇒ du

ds
= ux

dx

ds
+ uy

dy

ds
= a(x, y)ux + b(x, y)uy

du

ds
= ∇.

(
dx

ds
,
dy

ds

)
= ∇.(a(x, y), b(x, y))

Dvu = 0, v = (a(x, y), b(x, y))

If u satisfies (10), then
du

ds
= 0

That is u(x, y) is constant in the direction (a, b) at (x, y)
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First-Order linear PDEs with Var. Coeff.
If a(x, y) ̸= 0, then we obtain

dy

dx
=

b(x, y)

a(x, y)

This is called characteristic equation of (10). The solutions of these
characteristic equations are called characteristic curves of (10). This method
is called the method of characteristics.

36



First-Order linear PDEs with Var. Coeff.
Consider the following PDE

a(x, y)ux + b(x, y)uy = f(x, y) (11)

Then

u(x(s), y(s)) =⇒ du

ds
= ux

dx

ds
+ uy

dy

ds
= a(x, y)ux + b(x, y)uy

If u satisfies (10), then
du

ds
= f(x(s), y(s))

and
du

dx
=

f(x(s), y(s))

a(x(s), y(s))

This equation is called the compatibility condition. 37



First-Order linear PDEs with Var. Coeff.
Consider the following PDE

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y) (12)

Then

u(x(s), y(s)) =⇒ du

ds
= ux

dx

ds
+ uy

dy

ds
= a(x, y)ux + b(x, y)uy

If u satisfies (10), then

du

ds
+ c(x(s), y(s)) = f(x(s), y(s)) (13)
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First-Order linear PDEs with Var. Coeff.
When c ≡ 0, then we obtain

du

ds
= f(x(s), y(s))

and
du

dx
=

f(x(s), y(s))

a(x(s), y(s))

Equation (13) can also be written as

du

ds
+ c(x(s), y(s)) = f(x(s), y(s)) (14)

39



First-Order linear PDEs with Var. Coeff.
Since we know how to solve (14) from ODE courses, we can write the solution
as

u(s) = e−
∫
c(s)ds

(
C +

∫
f(s)e

∫
c(s)ds

)
ds (15)

If u(s0) is prescribed, then the value of the solution of u along the entire
characteristic curve can be completely determined. If Γ is a curve passing
through all initial points of the integral surface, it is called as initial curve on
the integral surface.
Remarks
Suppose Γ is an initial curve given by

x(s0) = x0(s), y(s0) = y0(s), u(s0) = u0(s) = u(x0(s), y0(s)), s ∈ I

then every value of s fixes a point on Γ through which a unique characteristic
curve passes. 40



First-Order linear PDEs with Var. Coeff.
Now, let us again consider the following problem

a(x, y)ux + b(x, y)uy = 0 (16)

Now, we try to find the canonical form of this equation. As we did before for
constant coefficients, let use change of coordinates

ξ = ξ(x, y), η = η(x, y)

Then
ux = uξξx + uηηx

uy = uξξy + uηηy

Upon substitution and simplification, we obtain

(aξx + bξy)uξ + (aηx + bηy)uη = 0
41



First-Order linear PDEs with Var. Coeff.
In the method of characteristics, our aim is to bring it to an ODE. So, let us say
we require the coefficient of η becomes zero, so that the above equation will
turn into be ODE in ξ. That is, we require

aηx + bηy = 0

WLOG, let us assume a ̸= 0 (locally), then

ηx +
b

a
ηy = 0

Now, for curves that have slope dy
dx = b

a , we have

d

dx
(η(x, y(x))) = ηx + ηy

dy

dx
= ηx +

b

a
ηy = 0
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First-Order linear PDEs with Var. Coeff.
Along these characteristic curves, we have η(x, y) = C. Hence, the Jacobian
becomes

J =
∂(ξ, η)

∂(x, y)
= ηy ̸= 0

Hence, we obtain the following canonical form

a(ξ, η)uξ = 0 =⇒ uξ = 0 =⇒ u = f(η)
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First-Order linear PDEs with Var. Coeff.
Consider the following PDE

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y) (17)

then the corresponding canonical form is given by

a(ξ, η)uξ + c(ξ, η)u = f(ξ, η)

This can be solved using standard ODE methods.
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First-Order linear PDEs with Var. Coeff.
If

µ(ξ, η) = e
∫ c(ξ,η)

a(ξ,η)
dξ

is the integrating factor of

a(ξ, η)uξ + c(ξ, η)u = f(ξ, η)

then the solution is given by

u(ξ, η) =
1

µ(ξ, η)

(∫
µ(ξ, η)

f(ξ, η)

a(ξ, η)
dξ + u0(ξ, η)

)
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First-Order linear PDEs with Var. Coeff.

Example 4
Solve the following PDE

ux + yuy = 0

Solution: The char. Eqn is given by

dy

dx
=

y

1
=⇒ y = Cex

ξ = x, η = ye−x

=⇒ u(ξ, η) = f(η), u(x, y) = f(ye−x)

(Check!!)
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First-Order linear PDEs with Var. Coeff.

Example 5
Solve the following PDE

xux − yuy + y2u = y2

Solution:
dy

dx
= −y

x

ξ = x, η = xy, x = ξ, y =
η

ξ

u(x, y) = f(xy)ey
2/2 + 1

(Check!!)
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Thanks
Doubts and Suggestions

panch.m@iittp.ac.in
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