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First-Order Quasilinear
PDEs
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Recap
Consider the following quasilinear PDE

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (1)

where a, b, c ∈ C1(Ω). Let Ω0 denote the projection of Ω in the xy−plane. The integral
curves of the characteristic system are given by

dx

ds
= a(x, y, u),

dy

ds
= b(x, y, u),

du

ds
= c(x, y, u) (2)

The characteristic system can also be rewritten as

dx

a(x, y, u)
=

dy

b(x, y, u)
=

du

c(x, y, u)

This is an autonomous system of ODEs. If a, b, c ∈ C1(Ω), then by the existence and
uniqueness theorem of ODEs, through each point P0(x0, y0, u0) ∈ Ω passes exactly
one characteristic curve Γ0. The solutions of the characteristic system are called the
characteristic curves of the quasilinear PDE (1). 2



First-Order Quasilinear PDEs

Theorem 1
Let the characteristic curve

Γ0 :


x = x0(s)

y = y0(s) s ∈ I

u = u0(s)

intersect the integral surface S at the point P0(x0, y0, u0) ∈ Ω. Then Γ0 ⊂ S
which means

u0(s) = u(x0(s), y0(s)), s ∈ I
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First-Order Quasilinear PDEs
Proof:
Let U(s) = u0(s)− u(x0(s), y0(s)). As P0(x0, y0, u0) ∈ S ∩ Γ0, ∃s0 ∈ I ∋

x0 = x0(s0), y0 = y0(s0), u0 = u0(s0), U(s0) = 0

Now

dU

ds
=

du0
ds

− ux
dx0
ds

− uy
dy0
ds

= c(x0(s), y0(s), u0(s))− a(x0(s), y0(s), u0(s))ux − b(x0(s), y0(s), u0(s))uy

= c(x0(s), y0(s), U(s) + u(s))− a(x0(s), y0(s), U(s) + u(s))ux

−b(x0(s), y0(s), U(s) + u(s))uy

= f(s, U)
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First-Order Quasilinear PDEs
Proof (contd):
The above equation is an ODE with initial condition U(s0) = 0. Since a, b, c are
continuously differentiable, and the function u defining the surface u = u(x, y)
is assumed to be continuously differentiable, the function f(s, U) is locally
Lipschitz w.r.to U . Since U(s) ≡ 0 is a solution of the ODE. Therefore, by the
uniqueness theorem for the Cauchy problem or IVP for ODE, it follows that

U ≡ 0 =⇒ u0(s)− u(x0(s), y0(s)) = 0, s ∈ I
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First-Order Quasilinear PDEs

Theorem 2
Let D ⊂ Ω0 and S : u = u(x, y) be a surface in R3 where u : D → R and
u ∈ C1(D). Then the following statements are equivalent
1. The surface S is an integral surface of the equation (1)
2. The surface S is the union of characteristic curves of the equation (1)

Corollary 1
Let S1 and S2 be two integral surfaces that P ∈ S1 ∩S2. Then some part of the
characteristics passing through P lies on both S1 and S2

Corollary 2
If two integral surfaces intersect without touching and the intersection is a
curve Γ, then Γ is a characteristic curve.
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First-Order Quasilinear PDEs

Exercise 1: Theorems and Corollary

1. Prove theorem (2). (1) =⇒ (2) follows from Theorem (1).
2. Prove corollary (1)
3. Prove corollary (2)
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First-Order linear PDEs
with Constant Coefficients
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First-Order linear PDEs with Const. Coeff.
Consider the following PDE

aux + buy + cu = 0 (3)

Use the same change of coordinates

ξ(x, y) = ax+ by, η(x, y) = bx− ay

then the corresponding canonical form is given by

(a2 + b2)uξ + cu = 0

This can be solved using standard ODE methods.
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First-Order linear PDEs with Const. Coeff.

(a2 + b2)uξ + cu = 0 =⇒ uξ +
c

a2 + b2
u = 0

The solution is given by
u(ξ, η) = e

− cξ

a2+b2 f(η)

u(x, y) = e
− c(ax+by)

a2+b2 f(bx− ay)
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First-Order linear PDEs with Const. Coeff.
Consider the following PDE

aux + buy + cu = f(x, y) (4)

Use the same change of coordinates

ξ(x, y) = ax+ by, η(x, y) = bx− ay

then the corresponding canonical form is given by

(a2 + b2)uξ + cu = f(ξ, η)

This can be solved using standard ODE methods.
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First-Order linear PDEs with Const. Coeff.

(a2 + b2)uξ + cu = f(ξ, η) =⇒ uξ +
c

a2 + b2
u =

f(ξ, η)

a2 + b2

The solution is given by

u(ξ, η) = e
− cξ

a2+b2

(
g(η) +

∫
f(ξ, η)

a2 + b2
e
− cξ

a2+b2

)
To find the solution in terms of (x, y), first do the integration in ξ in the above
formula and substitute the values of ξ and η.
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First-Order linear PDEs with Const. Coeff.

Example 3
Solve:

−2ux − 4uy + 5u = ex+3y

Solution: a = −2, b = 4, c = 5, f = ex+3y, a2 + b2 = 20

u(x, y) = e−
2x−4y

4

(
g(4x+ 2y) +

e
2x+16y

4

15

)
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First-Order linear PDEs
with Variable Coefficients
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First-Order linear PDEs with Var. Coeff.
Consider the following PDE

a(x, y)ux + b(x, y)uy = 0 (5)

Consider a curve with geometric representation x = x(s), y = y(s) given by
the ODE

dx

ds
= a(x, y),

dy

ds
= b(x, y)

then the tangent direction of the curve is given by(
dx

ds
,
dy

ds

)
= (a(x, y), b(x, y))

This can be solved using standard ODE methods.
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First-Order linear PDEs with Var. Coeff.
Consider the following problem

u(x(s), y(s)) =⇒ du

ds
= ux

dx

ds
+ uy

dy

ds
= a(x, y)ux + b(x, y)uy

du

ds
= ∇.

(
dx

ds
,
dy

ds

)
= ∇.(a(x, y), b(x, y))

Dvu = 0, v = (a(x, y), b(x, y))

If u satisfies (5), then
du

ds
= 0

That is u(x, y) is constant in the direction (a, b) at (x, y)
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First-Order linear PDEs with Var. Coeff.
If a(x, y) ̸= 0, then we obtain

dy

dx
=

b(x, y)

a(x, y)

This is called the characteristic equation of (5). The solutions of these
characteristic equations are called characteristic curves of (5). This method
is called the method of characteristics.
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First-Order linear PDEs with Var. Coeff.
Consider the following PDE

a(x, y)ux + b(x, y)uy = f(x, y) (6)

Then

u(x(s), y(s)) =⇒ du

ds
= ux

dx

ds
+ uy

dy

ds
= a(x, y)ux + b(x, y)uy

If u satisfies (6), then
du

ds
= f(x(s), y(s))

and
du

dx
=

f(x(s), y(s))

a(x(s), y(s))

This equation is called the compatibility condition. 18



First-Order linear PDEs with Var. Coeff.
Consider the following PDE

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y) (7)

Then

u(x(s), y(s)) =⇒ du

ds
= ux

dx

ds
+ uy

dy

ds
= a(x, y)ux + b(x, y)uy

If u satisfies (7), then

du

ds
+ c(x(s), y(s)) = f(x(s), y(s)) (8)
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First-Order linear PDEs with Var. Coeff.
When c ≡ 0, then we obtain

du

ds
= f(x(s), y(s))

and
du

dx
=

f(x(s), y(s))

a(x(s), y(s))

Equation (8) can also be written as

du

ds
+ c(s) = f(s) (9)
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First-Order linear PDEs with Var. Coeff.
Since we know how to solve (9) from ODE courses, we can write the solution
as

u(s) = e−
∫
c(s)ds

(
C +

∫
f(s)e

∫
c(s)ds

)
ds (10)

If u(s0) is prescribed, then the value of the solution of u along the entire
characteristic curve can be completely determined. If Γ is a curve passing
through all initial points of the integral surface, it is called as initial curve on
the integral surface.
Remarks
Suppose Γ is an initial curve given by

x(s0) = x0(s), y(s0) = y0(s), u(s0) = u0(s) = u(x0(s), y0(s)), s ∈ I

then every value of s fixes a point on Γ through which a unique characteristic
curve passes. 21



First-Order linear PDEs with Var. Coeff.
Now, let us again consider the following problem

a(x, y)ux + b(x, y)uy = 0 (11)

Now, we try to find the canonical form of this equation. As we did before for
constant coefficients, let use change of coordinates

ξ = ξ(x, y), η = η(x, y)

Then
ux = uξξx + uηηx

uy = uξξy + uηηy

Upon substitution and simplification, we obtain

(aξx + bξy)uξ + (aηx + bηy)uη = 0
22



First-Order linear PDEs with Var. Coeff.
In the method of characteristics, our aim is to bring it to an ODE. So, let us say
we require the coefficient of η become zero, so that the above equation will
turn into be ODE in ξ. That is, we require

aηx + bηy = 0

WLOG, let us assume a ̸= 0 (locally), then

ηx +
b

a
ηy = 0

Now, for curves that have slope dy
dx = b

a , we have

d

dx
(η(x, y(x))) = ηx + ηy

dy

dx
= ηx +

b

a
ηy = 0
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First-Order linear PDEs with Var. Coeff.
Along these characteristic curves, we have η(x, y) = C. Hence, the Jacobian
becomes

J =
∂(ξ, η)

∂(x, y)
= ηy ̸= 0

Hence, we obtain the following canonical form

a(ξ, η)uξ = 0 =⇒ uξ = 0 =⇒ u = f(η)
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First-Order linear PDEs with Var. Coeff.
Consider the following PDE

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y) (12)

then the corresponding canonical form is given by

a(ξ, η)uξ + c(ξ, η)u = f(ξ, η)

This can be solved using standard ODE methods.
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First-Order linear PDEs with Var. Coeff.
If

µ(ξ, η) = e
∫ c(ξ,η)

a(ξ,η)
dξ

is the integrating factor of

a(ξ, η)uξ + c(ξ, η)u = f(ξ, η)

then the solution is given by

u(ξ, η) =
1

µ(ξ, η)

(∫
µ(ξ, η)

f(ξ, η)

a(ξ, η)
dξ + u0(ξ, η)

)
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First-Order linear PDEs with Var. Coeff.

Example 4
Solve the following PDE

ux + yuy = 0

Solution: The char. Eqn is given by

dy

dx
=

y

1
=⇒ y = Cex

ξ = x, η = ye−x

=⇒ u(ξ, η) = f(η), u(x, y) = f(ye−x)

(Check!!)
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First-Order linear PDEs with Var. Coeff.

Example 5
Solve the following PDE

xux − yuy + y2u = y2

Solution:
dy

dx
= −y

x

ξ = x, η = xy, x = ξ, y =
η

ξ

u(x, y) = f(xy)ey
2/2 + 1

(Check!!)
28



First-Order Quasilinear
PDEs
Existence and Uniqueness
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Inverse Function Theorem

Theorem 6 (Inverse Function Theorem (Rudin))
Suppose f is a C1 mapping of an open set E ⊂ Rn, f ′(a) is invertible for some
a ∈ E and b = f(a). Then
1. there exist open sets U and V in Rn such that a ∈ U,b ∈ V, f is

one-to-one on U and f(U) = V

2. if g is the inverse of f , defined in V by g(f(x)) = x,x ∈ U , then g ∈ C1(V ).

Let us rewrite this theorem for R2. This will be used for the existence and
uniqueness theorem for quasilinear PDE.
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Inverse Mapping Theorem

Theorem 7 (Inverse Mapping Theorem)
Let P0(s0, t0) ∈ D ⊂ R2

s,t, Q0(x0, y0) ∈ D′ ⊂ R2
x,y , Φ : D → D′, Φ ∈ C1(D),

Φ(P0) = Q0,

Φ :

{
x = x(s, t)

y = y(s, t)

and
JΦ(P0) =

∂(x, y)

∂(s, t)
(P0) = xs(P0)yt(P0)− xt(P0)ys(P0) ̸= 0

Then there exist neighbourhoods U of P0 ∈ D and U ′ ofQ0 ∈ D′ and amapping
Φ−1 ∈ C1(U ′) such that Φ−1(U ′) = U and

JΦ−1(Q0) = (JΦ(P0))
−1

.
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Existence and Uniqueness Theorem

Theorem 8 (Existence and Uniqueness Theorem)
Consider the first-order quasilinear PDE (1) in the domainΩ ⊂ R3 where a, b, c ∈
C1(Ω)

Γ :


x = x0(s)

y = y0(s) s ∈ [0, 1]

u = u0(s)

is an initial smooth curve in Ω and

dx0
ds

b(x0(s), y0(s), u0(s))−
dy0
ds

a(x0(s), y0(s), u0(s)) ̸= 0, s ∈ [0, 1]

Then there exists at most one solution u = u(x, y) defined in a neighbour-
hood of the initial curve which satisfies the equation (1) and the initial condition
u0(s) = u(x0(s), y0(s)), s ∈ [0, 1].
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Existence and Uniqueness Theorem
Proof:Existence
Let us consider the Cauchy problem for the ODE system

C :


dx
dt = a(x, y, u)
dy
dt = b(x, y, u)
du
dt = c(x, y, u)

with initial conditions x(s, 0) = x0(s), y(s, 0) = y0(s), u(s, 0) = u0(s). From the
existence and uniqueness theorem for ODEs, the problem has a unique
solution

x = x(s, t), y = y(s, t), u = u(s, t)

t ∈ [α(s), β(s)] where α and β are continuous functions.
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Existence and Uniqueness Theorem
Proof (contd..): Existence
Define

D = {(s, t) : s ∈ [0, 1], t ∈ [α(s), β(s)]} ⊂ Ω′

D is the projection of Ω in xy− plane. Also, define Φ as in the inverse
mapping theorem, then

JΦ|t=0 =
dx0
ds

b− dy0
ds

a ̸= 0

By Inverse Mapping Theorem, there exists a unique mapping Φ−1 : D′ → D

Φ−1 :

{
s = s(x, y)

t = t(x, y)

defined in a neighbourhood N ′ of Γ′ where Γ′ is a projection of Γ in the xy−
plane. 34



Existence and Uniqueness Theorem
Proof (contd..):Existence
Consider

u = u(s(x, y), t(x, y)) = ϕ(x, y)

Then

aϕx + bϕy = a(ussx + uttx) + b(ussy + utty)

= us(asx + bsy) + ut(atx + bty)

= us(xtsx + ytsy) + ut(xttx + ytty)

= us.0 + ut.1

= c

Also,

ϕ(x0(s), y0(s)) = u(s(x0(s), y0(s)), t(x0(s), y0(s))) = u(s, 0) = u0(s)
35



Existence and Uniqueness Theorem
Proof (contd..): Uniqueness
Suppose ϕ1 and ϕ2 are two distinct solutions satisfying the initial conditions.
Let S1 = ϕ1(x, y), S2 = ϕ2(x, y) be the corresponding integral surfaces.
Consider the system of ODEs (i = 1, 2){

dx
dt = a(x, y, ϕi(x, y)) x(s, 0) = x0(s)
dy
dt = b(x, y, ϕi(x, y)) y(s, 0) = y0(s)

Then we find solutions (x1(s, t), y1(s, t)) and (x2(s, t), y2(s, t)). Therefore,
(x1(s, t), y1(s, t), ϕ1(s, t)) and (x2(s, t), y2(s, t), ϕ2(s, t)) are solutions of the
system (C). Therefore, by the uniqueness theorem for ODEs,
(x1(s, t), y1(s, t), ϕ1(s, t)) and (x2(s, t), y2(s, t), ϕ2(s, t)) coincide in the
common domain of definition. It follows that the characteristics Γ1 and Γ2

starting from the point P (x0(s), y0(s), u0(s)) also coincide.
36



Existence and Uniqueness Theorem

Remarks
• The theorem states that whenever the data curve is not tangential to a

characteristic curve and the functions a, b, c ∈ C1(Ω), the solution exists
and is unique.

• The condition

T (s) ≡ dx0
ds

b(x0(s), y0(s), u0(s))−
dy0
ds

a(x0(s), y0(s), u0(s)) ̸= 0, s ∈ [0, 1]

is called as transversality condition.
• The geometrical interpretation: the projection of the characteristics

curves to the xy− plane passing through the point x0(s), y0(s), u0(s)
intersects the projection of the initial curve Γ non-tangentially.

• What will happen if this condition fails? Neither existence nor
uniqueness is guaranteed
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Examples

Example 9
Show that

yux − xuy = 0

with

Γ :


x = x0(s) = s

y = y0(s) = 0

u = u0(s) = s2

has a circular paraboloid as the unique solution.
Solution: The characteristic equations are

C :


dx
dt = y
dy
dt = −x
du
dt = 0
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Examples

dy

dx
= −x

y
=⇒ ydy + xdx = 0 =⇒ x2 + y2 = C

The characteristic curves are circles with centre (0,0), and the general
solution is

u(x, y) = f(x2 + y2)

It is given that x0(s) = s, y0(s) = 0 and u0(s) = s2. This is a parabola
u = x2, y = 0 in the xu− plane. Also, from transversality condition
T (s) = −s ̸= 0. Therefore, by the existence and uniqueness theorem, we have
a unique solution. Using the initial condition, we obtain that

s2 = f(s2) =⇒ f(x) = x =⇒ u = x2 + y2

u = x2 + y2 is a circular paraboloid.
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Examples

Example 10
Show that

yux − xuy = 0

with

Γ :


x = x0(s) = cos s

y = y0(s) = sin s

u = u0(s) = sin s

has no solution.
Solution: As in the previous example u = f(x2 + y2). However, T (s) = 0. Also,
the initial curve is the ellipse x2 + y2 = 1, u = y. If u = f(x2 + y2) is a solution,
then on the circle x2 + y2 = 1, we obtain u = f(1) a constant, which
contradicts with u = y. Therefore, no solution exists.
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Examples

Example 11
Show that

yux − xuy = 0

with

Γ :


x = x0(s) = cos s

y = y0(s) = sin s

u = u0(s) = 1

has infinitely many solutions.
Solution: As in the previous example u = f(x2 + y2). However, T (s) = 0 Also,
the initial curve is the circle x2 + y2 = 1, u = 1. If u = f(x2 + y2) is a solution,
then on the circle x2 + y2 = 1, we obtain u = f(1) = 1 which is possible for
any function such that f(ω) = ωn, here ω is the nth root of unity. Therefore,
there are infinitely many solutions in this case. 41



Exercise

Exercise 2: Existence and Uniqueness

Consider the following PDE

ux = cu

Determine for which of the following Cauchy (Initial value) data, the PDE
has a unique or no or infinitely many solution(s).
1. u(x, 0) = ecx

2. u(0, y) = 0

3. u(x, 0) = sinx
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