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Recap
Consider the following quasilinear PDE

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (1)

where a, b, c ∈ C1(Ω). Let Ω0 denote the projection of Ω in the xy−plane. The integral
curves of the characteristic system are given by

dx

ds
= a(x, y, u),

dy

ds
= b(x, y, u),

du

ds
= c(x, y, u) (2)
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Inverse Function Theorem

Theorem 1 (Inverse Function Theorem (Rudin))
Suppose f is a C1 mapping of an open set E ⊂ Rn into Rn, f ′(a) is invertible
for some a ∈ E and b = f(a). Then
1. there exist open sets U and V in Rn such that a ∈ U,b ∈ V, f is

one-to-one on U and f(U) = V

2. if g is the inverse of f , defined in V by g(f(x)) = x,x ∈ U , then g ∈ C1(V ).

Let us rewrite this theorem for R2. This will be used for the existence and
uniqueness theorem for quasilinear PDE.
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Inverse Function Theorem

Figure 1: Inverse Function Theorem
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Inverse Mapping Theorem

Theorem 2 (Inverse Mapping Theorem)
Let P0(s0, t0) ∈ D ⊂ R2

s,t, Q0(x0, y0) ∈ D′ ⊂ R2
x,y , Φ : D → D′, Φ ∈ C1(D),

Φ(P0) = Q0,

Φ :

{
x = x(s, t)

y = y(s, t)

and
JΦ(P0) =

∂(x, y)

∂(s, t)
(P0) = xs(P0)yt(P0)− xt(P0)ys(P0) ̸= 0

Then there exist neighbourhoods U of P0 ∈ D and U ′ ofQ0 ∈ D′ and amapping
Φ−1 ∈ C1(U ′) such that Φ−1(U ′) = U and

JΦ−1(Q0) = (JΦ(P0))
−1

.
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Existence and Uniqueness Theorem

Theorem 3 (Existence and Uniqueness Theorem)
Consider the first-order quasilinear PDE (1) in the domainΩ ⊂ R3 where a, b, c ∈
C1(Ω)

Γ :


x = x0(s)

y = y0(s) s ∈ [0, 1]

u = u0(s)

is an initial smooth curve in Ω and

dx0
ds

b(x0(s), y0(s), u0(s))−
dy0
ds

a(x0(s), y0(s), u0(s)) ̸= 0, s ∈ [0, 1]

Then there exists at most one solution u = u(x, y) defined in a neighbour-
hood of the initial curve which satisfies the equation (1) and the initial condition
u0(s) = u(x0(s), y0(s)), s ∈ [0, 1].
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Existence and Uniqueness Theorem
Proof:Existence
Let us consider the Cauchy problem for the ODE system

C :


dx
dt = a(x, y, u)
dy
dt = b(x, y, u)
du
dt = c(x, y, u)

with initial conditions x(s, 0) = x0(s), y(s, 0) = y0(s), u(s, 0) = u0(s). From the
existence and uniqueness theorem for ODEs, the problem has a unique
solution

x = x(s, t), y = y(s, t), u = u(s, t)

t ∈ [α(s), β(s)] where α and β are continuous functions.
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Existence and Uniqueness Theorem
Proof (contd..): Existence
Define

D = {(s, t) : s ∈ [0, 1], t ∈ [α(s), β(s)]} ⊂ Ω′

D is the projection of Ω in xy− plane. Also, define Φ as in the inverse
mapping theorem, then

JΦ|t=0 =
dx0
ds

b− dy0
ds

a ̸= 0

By Inverse Mapping Theorem, there exists a unique mapping Φ−1 : D′ → D

Φ−1 :

{
s = s(x, y)

t = t(x, y)

defined in a neighbourhood N ′ of Γ′ where Γ′ is a projection of Γ in the xy−
plane. 9



Existence and Uniqueness Theorem
Proof (contd..):Existence
Consider

u = u(s(x, y), t(x, y)) = ϕ(x, y)

=⇒ aϕx + bϕy = a(ussx + uttx) + b(ussy + utty)

= us(asx + bsy) + ut(atx + bty)

= us(xtsx + ytsy) + ut(xttx + ytty)

= us(ds/dt) + ut(dt/dt)

= us.0 + ut.1

= c

Also, ϕ(x0(s), y0(s)) = u(s(x0(s), y0(s)), t(x0(s), y0(s))) = u(s, 0) = u0(s)
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Existence and Uniqueness Theorem
Proof (contd..): Uniqueness
Suppose ϕ1 and ϕ2 are two distinct solutions satisfying the initial conditions.
Let S1 = ϕ1(x, y), S2 = ϕ2(x, y) be the corresponding integral surfaces.
Consider the system of ODEs (i = 1, 2){

dx
dt = a(x, y, ϕi(x, y)) x(s, 0) = x0(s)
dy
dt = b(x, y, ϕi(x, y)) y(s, 0) = y0(s)

Then we find solutions (x1(s, t), y1(s, t)) and (x2(s, t), y2(s, t)). Therefore,
(x1(s, t), y1(s, t), ϕ1(s, t)) and (x2(s, t), y2(s, t), ϕ2(s, t)) are solutions of the
system (C). Therefore, by the uniqueness theorem for ODEs,
(x1(s, t), y1(s, t), ϕ1(s, t)) and (x2(s, t), y2(s, t), ϕ2(s, t)) coincide in the
common domain of definition. It follows that the characteristics Γ1 and Γ2

starting from the point P (x0(s), y0(s), u0(s)) also coincide.
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Existence and Uniqueness Theorem

Remarks
• The theorem states that whenever the data curve is not tangential to a

characteristic curve and the functions a, b, c ∈ C1(Ω), the solution exists
and is unique.

• The condition

T (s) ≡ dx0
ds

b(x0(s), y0(s), u0(s))−
dy0
ds

a(x0(s), y0(s), u0(s)) ̸= 0, s ∈ [0, 1]

is called as transversality condition.
• The geometrical interpretation: the projection of the characteristics

curves to the xy− plane passing through the point x0(s), y0(s), u0(s)
intersects the projection of the initial curve Γ non-tangentially.

• What will happen if this condition fails? Neither existence nor
uniqueness is guaranteed
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Existence and Uniqueness Theorem

Remarks
Let T⃗ denote the tangent vector to the initial curve Γ

T⃗ =

(
dx0
ds

,
dy0
ds

)
Let C⃗ denote the projection of the characteristic direction in the xy plane

C⃗ = (a, b)

Then the transversality condition is T = T⃗ × C⃗ ̸= 0. It means the initial curve
Γ is not tangent to the characteristic direction in the xy plane
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Geometric Summary of Existence and
Uniqueness Theorem

Remarks
• The PDE’s solution propagates along characteristic curves in 3D

(x, y, u)-space.
• The initial curve Γ is used to start the propagation.
• The transversality condition ensures that we can uniquely "trace out"

characteristic curves from each point on Γ

• If the initial curve is tangent to the characteristic direction, information
can “pile up” or be under-determined, leading to non-uniqueness or
non-existence.
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Physical Meaning of Existence and Uniqueness
Theorem

Remarks
• Imagine tracing flow lines (characteristics) through a ribbon Γ

• If the flow cuts across the ribbon transversely, you can propagate
information uniquely.

• If the flow runs along the ribbon (tangent), then the information is not
enough to determine a unique path — like trying to draw streamlines
when your initial condition is along the stream.
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Existence and Uniqueness Theorem

Figure 2: Transversality Condition
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Existence and Uniqueness Theorem

Remarks
• Imagine the initial curve Γ as a ribbon laid out in the xy-plane.
• The characteristic directions are like the direction of wind or streamlines.
• If the wind crosses the ribbon transversely, each point on the ribbon

gives rise to a unique trajectory — the information propagates smoothly.
• If the wind flows along the ribbon (tangentially), then the trajectories are

ambiguous — information either piles up (non-uniqueness) or doesn’t
propagate (lack of existence).

• The transversality condition ensures that characteristics "launch" cleanly
from the initial data curve.
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Existence and Uniqueness Theorem

Figure 3: Existence and Uniqueness Theorem
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Examples

Example 4
Show that

yux − xuy = 0

with

Γ :


x = x0(s) = s

y = y0(s) = 0

u = u0(s) = s2

s ∈ R \ {0} has a circular paraboloid as the unique solution.
Solution: The characteristic equations are

C :


dx
dt = y
dy
dt = −x
du
dt = 0
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Examples

dy

dx
= −x

y
=⇒ ydy + xdx = 0 =⇒ x2 + y2 = C

The characteristic curves are circles with centre (0,0), and the general
solution is

u(x, y) = f(x2 + y2)

It is given that x0(s) = s, y0(s) = 0 and u0(s) = s2. This is a parabola
u = x2, y = 0 in the xu− plane. Also, from the transversality condition
T (s) = −s ̸= 0. Therefore, by the existence and uniqueness theorem, we have
a unique solution. Using the initial condition, we obtain that

s2 = f(s2) =⇒ f(x) = x =⇒ u = x2 + y2

u = x2 + y2 is a circular paraboloid.
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Example Simulation

Figure 4: Circular Paraboloid
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Examples

Example 5
Show that

yux − xuy = 0

with

Γ :


x = x0(s) = cos s

y = y0(s) = sin s

u = u0(s) = sin s

has no solution.
Solution: As in the previous example u = f(x2 + y2). However, T (s) = 0. Also,
the initial curve is the ellipse x2 + y2 = 1, u = y. If u = f(x2 + y2) is a solution,
then on the circle x2 + y2 = 1, we obtain u = f(1) a constant, which
contradicts with u = y. Therefore, no solution exists.
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Examples

Example 6
Show that

yux − xuy = 0

with

Γ :


x = x0(s) = cos s

y = y0(s) = sin s

u = u0(s) = 1

has infinitely many solutions.
Solution: As in the previous example u = f(x2 + y2). However, T (s) = 0 Also,
the initial curve is the circle x2 + y2 = 1, u = 1. If u = f(x2 + y2) is a solution,
then on the circle x2 + y2 = 1, we obtain u = f(1) = 1 which is possible for
any function such that f(ω) = ωn, here ω is the nth root of unity. Therefore,
there are infinitely many solutions in this case. 23
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