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Transport Equation



Transport Equation: Example

Example 1
Solve the transport equation with the following Cauchy data

_Jz 2 €(0,1)
u(x’o)_{o z ¢ (0,1)

Cauchy data - Initial Condition
The transport equation solution is given by u(x,t) = f(x — ct), therefore,

x xe(0,1)

u(z,0) = f(z) = {0 ¢ (0,1)

Hence
r—ct x—cte(0,1)

u(x,t):f($_6t):{0 x—ct¢(0,1)




Transport Equation: Example

or

(2. 1) r—ct x€(ct,ct+1)
u(x, t) =
0 x ¢ (ct,ct +1)

This shows that the initial function moved to the right along the xz—axis by ct
units. The characteristics are given by © — ¢t = x(0).



Transport Equation: Example

Solution u(x,t) with jump discontinuities
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Figure 1: Transport Equation: See the Animation




Transport Equation in R" x (0, o)
The transport equation in n— dimensional space is given by

ur +b.Du=0,xe€R"t>0

whereb € R”, u : R x [0,00) — R is the unknown u = u(x, t).
Fix any point (x,¢) € R™ x [0, 00) and define

z(s) = u(x + sb,t + s)

Now,

d
£:Du(x—l—Sb,t+s).b—|—ut(x—|—sb,t+s):0

Hence z is a constant function of s and hence for each point (x, t), u is
constant on the line through (x, t) with the direction (b, 1) € R"*1,




Transport Equation in R" x (0, o)

The transport equation in n— dimensional space is given by

ur+b.Du=0,x€eR"t>0
u(x,0) = g(x),z € R"

The line parametrically represented by (x + sb, ¢t + s) through (x, ¢t) with the
direction (b, 1) hits the plane R x 0 when s = —t at the point (x — tb,0).
Since u is constant on the line and u(x — tb,0) = g(x — tb), we obtain that

u(x,t) = g(x—tb),x e R",t >0

If g ¢ C!, then there is no C*! solution for (1). In this case, u(x,t) = g(x — tb)
is said to be a weak solution of (1).




Transport Equation in R" x (0, o)
Consider the following inhomogeneous problem

ur +b.Du= f,xeR"t>0
u(x,0) = g(x),r € R”

Using the same z(s), we obtain

ZZ Du(x + sb,t + s).b 4+ u(x + sb,t + s) = f(x + sb,t + s)

s
0

u(x,t) — g(x —tb) = /ds—/ f(x+ sb,t+s)ds
t

u(x,t) = g(x — tb) —I—/ f(x+(s—1t)b,s)ds,z € R",t >0
0

solves the IVP (2).



Burger’'s Equation



Traffic Flow Model

Now, let us derive a quasilinear equation

ur + uug, =0

using a traffic flow model, which is also known as inviscid Burger's equation’.
Consider the traffic flow on a single-lane traffic (no overtaking). Let p(z,t)
denote the density of cars (in vehicles per km) in z € R attime ¢ > 0. The
number of cars which are in the interval (a,b) at time t is

/ab p(z,t)dx

Let v(x,t) denote the velocity of the cars in « at time ¢. The number of cars
that pass through z attime tis p(z, t)v(z, t).

TAlso, known as Bateman-Burgers equation, introduced by Harry Bateman in 1915, studied
by J. M. Burgers in 1948




Traffic Flow Model

The number of cars in the interval (a,b) changes as per the number of cars
that enter or leave this interval.

b
U p(x,t)dx = p(a,t)v(a,t) — p(b,t)v(b,t)

If we integrate this equation w.r.to time and make necessary assumptions for
p, v, we obtain

to b to
/t / 2 pla tydndt = [ otatywia ) — plb ot

t1

to b a
=— / / a—p(m, t)v(z,t)dzdt
t1 a x



Traffic Flow Model

to to
/ / p(x,t) d:z:dt—i—/ / v(x, t)dedt =0
11 at 11
to
/ / pt + (pv)dzdt =0
t1 a

Since t1,t3 > 0,a,b € R are arbitrary, we conclude that

pr+ (pv)e =0,2 e Rt >0

Now, v also depend on p. Assume that v depends only on p. If the highway is
empty p = 0, we get v = v,,4.. When the traffic is heavy, v = 0 and p = pias-



Traffic Flow Model

Consider the linear relation

U(p)zvmax (1_ P )7O§p§pmax

Pmazx

Therefore, we obtain that

Pt + [pvmax <1 __F )] =0,reR,t>0
Pmazx x
If we assume
2p
Umaz =1 and v =1—
pmam

we can obtain that
up + uu, =0




Traffic Flow Model

u +uu, =0,z € Rt >0
is called the inviscid Burgers equation. Consider the initial condition

2po

pmax

u(z,0) =1—

If po =0,up =1and pg = prmaz,u = —1




Burger's Equation

Example 2
Show that the PDE

with initial condition

s €0,1]

has a unique solution
Solution: The initial curve is given by
dro, dyo

s
ds ds 4#0"](5#4




Burger's Equation

The characteristic system is given by

a = U
dy _
C =1
du _ 1
dt 2

with initial conditions z(s,0) = y(s,0) = s, u(s,0) = s/4. Upon solving, we

obtain
z(s,t) = s+ st/4+12/4

y(s,t) =s+t
u(s,t) =s/4+1t/2




Burger's Equation

Rewriting s, t in terms of z, y, we obtain

2

4x—
5= =
{ 4(y—r)

<

t= iy

and the unique solution to the problem is
8y —dx — y?
44 —y)

Y =

s#4




Rarefaction
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Rarefaction

u +uu, =0,z € Rt >0

(2.0) 1 ifz<0
u\zx, = .
2 ifx>0

The characteristic system is given by

Suppose

ds — U
dt
C Efl
du:0




Rarefaction

z(t) = u(z(0),0)t + D = z(t) = u(x(0),t)t + x(0)

Using the initial conditions, this will become

(t) = t+2(0) ifx(0) <0
TN 2t 1 2(0) if2(0) >0

Solving for ¢, we have




Rarefaction

The characteristic lines corresponding to the initial condition (3). These lines
are two families of characteristic lines with different slopes.

10

9tk




Rarefaction

Remarks

1. The waves originating at z(0) > 0 move to the right faster than the waves
originating waves at points z(0) < 0

2. Increasing gap is formed between the faster moving wave front and the
slower one

3. There are no characteristic lines from either of the two families (5)
passing through the origin, since there is a jump discontinuity at z = 0 in
the initial condition (3).




Rarefaction

.........

Imagine that there are infinitely many characteristics originating from the
origin with slopes ranging between  and 1. The proper way to see this is to
notice that in the case of 2:(0) = 0 implies that

u:% ift <x <2t

This type of waves, which arise from decompression or rarefaction of the
medium due to the increasing gap formed between the wave fronts traveling
at different speeds, are called rarefaction waves. Putting all the pieces
together, we can write the solution of Burger’s equation satisfying the initial
condition as follows

ifoe <t

ift <x <2t (6)

if x> 2t

u(z,t) =

DN g



Shock Waves
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Shock waves

® |t is the complete opposite phenomenon of rarefaction.
® Here, it has faster moving from left to right, catching up to a slower wave.
Consider the following initial condition for Burger's equation

2 ifz <O
0) = 7
u(@,0) {1 if x>0 @)



Shock waves

The characteristic lines are

xu):{2t+xm) if 2(0) < 0

t+2(0)  ifz(0)>0

Solving for ¢, we have

‘o Sz —2(0) ifx(0)<0
- |z —=(0) if 2(0) >0




Shock wave

The characteristic lines corresponding to the initial condition (7). These lines
are two families of characteristic lines with different slopes.




Shock wave

Remarks

1.

The characteristic lines originating at z(0) < 0 have smaller slope
compared the characteristic lines originating from x(0) > 0

Characteristics from two families intersect

It leads to a problem as we can't trace back the correct characteristics to
an initial value

4. At the intersection points, u becomes multivalued

This phenomenon is called shock waves

The faster moving wave catches up to the slower moving wave to form a
multivalued wave.

27



Shock wave

There are number of examples for shock waves

Examples 3

Examples
1. Moving shock - Balloon bursting, Shock tube )
2. Detonation wave - TNT explosive or high explosive
3. Bow shock - Space Shuttle return, bullets '
4. Attached shock - Supersonic wedges X
5. Normal shock (at 90°) - Oblique Shock - Bow Shock, R-H

Supernova, an asteroid hitting Earth’s atmosphere. Let us see one more ’

theorem and see nonlinear PDEs again with Charpit's methods, R-H condition,
and Riemann problem in the later part of our course.

28



Exercises

Exercise 1: Shock Waves and Rarefaction

Solve the Burger’s equation for the following initial data
1 ifz <0
w(z,0)=<1—z ifxe(0,1)
0 ifz>1
and then for
1 ifz<O
,0) = .
u(,0) {0 ifz >0




General Solutions for
Quasilinear PDEs
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General Solution

Consider the quasilinear PDE
a(:c, y7 U)Uz + b(.%', y7 U)uy = C(IE, ya U)
Suppose that P(x,y,u) € Q,v # 0 The characteristic curve

x =x(s)
I qy=uyls)
u = u(s)

can be represented as the intersection of two surfaces
=5 N5
St oz, y,u) = C
Sy s (x,y,u) = Co
for which n4 and n,, are linearly independent at each P.




General Solution

Here ng = n¢(¢z» gby, gbu) and Ny = nw(¢xv ¢ya ¢u)

Definition 1 (First Integral)
A continuously differentiable function ¢(z,y, ) is said to be a first integral of
(9) if it is constant on characteristic curves.

Definition 2 (Functionally Independent)
The first two integrals ¢(z, y,«) and ¢ (x,y,u) of (9) are functionally indepen-

dent if 5 O O
T y u |
rank [ Yo Wy 1/}“] =2

that is, if n4 and n,, are linearly independent.




General Solution

Suppose ¢(z,y,u) and ¥ (x,y,u) are functionally independent integrals and

o(x(s),y(s),u(s)) = C . qu +¢yd +¢u =0
via(s),y(s),uls) = G % +wyd8 +¢u

- gbwa(xv Y, u) + ¢yb($7 Y, u) + ¢uC(ZE, Y, U) =0
¢xa(1:a y7 u) + ¢yb(7«‘7 y7 U) + ¢uc(l‘» y7 U) = 0

Therefore, ¢ and v are functionally independent first integrals iff

a(z,y,u) bz, y,u)  c(z,y u) (1)
by Pu bu Po bx Dy
Yy Yul  |u bz| (Y




General Solution

Theorem 4 (General Solution)
If ¢(x,y,u) = Crand ¥ (z,y,u) = Cy be two independent solutions of the ODEs

2 = a(z,y,u)

and ¢2 + 1?2 # 0, then the general solution to (9) is given by

f(d(z,y,u),¥(z,y,u)) =0

where f is an arbitrary function.




General Solution

Proof: Let u = u(x, y) be a function for which

F(@(@,y, ulz, y)), ¥(z,y,u(z,y))) = 0
Differentiating it with respect to z, y, we have

fo(Pz + dutiz) + fy (Ve + Puus) =0

fo(by + dutiy) + fp(thy + Yuuy) =0
If (fs, fy) # (0,0), then

Gz + Pully Yz + Puly

¢y + ¢uuy wy + wuuy =0




General Solution

Proof (Contd): On simplification,

(¢u¢y - ¢y¢u)ux + (sz'(/)u - ¢u¢)x)uy = stww - ¢:chy (12)

By comparing (12) and (11) we can obtain that

aug +buy = c

Conversely, suppose u = u(z, y) is a solution of (9), ¢(z,y,u) and ¥ (x,y, u)
are functionally independent first integrals of (9). Then, by (11), we obtain that
(12). Now, we have function ® = ¢(z,y, u(z,y)) and ¥ = ¢ (z, y, u(z,y)).



General Solution

Proof (Contd): If (f4, f) # (0,0), then

o, U,
e, Wy,

Gz + Qutiz Yz + Pyus

¢y + ¢uuy % + wuuy

= (@Z)uwy - %%)uz + (%% - Qbul/}z)uy - %% - ¢x¢y
= Mau, + buy — ¢)

=0

From the rank theorem of Calculus, it follows that one of the functions ® and
¥ can be expressed as a function of the other. That is, there exists a function
g such that

111(x,y,u(x,y)) = 9(¢(9€,y,u(m,y)))
= f(¢(z,y,u),¥(z,y,u) =0



Examples

Example 5
Show that
(y + 2uz)us — (2 + 2uy)uy, = 5(2* — o)
with
zo(s) =s
r Yo(s) =

has exactly one solution.
Solution: The characteristic equations are

%=y+2um

C: %:—(x+2uy)

%‘ = 0.5(2? — 9?)




Examples

Solution (Contd): One First integral we can obtain from

xdr +ydy  2du
u(x? —y2) 22 — 2

= (ﬁ(.f,:g,'d) = ‘T2 +y2 - 4’[,L2 = Cl
We can obtain another independent first integral from

ydx +xdy  2du
Y2 2 2y

—x2 g 2
- w(xvyau) = $y+2u = CQ
The general integral solution is given by

2% + % — 4u® = g(zy + 2u)




Examples

Solution (Contd): For the given Cauchy data, we have
252 = 01,52 = 02 — Cl = 202
= f(o,¥) =9 —2¢
= 22 +y® — 4u® = 2(zy + 2u)
— 22 +y? — 22y = 4’ + 4du

— = [V P r1-1]

It is the only solution that satisfies all conditions.




Examples

Example 6
Find the general solution of the equation

(u—yuz +yuy=2x+y

with

S
1
u=up(s) =2+s
has exactly one solution.
Solution: The characteristic equations are
de. dy  du
u—y Yy T4y




Examples

Solution (Contd): One First integral we can obtain from

dr+du dy
utz Y

U+ x

- 45(37731,“): =0

We can obtain another independent first integral from
dr+dy  du

U T4y
= Y(z,y,u) = (+y)° —u’ = Cy
The general integral solution is given by




Examples

Solution (Contd): For the given Cauchy data, we have

2s + 2
1

2s+2=C1,-2s—3=Cy = C1+Cy+1=0
= f(p¥)=0d+¢Y+1

u-+x
(x+y)2—u2+1+—y =0,y #0

:Cl,(s+1)2—(5+2)2:C’2

It is the only solution which satisfies all conditions.




Exercise

Exercise 2: General Solution

Find the general solution of the following equations
T (z =)y ue — (z — y)z’uy, — (2* + y*)u =0

(y—wuy + (u—2)uy =2 —y

z(y — wug +y(u — x)uy = (r — y)u

uy + (u? — 2*)uy + =0

a b e

Let us wrap the first-order linear and quasilinear PDEs for the moment and
solve the big three PDEs. Let us begin with the Heat Equation and the
separation of variables first.
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Doubts and Suggestions
panch.m@iittp.ac.in
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