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Transport Equation
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Transport Equation: Example

Example 1
Solve the transport equation with the following Cauchy data

u(x, 0) =

{
x x ∈ (0, 1)

0 x /∈ (0, 1)

Cauchy data - Initial Condition
The transport equation solution is given by u(x, t) = f(x− ct), therefore,

u(x, 0) = f(x) =

{
x x ∈ (0, 1)

0 x /∈ (0, 1)

Hence

u(x, t) = f(x− ct) =

{
x− ct x− ct ∈ (0, 1)

0 x− ct /∈ (0, 1)
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Transport Equation: Example
or

u(x, t) =

{
x− ct x ∈ (ct, ct+ 1)

0 x /∈ (ct, ct+ 1)

This shows that the initial function moved to the right along the x−axis by ct
units. The characteristics are given by x− ct = x(0).
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Transport Equation: Example

Figure 1: Transport Equation: See the Animation
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Transport Equation in Rn × (0,∞)

The transport equation in n− dimensional space is given by

ut + b.Du = 0,x ∈ Rn, t > 0

where b ∈ Rn, u : R× [0,∞) → R is the unknown u = u(x, t).
Fix any point (x, t) ∈ Rn × [0,∞) and define

z(s) = u(x+ sb, t+ s)

Now,
dz

ds
= Du(x+ sb, t+ s).b+ ut(x+ sb, t+ s) = 0

Hence z is a constant function of s and hence for each point (x, t), u is
constant on the line through (x, t) with the direction (b, 1) ∈ Rn+1.
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Transport Equation in Rn × (0,∞)

The transport equation in n− dimensional space is given by{
ut + b.Du = 0,x ∈ Rn, t > 0

u(x, 0) = g(x), x ∈ Rn
(1)

The line parametrically represented by (x+ sb, t+ s) through (x, t) with the
direction (b, 1) hits the plane Rn × 0 when s = −t at the point (x− tb, 0).
Since u is constant on the line and u(x− tb, 0) = g(x− tb), we obtain that

u(x, t) = g(x− tb),x ∈ Rn, t ≥ 0

If g /∈ C1, then there is no C1 solution for (1). In this case, u(x, t) = g(x− tb)
is said to be a weak solution of (1).
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Transport Equation in Rn × (0,∞)

Consider the following inhomogeneous problem{
ut + b.Du = f,x ∈ Rn, t > 0

u(x, 0) = g(x), x ∈ Rn
(2)

Using the same z(s), we obtain

dz

ds
= Du(x+ sb, t+ s).b+ ut(x+ sb, t+ s) = f(x+ sb, t+ s)

u(x, t)− g(x− tb) = z(0)− z(−t) =
∫ 0

−t

dz

ds
ds =

∫ 0

−t
f(x+ sb, t+ s)ds

u(x, t) = g(x− tb) +

∫ t

0
f(x+ (s− t)b, s)ds, x ∈ Rn, t ≥ 0

solves the IVP (2). 7



Burger’s Equation
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Traffic Flow Model
Now, let us derive a quasilinear equation

ut + uux = 0

using a traffic flow model, which is also known as inviscid Burger’s equation1.
Consider the traffic flow on a single-lane traffic (no overtaking). Let ρ(x, t)
denote the density of cars (in vehicles per km) in x ∈ R at time t ≥ 0. The
number of cars which are in the interval (a, b) at time t is∫ b

a
ρ(x, t)dx

Let v(x, t) denote the velocity of the cars in x at time t. The number of cars
that pass through x at time t is ρ(x, t)v(x, t).

1Also, known as Bateman-Burgers equation, introduced by Harry Bateman in 1915, studied
by J. M. Burgers in 1948 9



Traffic Flow Model
The number of cars in the interval (a, b) changes as per the number of cars
that enter or leave this interval.

d

dt

∫ b

a
ρ(x, t)dx = ρ(a, t)v(a, t)− ρ(b, t)v(b, t)

If we integrate this equation w.r.to time and make necessary assumptions for
ρ, v, we obtain∫ t2

t1

∫ b

a

∂

∂t
ρ(x, t)dxdt =

∫ t2

t1

(ρ(a, t)v(a, t)− ρ(b, t)v(b, t))dt

= −
∫ t2

t1

∫ b

a

∂

∂x
ρ(x, t)v(x, t)dxdt
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Traffic Flow Model

∫ t2

t1

∫ b

a

∂

∂t
ρ(x, t)dxdt+

∫ t2

t1

∫ b

a

∂

∂x
ρ(x, t)v(x, t)dxdt = 0∫ t2

t1

∫ b

a
ρt + (ρv)xdxdt = 0

Since t1, t2 > 0, a, b ∈ R are arbitrary, we conclude that

ρt + (ρv)x = 0, x ∈ R, t > 0

Now, v also depend on ρ. Assume that v depends only on ρ. If the highway is
empty ρ = 0, we get v = vmax. When the traffic is heavy, v = 0 and ρ = ρmax.
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Traffic Flow Model
Consider the linear relation

v(ρ) = vmax

(
1− ρ

ρmax

)
, 0 ≤ ρ ≤ ρmax

Therefore, we obtain that

ρt +

[
ρvmax

(
1− ρ

ρmax

)]
x

= 0, x ∈ R, t > 0

If we assume
vmax = 1 and u = 1− 2ρ

ρmax

we can obtain that
ut + uux = 0
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Traffic Flow Model

ut + uux = 0, x ∈ R, t > 0

is called the inviscid Burgers equation. Consider the initial condition

u(x, 0) = 1− 2ρ0
ρmax

If ρ0 = 0, u0 = 1 and ρ0 = ρmax, u = −1
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Burger’s Equation

Example 2
Show that the PDE

uux + uy =
1

2

with initial condition

Γ :


x = x0(s) = s

y = y0(s) = s s ∈ [0, 1]

u = u0(s) =
s
4

has a unique solution
Solution: The initial curve is given by

dx0
ds

b− dy0
ds

= 1− s

4
̸= 0, if s ̸= 4
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Burger’s Equation
The characteristic system is given by

C :


dx
dt = u
dy
dt = 1
du
dt = 1

2

with initial conditions x(s, 0) = y(s, 0) = s, u(s, 0) = s/4. Upon solving, we
obtain 

x(s, t) = s+ st/4 + t2/4

y(s, t) = s+ t

u(s, t) = s/4 + t/2
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Burger’s Equation
Rewriting s, t in terms of x, y, we obtain{

s = 4x−y2
4−y

t = 4(y−x)
4−y

and the unique solution to the problem is

u =
8y − 4x− y2

4(4− y)
, y = s ̸= 4
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Rarefaction
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Rarefaction

ut + uux = 0, x ∈ R, t > 0

Suppose

u(x, 0) =

{
1 if x < 0

2 if x > 0
(3)

The characteristic system is given by

C :


dx
ds = u
dt
ds = 1
du
ds = 0

(4)

du

dt
= 0 =⇒ u(x(t), t) = c =⇒ c = u(x(0), 0),

dx

dt
= u =⇒ dx

dt
= u(x(0), 0) =⇒ x(t) = u(x(0), 0)t+D 18



Rarefaction

x(t) = u(x(0), 0)t+D =⇒ x(t) = u(x(0), t)t+ x(0)

Using the initial conditions, this will become

x(t) =

{
t+ x(0) if x(0) < 0

2t+ x(0) if x(0) > 0

Solving for t, we have

t =

{
x− x(0) if x(0) < 0
1
2(x− x(0)) if x(0) > 0

(5)
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Rarefaction
The characteristic lines corresponding to the initial condition (3). These lines
are two families of characteristic lines with different slopes.
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Rarefaction

Remarks
1. The waves originating at x(0) > 0 move to the right faster than the waves

originating waves at points x(0) < 0

2. Increasing gap is formed between the faster moving wave front and the
slower one

3. There are no characteristic lines from either of the two families (5)
passing through the origin, since there is a jump discontinuity at x = 0 in
the initial condition (3).
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Rarefaction
Imagine that there are infinitely many characteristics originating from the
origin with slopes ranging between 1

2 and 1. The proper way to see this is to
notice that in the case of x(0) = 0 implies that

u =
x

t
if t < x < 2t

This type of waves, which arise from decompression or rarefaction of the
medium due to the increasing gap formed between the wave fronts traveling
at different speeds, are called rarefaction waves. Putting all the pieces
together, we can write the solution of Burger’s equation satisfying the initial
condition as follows

u(x, t) =


1 if x < t
x
t if t < x < 2t

2 if x > 2t

(6)
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Shock Waves
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Shock waves

• It is the complete opposite phenomenon of rarefaction.
• Here, it has faster moving from left to right, catching up to a slower wave.

Consider the following initial condition for Burger’s equation

u(x, 0) =

{
2 if x < 0

1 if x > 0
(7)
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Shock waves
The characteristic lines are

x(t) =

{
2t+ x(0) if x(0) < 0

t+ x(0) if x(0) > 0

Solving for t, we have

t =

{
1
2(x− x(0)) if x(0) < 0

x− x(0) if x(0) > 0
(8)
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Shock wave
The characteristic lines corresponding to the initial condition (7). These lines
are two families of characteristic lines with different slopes.
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Shock wave

Remarks
1. The characteristic lines originating at x(0) < 0 have smaller slope

compared the characteristic lines originating from x(0) > 0

2. Characteristics from two families intersect
3. It leads to a problem as we can’t trace back the correct characteristics to

an initial value
4. At the intersection points, u becomes multivalued
5. This phenomenon is called shock waves
6. The faster moving wave catches up to the slower moving wave to form a

multivalued wave.
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Shock wave
There are number of examples for shock waves

Examples 3
Examples
1. Moving shock - Balloon bursting, Shock tube
2. Detonation wave - TNT explosive or high explosive
3. Bow shock - Space Shuttle return, bullets
4. Attached shock - Supersonic wedges
5. Normal shock (at 90◦) - Oblique Shock - Bow Shock, R-H

Supernova, an asteroid hitting Earth’s atmosphere. Let us see one more
theorem and see nonlinear PDEs again with Charpit’s methods, R-H condition,
and Riemann problem in the later part of our course.
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Exercises

Exercise 1: Shock Waves and Rarefaction

Solve the Burger’s equation for the following initial data

u(x, 0) =


1 if x < 0

1− x if x ∈ (0, 1)

0 if x > 1

and then for

u(x, 0) =

{
1 if x < 0

0 if x > 0
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General Solutions for
Quasilinear PDEs
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General Solution
Consider the quasilinear PDE

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (9)

Suppose that P (x, y, u) ∈ Ω, v ̸= 0 The characteristic curve

Γ :


x = x(s)

y = y(s)

u = u(s)

can be represented as the intersection of two surfaces

Γ = S1 ∩ S2
S1 : ϕ(x, y, u) = C1 (10)
S2 : ψ(x, y, u) = C2

for which nϕ and nψ are linearly independent at each P . 31



General Solution
Here nϕ = nϕ(ϕx, ϕy, ϕu) and nψ = nψ(ψx, ψy, ψu).

Definition 1 (First Integral)
A continuously differentiable function ϕ(x, y, u) is said to be a first integral of
(9) if it is constant on characteristic curves.

Definition 2 (Functionally Independent)
The first two integrals ϕ(x, y, u) and ψ(x, y, u) of (9) are functionally indepen-
dent if

rank

[
ϕx ϕy ϕu
ψx ψy ψu

]
= 2

that is, if nϕ and nψ are linearly independent.
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General Solution
Suppose ϕ(x, y, u) and ψ(x, y, u) are functionally independent integrals and

ϕ(x(s), y(s), u(s)) = C1

ψ(x(s), y(s), u(s)) = C2
=⇒

ϕx
dx

ds
+ ϕy

dy

ds
+ ϕu

du

ds
= 0

ψx
dx

ds
+ ψy

dy

ds
+ ψu

du

ds
= 0

=⇒ ϕxa(x, y, u) + ϕyb(x, y, u) + ϕuc(x, y, u) = 0

ψxa(x, y, u) + ψyb(x, y, u) + ψuc(x, y, u) = 0

Therefore, ϕ and ψ are functionally independent first integrals iff

a(x, y, u)∣∣∣∣ϕy ϕu
ψy ψu

∣∣∣∣ =
b(x, y, u)∣∣∣∣ϕu ϕx
ψu ψx

∣∣∣∣ =
c(x, y, u)∣∣∣∣ϕx ϕy
ψx ψy

∣∣∣∣ (11)
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General Solution

Theorem 4 (General Solution)
If ϕ(x, y, u) = C1 andψ(x, y, u) = C2 be two independent solutions of the ODEs

C :


dx
dt = a(x, y, u)
dy
dt = b(x, y, u)
du
dt = c(x, y, u)

and ϕ2u + ψ2
u ̸= 0, then the general solution to (9) is given by

f(ϕ(x, y, u), ψ(x, y, u)) = 0

where f is an arbitrary function.
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General Solution
Proof: Let u = u(x, y) be a function for which

f(ϕ(x, y, u(x, y)), ψ(x, y, u(x, y))) = 0

Differentiating it with respect to x, y, we have

fϕ(ϕx + ϕuux) + fψ(ψx + ψuux) = 0

fϕ(ϕy + ϕuuy) + fψ(ψy + ψuuy) = 0

If (fϕ, fψ) ̸= (0, 0), then ∣∣∣∣ϕx + ϕuux ψx + ψuux
ϕy + ϕuuy ψy + ψuuy

∣∣∣∣ = 0
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General Solution
Proof (Contd): On simplification,

(ϕuψy − ϕyψu)ux + (ϕxψu − ϕuψx)uy = ϕyψx − ϕxψy (12)

By comparing (12) and (11) we can obtain that

aux + buy = c

Conversely, suppose u = u(x, y) is a solution of (9), ϕ(x, y, u) and ψ(x, y, u)
are functionally independent first integrals of (9). Then, by (11), we obtain that
(12). Now, we have function Φ = ϕ(x, y, u(x, y)) and Ψ = ψ(x, y, u(x, y)).
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General Solution
Proof (Contd): If (fϕ, fψ) ̸= (0, 0), then∣∣∣∣Φx Ψx

Φy Ψy

∣∣∣∣ = ∣∣∣∣ϕx + ϕuux ψx + ψuux
ϕy + ϕuuy ψy + ψuuy

∣∣∣∣
= (ϕuψy − ϕyψu)ux + (ϕxψu − ϕuψx)uy − ϕyψx − ϕxψy

= λ(aux + buy − c)

= 0

From the rank theorem of Calculus, it follows that one of the functions Φ and
Ψ can be expressed as a function of the other. That is, there exists a function
g such that

ψ(x, y, u(x, y)) = g(ϕ(x, y, u(x, y)))

=⇒ f(ϕ(x, y, u), ψ(x, y, u)) = 0
37



Examples

Example 5
Show that

(y + 2ux)ux − (x+ 2uy)uy =
1

2
(x2 − y2)

with

Γ :


x = x0(s) = s

y = y0(s) = s

u = u0(s) = 0

has exactly one solution.
Solution: The characteristic equations are

C :


dx
dt = y + 2ux
dy
dt = −(x+ 2uy)
du
dt = 0.5(x2 − y2)
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Examples
Solution (Contd): One First integral we can obtain from

xdx+ ydy

2u(x2 − y2)
=

2du

x2 − y2

=⇒ ϕ(x, y, u) = x2 + y2 − 4u2 = C1

We can obtain another independent first integral from

ydx+ xdy

y2 − x2
=

2du

x2 − y2

=⇒ ψ(x, y, u) = xy + 2u = C2

The general integral solution is given by

x2 + y2 − 4u2 = g(xy + 2u)
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Examples
Solution (Contd): For the given Cauchy data, we have

2s2 = C1, s
2 = C2 =⇒ C1 = 2C2

=⇒ f(ϕ, ψ) = ϕ− 2ψ

=⇒ x2 + y2 − 4u2 = 2(xy + 2u)

=⇒ x2 + y2 − 2xy = 4u2 + 4u

=⇒ u =
1

2

[√
(x− y)2 + 1− 1

]
It is the only solution that satisfies all conditions.
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Examples

Example 6
Find the general solution of the equation

(u− y)ux + yuy = x+ y

with

Γ :


x = x0(s) = s

y = y0(s) = 1

u = u0(s) = 2 + s

has exactly one solution.
Solution: The characteristic equations are

dx

u− y
=
dy

y
=

du

x+ y
41



Examples
Solution (Contd): One First integral we can obtain from

dx+ du

u+ x
=
dy

y

=⇒ ϕ(x, y, u) =
u+ x

y
= C1

We can obtain another independent first integral from
dx+ dy

u
=

du

x+ y

=⇒ ψ(x, y, u) = (x+ y)2 − u2 = C2

The general integral solution is given by

(x+ y)2 − u2 = g

(
u+ x

y

)
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Examples
Solution (Contd): For the given Cauchy data, we have

2s+ 2

1
= C1, (s+ 1)2 − (s+ 2)2 = C2

2s+ 2 = C1,−2s− 3 = C2 =⇒ C1 + C2 + 1 = 0

=⇒ f(ϕ, ψ) = ϕ+ ψ + 1

(x+ y)2 − u2 + 1 +
u+ x

y
= 0, y ̸= 0

It is the only solution which satisfies all conditions.
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Exercise

Exercise 2: General Solution

Find the general solution of the following equations
1. (x− y)y2ux − (x− y)x2uy − (x2 + y2)u = 0

2. (y − u)ux + (u− x)uy = x− y

3. x(y − u)ux + y(u− x)uy = (x− y)u

4. uux + (u2 − x2)uy + x = 0

5. uy −
( y
xu

)
x
= 0

Let us wrap the first-order linear and quasilinear PDEs for the moment and
solve the big three PDEs. Let us begin with the Heat Equation and the
separation of variables first.
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Thanks
Doubts and Suggestions

panch.m@iittp.ac.in
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