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100 Problems on Numerical Integration

Note: Usual Notations are used. Questions may have some typos or grammatical mistakes as

proofreading is not done for this.

1. Using Trapezoidal rule, Simpson’s 1/3rd rule, Simpson’s 3/8 rule, integrate the following

function. Find the error, if analytical solution is known.

(a)

∫ 0.8

0

(0.2 + 25x− 200x2 + 675x3 − 900x4 + 400x5)dx

(b)

∫ 0.8

0

(1− x− 4x3 + 2x5)dx

(c)

∫ 4

0

(1− e−x)dx

(d)

∫ π/2

0

(8 + 4 cosx)dx

(e)

∫ 4

−2

(1− x− 4x3 + 2x5)dx

2. Using Composite Trapezoidal rule, Composite Simpson’s 1/3rd rule, Composite Simpson’s

3/8 rule, integrate the following function with n = 2, 3, 4, 5. Find the error, if analytical

solution is known.

(a)

∫ 0.8

0

(0.2 + 25x− 200x2 + 675x3 − 900x4 + 400x5)dx

(b)

∫ 0.8

0

(1− x− 4x3 + 2x5)dx

(c)

∫ 4

0

(1− e−x)dx

(d)

∫ π/2

0

(8 + 4 cosx)dx

3. Using Midpoint rule and Two-point Newton-Cotes open formula, integrate the following

functions. Find the error, if analytical solution is known.

(a)

∫ 0.8

0

(0.2 + 25x− 200x2 + 675x3 − 900x4 + 400x5)dx

(b)

∫ 0.8

0

(1− x− 4x3 + 2x5)dx

(c)

∫ 4

0

(1− e−x)dx

(d)

∫ π/2

0

(8 + 4 cosx)dx



4. Using two-point and three-point Gaussian quadrature rules, integrate following functions.

Find the error, if analytical solution is known.

(a)

∫ 2

1

(
x+

1

x

)2

dx

(b)

∫ 8

0

(−0.055x4 + 0.86x3 − 4.2x2 + 6.3x+ 2)dx

(c)

∫ 3

0

xe2xdx

(d)
1√
2π

∫ a

0

e−x2

dx

(e)

∫ 0.8

0

(0.2 + 25x− 200x2 + 675x3 − 900x4 + 400x5)dx

5. The force on a sailboat mist can be represented by the following function

F =

∫ H

0

200

(
z

5 + z

)
e−2z/Hdz

where z is the elevation above the deck and H is the height of the mast. Compute the

F for H = 30 using two-point and three-point Gaussian quadrature rules. The line of

action can also be determined by integration:

d =

∫ H

0
200

(
z2

5+z

)
e−2z/Hdz∫ H

0
200

(
z

5+z

)
e−2z/Hdz

Use the composite trapezoidal rule to compute F and d. Use the composite Simpson’s

1/3 rule to compute F and d.

6. The root mean square current can be computed as

IRMS =

√
1

T

∫ T

0

i2(t)dt

For T = 1, suppose that i(t) is defined as

i(t) =

8e−t/T sin
(
2π t

T

)
if 0 ≤ t ≤ T/2

0 if T/2 ≤ t ≤ t

Evaluate the IRMS using two-point and three-point Gaussian quadrature rules.

7. The heat required, ∆H(cal), to induce temperature change, ∆T (◦C) of a material can be

computed as

∆H = mCp(T )∆T

wherem is the mass (g), Cp(T ) is the heat capacity [cal/g◦C]. The heat capacity increases

with temperature T (◦C) according to

Cp(T ) = 0.132 + 1.56× 10−4T + 2.64× 10−7T 2

. Compute the heat for m = 1kg, for 0 to 300◦C using two-point and three-point Gaussian

quadrature rules.



8. The amount of mass transported through a pipe over a period of time can be computed

as

M =

∫ t2

t1

Q(t)c(t)dt

where M is the mass (mg), t1 is the initial time (min), t2 is the final time (min), Q(t) is

the flow rate (m3/min), and c(t) is the concentration (mg/m3). The following functional

representations define the temporal variations in flow and concentration:

Q(t) = 9 + 5 cos2(0.4t)

c(t) = 5e−0.5t + 2e0.15t

Determine the mass transported between t1 = 2 and t2 = 8 min using two-point and

three-point Gaussian quadrature rules.

9. If

∫ π

−π

f(x) sinxdx = A0[f(π)− f(−π)] + A1

[
f
(π
2

)
− f

(
−π

2

)]
, then find A0 and A1.

10. If

∫ 1

−1

f(x) sin
(π
2
x
)
dx = A0f(−1) + A1f(0) + A2f(1), then find A0, A1 and A2.

11. If −
∫ 1

0

f(x) ln(x)dx = A0f(0) + A1f(0.5) + A2f(1), then find A0, A1 and A2.

12. If

∫ 1

0

f(x)dx = A0f(1/3) + A1f(2/3), then find A0 and A1.

13. If

∫ ∞

0

e−xf(x)dx = A0f(0) + A1f(2), then find A0 and A1.

14. If −
∫ 1

0

f(x) ln(x)dx = A0f(0)+A1f(1/3)+A2f(2/3)+A3f(1), then find A0, A1, A2 and

A3.

15. Using the technique taught for Gaussian quadrature, compute the weights A0, A1 and

nodes x0, x1 for the following integral.

∫ ∞

0

e−xf(x)dx = A0f(x0) + A1f(x1).

16. Using the technique taught for Gaussian quadrature, compute the weights A0, A1 and

nodes x0, x1 for the following integral. −
∫ 1

0

lnxf(x)dx = A0f(x0) + A1f(x1).

17. Using the technique taught for Gaussian quadrature, compute the weights A0, A1 and

nodes x0, x1 for the following integral.

∫ 1

0

xf(x)dx = A0f(x0) + A1f(x1).

18. Using the technique taught for Gaussian quadrature, compute the weights A0, A1 and

nodes x0, x1 for the following integral.

∫ π/2

−π/2

f(x) sinxdx = A0f(x0) + A1f(x1).

19. Using the technique taught for Gaussian quadrature (Very Hard), compute the weights

A0, A1, A2, A3 and nodes x0, x1, x2, x3 for the following integral.

∫ 1

−1

f(x)dx = A0f(x0) +

A1f(x1) + A2f(x2) + A3f(x3).



20. Using the technique taught for Gaussian quadrature (Very Hard), compute the weights

A0, A1, A2, A3 and nodes x0, x1, x2, x3 for the following integral.

∫ π

−π

f(x) sinxdx = A0f(x0)+

A1f(x1) + A2f(x2) + A3f(x3).

21. Using the technique taught for Gaussian quadrature compute the weights A0, A1, A2 and

nodes x0, x1, x2 for the following integral.

∫ ∞

−∞
e−x2

f(x)dx = A0f(x0)+A1f(x1)+A2f(x2).

22. Using the technique taught for Gaussian quadrature compute the weights A0, A1 and

nodes x0, x1 for the following integral.

∫ 1

−1

xf(x)dx = A0f(x0) + A1f(x1).

23. Using the technique taught for Gaussian quadrature compute the weights A0, A1 and

nodes x0, x1 for the following integral.

∫ 1

−1

√
1− x2f(x)dx = A0f(x0) + A1f(x1).

24. Using the technique taught for Gaussian quadrature compute the weights A0, A1 and

nodes x0, x1 for the following integral.

∫ 1

−1

f(x)dx = A0f(x0)+A1f(x1)+
1

6
f(−1)+

1

6
f(1).

25. Using the technique taught for Gaussian quadrature compute the weights A0, A1, A2 and

nodes x1, x2 for the following integral.

∫ ∞

0

e−xf(x)dx = A0f(0) + A1f(x1) + A2f(x2).

26. Using the technique taught for Gaussian quadrature compute the weights A0, A1, A2 and

nodes x1, x2 for the following integral. −
∫ ∞

0

lnxf(x)dx = A0f(0) +A1f(x1) +A2f(x2).

27. Using the technique taught for Gaussian quadrature compute the weights A0, A1, A2 and

node x1 for the following integral.

∫ ∞

0

e−xf(x)dx = A0f(0) + A1f(x1) + A2f(4).

28. A quadrature formula on the interval [−1, 1] uses the quadrature formula as follows∫ 1

−1

f(x)dx = A0f(−α) + A1f(α)

where 0 < α ≤ 1. The formula is required to be exact whenever f is a polynomial of

degree 1. Show that A0 = A1 = 1, independent of the value of α. Show also that there

is one particular value of α for which the formula is exact for all polynomials of degree

2. Find this α and show that, for this value, the formula is exact for all polynomials of

degree 3.

29. Write down the error in the approximation of

∫ 1

0

x4dx and

∫ 1

0

x5dx by the trapezoid and

Simpson’s 1/3rd rule. Find the value of the constant C for which the trapezoid rule gives

the correct calculation of
∫ 1

0
(x5 − Cx4)dx and show that the trapezoid rule gives a more

accurate result than the Simpson’s 1/3rd rule when 15/14 < C < 85/74.

30. Verify that the following formula is exact for polynomials of degree ≤ 4∫ 1

0

f(x)dx ≈ 1

90

[
7f(0) + 32f

(
1

4

)
+ 12f

(
1

2

)
+ 32f

(
3

4

)
+ 7f(1)

]



(a) From the above formula, compute
∫ b

a
f(x)dx

(b) Calculate ln 2 approximately, by applying this formula on the integral

∫ 1

0

dt

1 + t

31. Find the formula

∫ 1

0

xf(x)dx = A0f(0) + A1f(1) that is exact for all functions of the

form f(x) = aex + b cos(πx/2)

32. Suppose that the current through a resistor is described by the function

i(t) = (60− t)2 + (60− t) sin(
√
t)

and the resistance is a function of the current:

R = 10i+ 2i2/3

Compute the average voltage over t = 0 to 60 using the composite Simpson’s 1/3 rule.

33. If a capacitor initially holds no charge, the voltage across it as a function of time can be

computed as

V (t) =
1

C

∫ t

0

i(t)dt

For C = 10−5, the data is given as follows

t, s 0 0.2 0.4 0.6 0.8 1 1.2

i, 10−3A 0.2 0.3683 0.3819 0.2282 0.0486 0.0082 0.1441

34. The work done on an object is equal to the force times the distance moved in the direction

of the force. The velocity of an object in the direction of a force is given by

v(t) =

4t if 0 ≤ t ≤ 5

20 + (5− t)2 if 5 ≤ t ≤ 15

where v is in m/s. Determine the work if a constant force of 200N is applied for all t.

35. A rod subject to an axial load will be deformed. The area under the curve from zero

stress out to the point of rupture is called the modulus of toughness of the material.

It provides a measure of the energy per unit volume required to cause the material to

rupture. As such, it is representative of the material’s ability to withstand an impact

load. Use composite numerical integration to compute the modulus of toughness for the

stress-strain for the given data

e 0.02 0.05 0.1 0.15 0.2 0.25

s 40 37.5 43.0 52.0 60.0 55.50



36. If the velocity distribution of a fluid flowing through a pipe is known the flow rate Q (i.e.,

the volume of water passing through the pipe per unit time) can be computed by

Q =

∫
vdA

where v is the velocity, and A is the pipe’s cross-sectional area. (To grasp the mean-

ing of this relationship physically, recall the close connection between summation and

integration.) For a circular pipe, A = πr2 and dA = 2πrdr. Therefore,

Q =

∫ r

0

v(2πr)dr

where r is the radial distance measured outward from the center of the pipe. If the

velocity distribution is given by

v = 2

(
1− r

r0

)1/6

where r0 is the total radius 3cm, compute Q using the composite trapezoidal rule

37. Using the following data, calculate the work done by stretching a spring that has a spring

constant of k = 300N/m to x = 0.35m. To do this, first fit the data with a polynomial

and then integrate the polynomial numerically to compute the work:

F, 103N 0 0.01 0.028 0.046 0.063 0.082 0.11 0.13

x,m 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

38. Evaluate the vertical distance traveled by a rocket if the vertical velocity is given by

v(t) =


11t if 0 ≤ t ≤ 10

1100− 5t if 10 ≤ t ≤ 20

50t+ 2(t− 20)2 if 20 ≤ t ≤ 30

39. The upward velocity of a rocket can be computed by the following formula:

v = u ln

(
m0

m0 − qt

)
− gt

where v is the upward velocity, u is the velocity at which fuel is expelled relative to the

rocket, m0 is the initial mass of the rocket at time t = 0, q is the fuel consumption rate,

and g is the downward acceleration of gravity. If u = 1850m/s,m0 = 160, 000kg, and

q = 2500kg/s, determine how high the rocket will fly in 30s.

40. The normal distribution is defined as

f(x) =
1√
2π

e−x2/2

Using composite trapezoid rule with n = 4 integrate this function from x = −1 to 1.



41. Use two-point and three-point Gaussian quadrature rule to find∫ 2

0

ex sinx

1 + x2
dx

42. Recall that the velocity of the free-falling bungee jumper can be computed analytically

as

v(t) =

√
gm

cd
tanh

(√
gcd
m

t

)
where v(t) is the velocity (m/s), t is the time (s), g = 9.81m/s2,m is the mass (kg), cd

is the drag coefficient (kg/m). Use composite Simpson 1/3 rule to compute how far the

jumper travels during the first 8 seconds of free fall given m = 80kg and cd = 0.2kg/m.

43. As specified in the following table, the earth’s density varies as a function of the distance

from its center (r = 0):

r, km 0 1100 1500 2450 3400 3630 4500 5380 6060 6280 6380

ρ, g/cm3 13 12.4 12 11.2 9.7 5.7 5.2 4.7 3.6 3.4 3

First fit the data with a polynomial and then integrate the polynomial numerically using

composite trapezoidal and composite Simpson’s 1/3 rule. Use numerical integration to

estimate the earth’s mass (in metric tonnes) and average density (in g/cm3).

44. As specified in the following table,a manufactured spherical particle has a density that

varies as a function of the distance from its center (r = 0):

r, km 0 0.12 0.24 0.36 0.49 0.62 0.79 0.86 0.93 1

ρ, g/cm3 6 5.81 5.14 4.29 3.39 2.7 2.19 2.1 2.04 2

Use numerical integration to estimate the particle’s mass (in g) and average density (in

g/cm3).

45. Determine the distance traveled from the following velocity data

t 1 2 3.25 4.5 6 7 8 8.5 9 10

v 5 6 5.5 7 8.5 8 6 7 7 5

Use the trapezoidal rule. In addition, determine the average velocity

46. Water exerts pressure on the upstream face of a dam. The pressure can be characterized

by

p(z) = ρg(D − z)

where p(z) is the pressure in pascals (or N/m2) exerted at an elevation z meters above

the reservoir bottom; ρ is the density of water, which for this problem is assumed to

be a constant 103kg/m3; g is the acceleration due to gravity (9.81m/s2); and D is the

elevation (in m) of the water surface above the reservoir bottom. According to this



equation pressure increases linearly with depth. Omitting atmospheric pressure (because

it works against both sides of the dam face and essentially cancels out), the total force ft

can be determined by multiplying pressure times the area of the dam face. Because both

pressure and area vary with elevation, the total force is obtained by evaluating

ft =

∫ D

0

ρgw(z)(D − z)dz

where w(z) is the width of the dam face (m) at elevation z. The line of action can also

be obtained by evaluating

d =

∫ D

0

ρzgw(z)(D − z)dz∫ D

0

ρgw(z)(D − z)dz

Using Simpson’s rule to compute ft and d.

47. A wind force distributed against the side of a skyscraper is measured as

Height l,m 0 30 60 90 120 150 180 210 240

Force F (l), N/m 0 340 1200 1550 2700 3100 3200 3500 3750

Compute the net force and the line of action due to this distributed wind.

48. An 11-m beam is subjected to a load, and the shear force follows the equation

V (x) = 5 + 0.25x2

where V is the shear force, and x is length in distance along the beam. We know that

V = dM/dx, and M is the bending moment. Integration yields the relationship

M = M0 +

∫ x

0

V dx

If M0 is zero and x = 11, calculate M using composite trapezoidal rule, and composite

Simpson’s rules. [use 1-m increments].

49. The total mass of a variable density rod is given by

m =

∫ L

0

ρ(x)Ac(x)dx

where m is the mass, ρ(x) is the density, Ac(x) is the cross-sectional area, x is the

distance along the rod and L is the the total length of the rod. The following data have

been measured for a 20-m length rod. Determine the mass in grams to the best possible

accuracy.

x,m 0 4 6 8 12 16 20

ρ, g/cm3 4.00 3.95 3.89 3.80 3.60 3.41 3.30

Ac, cm
2 100 103 106 110 120 133 150



50. A transportation engineering study requires that you determine the number of cars that

pass through an intersection traveling during morning rush hour. You stand at the side

of the road and count the number of cars that pass every 4 minutes at several times as

tabulated below. Use the best numerical method to determine (a) the total number of cars

that pass between 7:30 and 9:15, and (b) the rate of cars going through the intersection

per minute. (Hint: Be careful with units.)

Time (hr) 7:30 7:45 8:00 8:15 8:45 9:15

Rate (cars per 4 min) 18 23 14 24 20 9

51. Integration provides a means to compute how much mass enters or leaves a reactor over

a specified time period, as in

M =

∫ t2

t1

Qcdt

where t1 and t2 are the initial and final times, respectively. Use numerical integration to

evaluate this equation

t,min 0 10 20 30 35 40 45 50

Q,m3/min 4.00 4.8 5.2 5.0 4.6 4.3 4.3 5.0

c,mg/m3 10 35 55 52 40 37 32 34

52. The cross-sectional area of a channel can be computed as

Ac =

∫ B

0

H(y)dy

where B is the total channel width (m), H is the depth (m), and y is the distance from

the bank (m). In a similar fashion, the average flow Q(m3/s) can be computed as

Q =

∫ B

0

U(y)H(y)dy

where U is the water velocity (m/s). Use these relationships and a numerical method to

determine Ac and Q for the following data

y,m 0 2 4 5 6 9

H,m 0.5 1.3 1.25 1.8 1 0.25

U,m/s 0.03 0.06 0.05 0.13 0.11 0.02

53. The average concentration of a substance c(g/m3) in a lake where the area As(m
2) varies

with depth z(m) can be computed by integration:

c =

∫ Z

0
c(z)As(z)dz∫ Z

0
c(z)As(z)dz

where Z is the total depthm. Determine the average concentration based on the following

data



z,m 0 4 8 12 16

A, 106m2 9.8175 5.1051 1.9635 0.3927 0.0

c, g/m3 10.2 8.5 7.4 5.2 4.1

54. The calculation of work is an important equation in science and engineering. The general

formula is given by

Work = Force×Distance

Although, this formula seems to be simple, when apply this to realistic problem, we

obtain a complicated function. For example, when the force varies during the course of

calculation which results in

W =

∫ xn

x0

F (x)dx

When the angle between the force and direction of the movement also varies as a function

of position, we obtain that

W =

∫ xn

x0

F (x) cos(θ(x))dx

The following table shows the angle as a function of position x.

x 0 1 2.8 3.9 3.8 3.2 1.3

θ(x), deg 0 30 60 90 120 150 180

Evaluate W using the Simpson’s 1/3 rule and composite Simpson’s 1/3 rules for the

following function

F (x) = 1.6x− 0.045x2

55. Compute the work done if

F (x) = 1.6x− 0.045x2

and

θ(x) = −0.00055x3 + 0.0123x2 + 0.13x

where x0 = 0 and xn = 30. Here angle is in radians.

56. There are two Newton-Cotes formulae for n = 2 and [a, b] = [0, 1], namely∫ 1

0

f(x)dx ≈ af(0) + bf(1/2) + cf(1)

∫ 1

0

f(x)dx ≈ αf(1/4) + βf(1/2) + γf(3/4)

which is better?

57. Is there a formula of the form∫ 1

0

f(x)dx ≈ α[f(x0) + f(x1)]

that correctly integrates all quadratic polynomials?



58. Determine appropriate values of A0, A1 and x0, x1 so that the quadrature formula∫ 1

−1

x2f(x)dx = A0f(x0) + A1f(x1)

will be correct when f is a polynomial of degree 3

59. Determine appropriate values of A0, A1, A2 and x0, x1, x2 so that the quadrature formula∫ 1

−1

x2f(x)dx = A0f(x0) + A1f(x1) + A2f(x2)

will be correct when f is a polynomial of degree 5

60. Determine appropriate values of c and x0, x1, x2 so that the quadrature formula∫ 1

−1

f(x)dx = c[f(x0) + f(x1) + f(x2)]

will be correct when f is a polynomial of degree 2

61. If the quadrature formula ∫ 1

−1

f(x)dx = f(α) + f(−α)

is to be exact for all quadratic polynomials, what value of α should be used?

62. If the quadrature formula ∫ 1

−1

f(x)dx = f(α) + f(−α)

is to be exact for all cubic polynomials, what value of α should be used?

63. If the quadrature formula ∫ 1

−1

f(x)dx = f(α) + f(−α)

is to be exact for all polynomials of degree 4, what value of α should be used?

64. If the quadrature formula ∫ 2

0

f(x)dx = f(α) + f(2− α)

is to be exact for all cubic polynomials, what value of α should be used?

65. Determine the coefficient A0, A1 and A2 that make the formula∫ 2

0

f(x)dx = A0f(0) + A1f(1) + A2f(2)

exact for all polynomials of degree 3.

66. Determine the coefficient A0, A1 and A2 that make the formula∫ 1

−1

f(x)dx = A0f(−1/2) + A1f(0) + A2f(1/2)

exact for all polynomials of degree 2.



67. Determine appropriate values of A0, A1 and x0, x1 so that the quadrature formula∫ 1

−1

x4f(x)dx = A0f(x0) + A1f(x1)

.

68. Determine appropriate values of A0, A1 and x0, x1 so that the quadrature formula∫ 1

0

x4f(x)dx = A0f(x0) + A1f(x1)

.

69. Use Trapezoidal rule, Simpson’s 1/3 rule, Simpson 3/8 rule, midpoint rule and two-point

Newton-Cotes rule to find approximation to∫ 1

0

x sin(x)dx

70. Use Trapezoidal rule, Simpson’s 1/3 rule, Simpson 3/8 rule, midpoint rule and two-point

Newton-Cotes rule to find approximation to∫ 1

0

f(x)dx

where

f(x) =

x if 0 ≤ x ≤ 1/2

1− x if 1/2 ≤ t ≤ 1

71. Use Trapezoidal rule, Simpson’s 1/3 rule, Simpson 3/8 rule, midpoint rule and two-point

Newton-Cotes rule to find approximation to∫ 1

0

(1− x2)3/2dx

72. Use Trapezoidal rule, Simpson’s 1/3 rule, Simpson 3/8 rule, midpoint rule and two-point

Newton-Cotes rule to find approximation to∫ 1

0

1

x2
sin

(
1

x2

)
dx

73. Use Trapezoidal rule, Simpson’s 1/3 rule, Simpson 3/8 rule, midpoint rule and two-point

Newton-Cotes rule to find approximation to∫ 1

0

1

x2
sin2(x)dx

74. Use Trapezoidal rule, Simpson’s 1/3 rule, Simpson 3/8 rule, midpoint rule and two-point

Newton-Cotes rule to find approximation to∫ 0.1

0

x1/3dx



75. Use Trapezoidal rule, Simpson’s 1/3 rule, Simpson 3/8 rule, midpoint rule and two-point

Newton-Cotes rule to find approximation to∫ π/4

0

tanxdx

76. Using three-point Gaussian quadrature find an approximation to the integral∫ 3

1

sin(x)

x
dx

77. Using three-point Gaussian quadrature find an approximation to the integral∫ 1

0

sin(πx)

[x(1− x)]3/2
dx

78. Lobatto rule. It is a rule to similar to Gaussian quadrature to integrate∫ 1

−1

f(x)dx

except that it includes the endpoints −1 and 1. That is∫ 1

−1

f(x)dx = A0f(−1) + A1f(x1) + · · ·+ An−1f(xn−1) + Anf(1)

Derive the following Lobatto rule∫ 1

−1

f(x)dx = A0f(−1) + A1f(x1) + A2f(1)

that is exact for all cubic polynomials.

79. Determine the number of points required in the composite trapezoid rule that gives the

value of ∫ 1

0

e−x2

dx

correct to six digits after the decimal point.

80. The determination of the condensation of a pure vapor on the outside of a cooled horizon-

tal tube requires that the mean heat-transfer coefficient Q be computed. This coefficient

requires, along with other parameters, the evaluation of the integral∫ π

0

(sinx)1/3dx

Find the value of this integral using Simpson’s rule with n = 5, 10, 15, 20.

81. Use the trapezoidal rule to numerically integrate f(x) = 1
1+x

from 0 to 2 and compute

the relative error.

82. Use the trapezoidal rule to numerically integrate f(x) = 0.2 + 25x+ 3x2 from 0 to 2 and

compute the relative error.



83. Use the composite trapezoidal rule with n = 2 to numerically integrate f(x) = 0.2 +

25x+ 3x2 from 0 to 2 and compute the relative error.

84. Use the composite trapezoidal rule with n = 10 to numerically integrate f(x) = ex
2
from

1 to 3. How large should we choose n so that the trapezoidal rule to the same integral is

certainly within 0.5 of the right value?

85. Use the composite trapezoidal rule with n = 8 to numerically integrate f(x) =
√
x from

0 to 1. How large should we choose n so that the trapezoidal rule to the same integral is

certainly within 10−7 of the right value?

86. Use the composite trapezoidal rule with n = 2 to numerically integrate f(x) = 1
1+x

from

0 to 1. How large should we choose n so that the trapezoidal rule to the same integral is

certainly within 10−7 of the right value?

87. Use the composite trapezoidal rule with n = 8 to numerically integrate f(x) = sin(πx)

from 0 to 1. How large should we choose n so that the trapezoidal rule to the same

integral is certainly within 10−7 of the right value?

88. Use the composite trapezoidal rule with n = 8 to numerically integrate f(x) = sin2(πx)

from 0 to 1. How large should we choose n so that the trapezoidal rule to the same

integral is certainly within 10−7 of the right value?

89. Use the Simpson’s 1/3 rule to numerically integrate f(x) = 0.2 + 25x+ 3x2 + 8x3 from 0

to 2 and compute the relative error.

90. Use the composite Simpson’s 1/3 rule with n = 4 to numerically integrate f(x) = 0.2 +

25x+ 3x2 + 8x3 from 0 to 2 and compute the relative error.

91. Use the composite Simpson’s 1/3 rule with n = 10 to numerically integrate f(x) = ex
2

from 1 to 3. How large should we choose n so that the composite Simpson’s 1/3 rule to

the same integral is certainly within 0.5 of the right value?

92. Use the composite Simpson’s 1/3 rule with n = 3 to numerically integrate

f(x) =
x3 − x

1 + x4

from 0 to 6.

93. Evaluate the double integral ∫ 2

−2

∫ 4

0

(x2 − 3y2 + xy3)dxdy

analytically, and using two-point and three-point Gaussian quadrature rules.



94. Evaluate the double integral ∫ 2

−2

∫ 4

0

(x2 − 3y2 + xy3)dxdy

analytically, and using trapezoidal rule, composite trapezoidal rule with n = 2, 4 and

Simpson’s 1/3 rule, Simpson 3/8 rule, Boole’s rule. Compute the error for each case.

95. Evaluate the double integral analytically, and using trapezoidal rule, composite trape-

zoidal rule with n = 2, 4 and Simpson’s 1/3 rule, Simpson 3/8 rule, Boole’s rule. Compute

the error for each case.

(a)

∫ π

0

∫ π

0

sin y

y
dydx

(b)

∫ 2

0

∫ 4

0

xe2y

4− y
dydx

(c)

∫ 8

0

∫ 2

√
3

1

y4 + 1
dydx

96. Evaluate the double integral analytically, and using trapezoidal rule, composite trape-

zoidal rule with n = 2, 4 and Simpson’s 1/3 rule, Simpson 3/8 rule, Boole’s rule. Compute

the error for each case.

(a)

∫ 4

1

∫ 4

0

(x
2
+
√
y
)
dxdy

(b)

∫ 2

−1

∫ 2

1

x ln ydydx

(c)

∫ 1

0

∫ 1

0

y

1 + xy
dxdy

(d)

∫ 1

−1

∫ π/2

0

x sin(
√
y)dydx

(e)

∫ 2

0

∫ 1

0

x

1 + xy
dxdy

97. Find

∫∫
R

√
xy − y2dxdy, where R is the triangle with vertices (0, 0), (10, 1), (1, 1) using

trapezoidal rule, composite trapezoidal rule with n = 2, 4 and Simpson’s 1/3 rule, Simpson

3/8 rule, Boole’s rule.

98. Evaluate the triple integral ∫ 4

−4

∫ 6

0

∫ 3

−1

(x3 − 2yz)dxdydz

analytically, and using trapezoidal rule, composite trapezoidal rule with n = 2, 4 and

Simpson’s 1/3 rule, Simpson 3/8 rule, Boole’s rule. Compute the error for each case



99. Evaluate the triple integral ∫ 2

0

∫ 2π

0

∫ π

0

r2 sin(ϕ)dϕdθdr

analytically, and using trapezoidal rule, composite trapezoidal rule with n = 2, 4 and

Simpson’s 1/3 rule, Simpson 3/8 rule, Boole’s rule. Compute the error for each case

100. Find the volume and center of the mass of a diamond, the intersection of the unit sphere

with the cone given in the cylindrical coordinates z =
√
3r analytically, and using trape-

zoidal rule, composite trapezoidal rule with n = 2, 4 and Simpson’s 1/3 rule, Simpson

3/8 rule, Boole’s rule. Compute the error for each case


