MA633L-Numerical Analysis

Lecture 10 : Numerical Interpolation-Newton's Divided Difference Interpolation

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

January 23, 2025

In general, the above analysis can be generalized to nth order polynomial to n + 1 data points. The n-th order polynomial is given by (usually, it is called as Newton form of interpolation polynomial)

$$P_n(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0)(x - x_1) + \dots + (x - x_{n-1})$$

Before, we discuss b_i 's, let us introduce another symbol called \prod to denote product of numbers. Let $c_1, c_2, \dots c_n$ be n real numbers, then their sum is denoted by symbol \sum . Similarly, the product of these n real numbers are denoted by the symbol \prod . That is,

$$\prod_{i=1}^{n} c_i = c_1 c_2 \cdots c_n$$

$$\prod_{i=0}^{n} (x - x_i) = (x - x_0)(x - x_1) \cdots (x - x_n)$$

Using this new notation, the above polynomial P_n can be written as

$$P_n(x) = b_0 + \sum_{k=1}^n b_k \prod_{i=0}^{k-1} (x - x_i)$$

The following equations will be obtained for a_k 's after a few manipulation.

$$b_0 = f[x_0] = f(x_0)$$
 (1)

$$b_1 = f[x_0, x_1] \tag{2}$$

$$b_2 = f[x_0, x_1, x_2] \tag{3}$$

: (4)

$$b_k = f[x_0, x_1, x_2, \cdots x_k]$$

$$b_n = f[x_0, x_1, x_2, \cdots x_n]$$
(6)

NUMERICAL ANALYSY

The following table will be used to get the finite divided difference formula

x	f(x)	First Divided Difference	Second Divided Difference	Third Divided Difference
x_0	$f[x_0]$	$f[m_1, m_1] = f[x_1] - f[x_0]$		
x_1	$f[x_1]$	$f[x_0, x_1] = \frac{1}{x_1 - x_0}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	fine me mel-fine me mel
x_2	$f[x_2]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_2 - x_1}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$
To	$f[x_{\alpha}]$	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$f[x_0, x_0, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{f[x_0, x_0] - f[x_0, x_0]}$	$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$
~3	J [~3]	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$	$f[x_2, w_3, w_4] = x_4 - x_2$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_2}$
x_4	$f[x_4]$	$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_3}$	
x_5	$f[x_5]$	0.4		

The bracketed functions denotes the finite divided differences. The first finite difference is represented generally as

$$f[x_i, x_j] = \frac{f(x_j) - f(x_i)}{x_j - x_i}.$$

The second finite divided difference represents the difference of two first divided differences, and is expressed generally as

$$f[x_i, x_j, x_k] = \frac{f[x_j, x_k] - f[x_i, x_j]}{x_k - x_i}.$$

The third finite difference represents the difference of two second divided differences and is generally expressed

$$f[x_i, x_j, x_k, x_l] = \frac{f[x_j, x_k, x_l] - f[x_i, x_j, x_k]}{x_l - x_i}.$$

Similarly, the nth finite divided difference is generally expressed as

$$f[x_0, x_1, x_2, \cdots x_n] = \frac{f[x_1, x_2, \cdots x_n] - f[x_0, x_1 \cdots, x_{n-1}]}{x_n - x_0}.$$

These differences can be used to obtain b_k 's. The quantity $f[x_0, x_1, x_2, \cdots x_k]$ is called the **divided difference of order** k

Theorem 1 (Invariance Theorem)

The divided difference $f[x_0, x_1, x_2, \cdots, x_k]$ is invariant under all permutations of arguments $x_0, x_1, x_2, \cdots, x_k$.

The another way to represent the divided difference is that,

$$f[x_0, x_1, x_2, \cdots, x_k] = \frac{f(x_k) - \sum_{i=0}^{k-1} f[x_0, x_1, x_2, \cdots, x_i] \prod_{j=0}^{i-1} (x_k - x_j)}{\prod_{j=0}^{k-1} (x_k - x_j)}$$

The general Newton form of the interpolation polynomial is given by

$$P_n(x) = \sum_{k=0}^n f[x_0, x_1, \cdots, x_k] \prod_{i=0}^{k-1} (x - x_i)$$
(7)

Example 2

By means of Newton's divided difference and interpolation formula, obtain the third-order Newton's interpolating polynomial to estimate $\ln 2.5.$ Find the error ε_t

Solution: The divided difference table is given by

x	f(x)	First Divided Difference	Second Divided Difference	Third Divided Difference
1.0	0.0			
		0.4620981		
4.0	1.386294		-0.05187311	
		0.2027326		0.007865529
6.0	1.791759		-0.0204100	
		0.1823216		
5.0	1.609438			

Figure 1: Newton Cubic Interpolation

Δ

5

6

3

0.6 0.4 0.2

2

The interpolating cubic polynomials is

$$P_{3}(x) = f[x_{0}] + f[x_{0}, x_{1}](x - x_{0}) + f[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1})$$

+ $f[x_{0}, x_{1}, x_{2}, x_{3}](x - x_{0})(x - x_{1})(x - x_{2})$
= $0 + 0.4620981(x - 1.0) - 0.05187311(x - 1.0)(x - 4)$
+ $0.007865529(x - 1.0)(x - 4.0)(x - 6)$

Now,

$$P_3(2.5) = 0.871802$$

and the error estimate is

$$\varepsilon_t = \frac{|0.871802 - 0.916290|}{|0.916290|} = 0.0485$$

Example 3

By means of Newton's divided difference formula and Newton's interpolating polynomial, compute $P_1(9.2), P_2(9.2)$ and $P_3(9.2)$. Estimate the error with $\ln(9.2)$.

x	8.0	9.0	9.5	11.0
f(x)	2.079442	2.197225	2.251292	2.397895

Solution:

x	f(x)	First Divided Difference	Second Divided Difference	Third Divided Difference
8.0	2.079442			
0.0	0.107005	0.117783	0.006422	
9.0	2.197225	0.108134	-0.000433	0.000411
9.5	2.251292	0.100101	-0.005200	0.000111
		0.097735		
11.0	2.397895			

Figure 2: Newton Cubic Interpolation

The interpolating polynomials are

$$\begin{split} P_1(x) &= f[x_0] + f[x_0, x_1](x - x_0) \\ &= 2.079442 + 0.117783(x - 8.0) \\ P_2(x) &= f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) \\ &= 2.079442 + 0.117783(x - 8.0) - 0.006433(x - 8.0)(x - 9.0) \\ P_3(x) &= f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) \\ &+ f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2) \\ &= 2.079442 + 0.117783(x - 8.0) - 0.006433(x - 8.0)(x - 9.0) \\ &+ 0.000411(x - 8.0)(x - 9.0)(x - 9.5) \end{split}$$

Now,

$$P_1(9.2) = 2.220782, \epsilon_t = 0.0007111$$
$$P_2(9.2) = 2.219238, \epsilon_t = 1.555 \times 10^{-5}$$
$$P_3(9.2) = 2.219208, \epsilon_t = 2.0349 \times 10^{-6}$$

Example 4

By means of Newton's divided difference and interpolation formula, obtain the fourth divided difference table and a polynomial of degree 4 for the following table.

	x	1.0	1.3	1.6	1.9	2.2
	f(x)	0.7651977	0.6200860	0.4554022	0.2818186	0.1103623
Са	lculate	$P_4(1.75).$				

$$P_{4}(x) = f[x_{0}] + f[x_{0}, x_{1}](x - x_{0}) + f[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1}) + f[x_{0}, x_{1}, x_{2}, x_{3}](x - x_{0})(x - x_{1})(x - x_{2}) + f[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}](x - x_{0})(x - x_{1})(x - x_{2})(x - x_{3}) = 0.7651977 - 0.4837057(x - 1.0) - 0.1087339(x - 1.0)(x - 1.3) + 0.0658784(x - 1.0)(x - 1.3)(x - 1.6) + 0.0018251(x - 1.0)(x - 1.3)(x - 1.6)(x - 1.9)$$

Now,

$$P_4(1.75) = 0.369042$$

Exercise

Exercise 1: Hard

1. Let $x_0 < x_1 < x_2 < \cdots < x_n$ be real, $f : \mathbb{R} \to \mathbb{R}$ be any function. If the unique polynomial

$$P_n(x) = \sum_{k=0}^n a_k x^k$$

passes through the data points $(x_0, y_0), (x_1, y_1), \cdots, (x_n, y_n)$, prove that

$$a_n = \sum_{\substack{k=0\\i\neq k}}^n \frac{f(x_k)}{\prod_{\substack{i=0\\i\neq k}}^n (x_k - x_i)}$$

Exercise

MUMERICAL ANALYSY

Exercise 2: Easy

2. Prove that

$$f[x_0, x_1, \cdots, x_n] = \sum_{\substack{k=0 \ i \neq k}}^n \frac{f(x_k)}{\prod_{\substack{i=0 \ i \neq k}}^n (x_k - x_i)}$$

- **3**. Prove that $b_n = a_n$
- 4. Prove the Invariance Theorem

Newton's forward difference formula is a particular case of Newton's divided difference formula. Since the observations in experiments can occur at random position or random time, the Newton's divided difference formula is valid for arbitrarily spaced nodes. However, a few measurements are taken at regular interval of time. For example, weather forecasting. Let h be the difference between x_{i+1} and x_i .

$$h = x_{i+1} - x_i.$$

That is,

$$x_0 = x_0, x_1 = x_0 + h, x_2 = x_0 + 2h, \cdots, x_n = x_0 + nh.$$

The corresponding f(x) values are given by

 $f_0, f_1, f_2, \cdots, f_n.$

Let us define the first forward difference of f at x_i by

$$\Delta f_i = f_{i+1} - f_i,$$

and the second forward difference of f at x_i by

$$\Delta^2 f_i = \Delta f_{i+1} - \Delta f_i,$$

and the k-th forward difference of f at x_i by

$$\Delta^k f_i = \Delta^{k-1} f_{i+1} - \Delta^{k-1} f_i,$$

The following equations will be obtained.

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{1}{h}(f(x_1) - f(x_0)) = \frac{1}{h}\Delta f_0$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{1}{2h}\left(\frac{\Delta f(x_1) - \Delta f(x_0)}{h}\right) = \frac{1}{2h^2}\Delta^2 f_0$$

$$f[x_0, x_1, \cdots, x_k] = \frac{1}{k!h^k}\Delta^k f_0(Prove!)$$

The following table will be used to get the Newton's forward difference formula

MAMERICAL MALTER

If $x = x_0 + rh$, then $x - x_0 = rh$, $x - x_1 = (r - 1)h$ and the Newton's forward difference interpolation formula is given by

$$P_n(x) = \sum_{k=0}^n \binom{r}{k} \Delta^k f_0 \quad \text{where} \quad r = \frac{x - x_0}{h} \tag{8}$$

or

$$P_n(x) = f_0 + r\Delta f_0 + \frac{r(r-1)}{2!}\Delta^2 f_0 + \dots \frac{r(r-1)\dots + (r-n+1)}{n!}\Delta^n f_0$$
 (9)

Example 5

By means of Newton's forward difference formula, compute $\cosh(0.56)$ and ε_t

x	0.5	0.6	0.7	0.8
f(x)	1.127626	1.185465	1.255169	1.337435

Solution:

x	f(x)	Δf_i	$\Delta^2 f_i$	$\Delta^3 f_i$
0.5	1 127626			
0.0	1.121020	0.057839		
0.6	1.185465		0.011865	
		0.06704		0.000697
0.7	1.255169		0.012562	
		0.082266		
0.8	1.337435			

Figure 3: Newton Forward Difference

The interpolating polynomial is

$$P_3(x) = f(x_0) + r\Delta f_0 + \frac{r(r-1)}{2!}\Delta^2 f_0 + \frac{r(r-1)(r-2)}{3!}\Delta^3 f_0$$

Here,

$$h = 0.1, x = 0.56, x_0 = 0.5 \implies r = \frac{0.56 - 0.50}{0.1} = 0.6$$

$$P_{3}(0.56) = 1.127626 + 0.6 \times 0.057839 + \frac{0.6(-0.4)}{2} \times 0.011865 + \frac{0.6 \times -0.4 \times -1.4}{6} \times 0.000697 = 1.160944$$

Example 6

The following information is gathered from a book of interplanetary coordinates obtained by astronomers by various means, the x coordinate of Mars in a heliocentric coordinate system at a specified date. We expect to have smooth function, but you can observe the higher differences due to error in data.

t	1250.5	1260.5	1270.5	1280.5	1290.5	1300.5
x = f(t)	1.39140	1.37696	1.34783	1.30456	1.24767	1.17862
	t	1310.5	1320.5	1330.5	1340.5	
_	x = f(t)	1.09776	1.00636	0.90553	0.79642	-

As per Newton's forward difference interpolation formula is given by

$$P_n(x) = \sum_{k=0}^n \binom{r}{k} \Delta^k f_0 \tag{10}$$

Suppose the error in the *i*th function value is given by ϵ_i . Then the above table has the numbers $\Delta^k(f_i + \epsilon_i)$ and they differ from $\Delta^k f_i$ by the amount of error $\Delta^k \epsilon_i$ which is bounded by

$$|\Delta^k \epsilon_i| \le \epsilon 2^s$$

t	f(t)	Δf_i	$\Delta^2 f_i$	$\Delta^3 f_i$	$\Delta^4 f_i$	$\Delta^5 f_i$	$\Delta^6 f_i$
1250.5	1.39140						
1260.5	1 37696	-1444	-1469				
1200.0	1.01000	-2913	1400	55			
1270.5	1.34783	-4327	-1414	52	-3	97	
1280.5	1.30456	-5689	-1362	146	94	-205	-302
1290.5	1.24767	0000	-1216	140	-111	200	408
1300.5	1.17862	-6905	-1181	35	92	203	-311
1310.5	1.09776	-8086	-1054	127	-16	-108	128
1200 5	1.00020	-9140	0.42	111	4	20	120
1320.5	1.00636	-10083	-943	115	4		
1330.5	0.90553	-10911	-828				
1340.5	0.79642						

Note, we multiplied the values by 10^5 or 10^6 to view the error in decimal locations. In the above table, if the values are accurately rounded values, then $\epsilon \leq 0.000005$, therefore, errors $\Delta^4 f_i$ should be not bigger than 8 units in the last place. But it is oscillatory.

NUMERICAL DIRAFT

If we subtract the average value of $10 \text{ on } \Delta^4 f_i$, then we get -13, 84, -121, 82, -26, -6, that means an error of 20 units in the last place is committed on the -121 entry, that is the error is in 1.24767. Instead of that, make change by -20 units in the last of that entry, that is 1.24767 becomes 1.24787, then the following table is produced. Still the $\Delta^5 f_i$ oscillates, but they are smaller in size as the maximum error is of 16 units which should give satisfactory results.

t	f(t)	Δf_i	$\Delta^2 f_i$	$\Delta^3 f_i$	$\Delta^4 f_i$	$\Delta^5 f_i$	$\Delta^6 f_i$
1250.5	1.39140						
1260.5	1.37696	-1444	-1469				
1270.5	1.34783	-2913	-1414	55	17		
1280.5	1 30456	-4327	-1342	72	14	-3	-2
1200.0	1 24787	-5669	-1256	86	9	-5	8
1200.5	1 17969	-6925	1161	95	19	3	11
1300.5	1.17802	-8086	-1101	107	12	$^{-8}$	-11
1310.5	1.09776	-9140	-1054	111	4	0	8
1320.5	1.00636	-10083	-943	115	4		
1330.5	0.90553	-10911	-828				
1340.5	0.79642						

Newton's forward difference formula is also a particular case of Newton's divided difference formula. Instead of forward sloping difference, here we use backward sloping differences. Notations of h and f_i and x_i are same here. However, we introduce another notation for backward difference.

Definition 7

Given a sequence $\{f_n\}_{n=0}^{\infty}$, define the first backward difference of f at x_i by

 $\nabla f_i = f_i - f_{i-1},$

and the second backward difference of f at x_i by

 $\nabla^2 f_i = \nabla f_i - \nabla f_{i-1},$

and the k-th backward difference of f at x_i by

$$\nabla^k f_i = \nabla^{k-1} f_i - \nabla^{k-1} f_{i-1},$$

However, in order to obtain the Newton's backward difference formula, the interpolating nodes are reordered from that last to first. The following equations will be obtained.

$$\begin{split} f[x_n] &= f(x_n) \\ f[x_n, x_{n-1}] &= \frac{1}{h} (f(x_n) - f(x_{n-1})) = \frac{1}{h} \nabla f_n \\ f[x_n, x_{n-1}, x_{n-2}] &= \frac{1}{2h} \left(\frac{\nabla f(x_n) - \nabla f(x_{n-1})}{h} \right) = \frac{1}{2h^2} \nabla^2 f_n \\ f[x_n, x_{n-1}, \cdots, x_{n-k}] &= \frac{1}{k! h^k} \nabla^k f_n(Prove!) \end{split}$$

The following table will be used to get the Newton's backward difference formula

If $x = x_n + rh$, then $x_n - x = -rh$, $x_{n-1} - x = -(r+1)h$ and the Newton's backward difference interpolation formula is given by

$$P_n(x) = \sum_{k=0}^n \binom{r+k-1}{k} \nabla^k f_n \quad r = \frac{x-x_n}{h}$$
(11)

or

$$P_n(x) = f_n + r\nabla f_n + \frac{r(r+1)}{2!}\nabla^2 f_n + \dots \frac{r(r+1)\cdots(r+n-1)}{n!}\nabla^n f_n \quad (12)$$

Example 8

By means of Newton's backward difference formula, compute $\cosh(0.74)$ and

ϵ_t

x	0.5	0.6	0.7	0.8
f(x)	1.127626	1.185465	1.255169	1.337435

Solution:

x	f(x)	∇f_i	$\nabla^2 f_i$	$\nabla^3 f_i$
0.5	1 197696			
0.0	1.127020	0.057839		
0.6	1.185465		0.011865	
		0.06704		0.000697
0.7	1.255169		0.012562	
		0.082266		
0.8	1.337435			

The interpolating polynomial is

$$P_3(x) = f_3 + r\nabla f_3 + \frac{r(r+1)}{2!}\nabla^2 f_3 + \frac{r(r+1)(r+2)}{3!}\nabla^2 f_3$$

Here,

$$h = 0.1, x = 0.74, x_3 = 0.8 \implies r = \frac{0.74 - 0.8}{0.1} = -0.6$$

$$P_{3}(0.74) = 1.337435 - 0.6 \times 0.082266 + \frac{-0.6(0.4)}{2} \times 0.012562 + \frac{-0.6 \times 0.4 \times 1.4}{6} \times 0.000697 = 1.286528$$

 $\cosh(0.74) = 1.286524, \epsilon_t = 3.11 \times 10^{-6}$

Figure 4: Newton's Backward Difference

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

MA633L-Numerical Analysis

Lecture 10 : Numerical Interpolation-Newton's Divided Difference Interpolation

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

January 23, 2025

