MA633L-Numerical Analysis

Lecture 12 : Error in Polynomial Interpolation

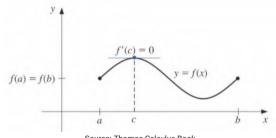
Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

January 30, 2025

1

Rolle's Theorem



Source: Thomas Calculus Book

Theorem 1 (Rolle's Theorem)

Suppose $f \in C[a, b]$ and f is differentiable on (a, b). If f(a) = f(b), then a number $c \in (a, b)$ exists with f'(c) = 0.

Generalized Rolle's Theorem

Theorem 2 (Generalized Rolle's Theorem)

Suppose $f \in C[a, b]$ and f is n times differentiable on (a, b). If f(x) = 0, at the n + 1 distinct numbers $a \le x_0 < x_1 < \cdots < x_n \le b$, then a number $c \in (x_0, x_n)$ exists with $f^{(n)}(c) = 0$.

MUMERICAL AMAINEN

Theorem 3 (First Interpolation Error Theorem)

Let $f \in C^{n+1}[a, b]$, and let P_n be a polynomial of degree at most n that interpolates the function f at n + 1 distinct points $x_0, x_1, x_2, \cdots, x_n$ in the interval [a, b]. Then for each $\overline{x} \in [a, b]$, there corresponds to $\xi \in (a, b)$ such that

$$f(\overline{x}) - P_n(\overline{x}) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^n (\overline{x} - x_i)$$
(1)

Proof:

If $\overline{x} = x_i$, the proof is obvious, as the equation reduces to zero. Assume that $\overline{x} \neq x_i$. Define a new function $\phi(t)$ in the variable t as follows:

$$\phi(t) = f(t) - P_n(t) - \left[\frac{\prod_{i=0}^n (t - x_i)}{\prod_{i=0}^n (\overline{x} - x_i)}\right] \left[f(\overline{x}) - P_n(\overline{x})\right]$$

Since x_i 's are distinct and $\overline{x} \neq x_i$, the function ϕ is well defined. Also, observe that

$$\phi(x_i) = f(x_i) - P_n(x_i) - 0 = 0, \quad 0 \le i \le n$$

MUMERICAL MALVER

Errors in Polynomial Interpolation

Further,

$$\phi(\overline{x}) = f(\overline{x}) - P_n(\overline{x}) - \left[\frac{\prod_{i=0}^n (t - x_i)}{\prod_{i=0}^n (\overline{x} - x_i)}\right] [f(\overline{x}) - P_n(\overline{x})] = 0$$

 $\phi = 0$ at the n + 2 points x_0, x_1, \dots, x_n and \overline{x} . Since $f \in C^{n+1}[a, b], P_n \in C^{\infty}[a, b], \phi \in C^{n+1}[a, b]$. Further $\phi(t) = 0$ at the n + 2 distinct points, therefore as per the Generalized Rolle's theorem there exists a point $\xi \in (a, b)$ such that $\phi^{(n+1)}(\xi) = 0$.

$$\phi^{(n+1)}(\xi) = 0 \implies f^{(n+1)}(\xi) - P_n^{(n+1)}(\xi) - \frac{d^{n+1}}{dt^{n+1}} \left[\frac{\prod_{i=0}^n (t-x_i)}{\prod_{i=0}^n (\overline{x} - x_i)} \right]_{t=\xi} [f(\overline{x}) - P_n(\overline{x})] = 0$$

Since P_n is a polynomial of degree $\leq n$, $P_n^{(n+1)}(t) = 0$. Also (Prove!),

$$\frac{d^{n+1}}{dt^{n+1}} \left[\frac{\prod_{i=0}^{n} (t-x_i)}{\prod_{i=0}^{n} (\overline{x}-x_i)} \right] = \frac{(n+1)!}{\prod_{i=0}^{n} (\overline{x}-x_i)}$$
$$\phi^{(n+1)}(\xi) = f^{(n+1)}(\xi) - \frac{(n+1)!}{\prod_{i=0}^{n} (\overline{x}-x_i)} [f(\overline{x}) - P_n(\overline{x})] = 0$$

The proof follows after rearrangements.

Theorem 4 (Upper Bound Lemma)

Suppose that $x_0 = a, x_1 = a + h, x_2 = a + 2h, \dots, x_i = a + ih, \dots, x_n = a + nh = b$, where h = (b - a)/n. Then for any $\overline{x} \in [a, b]$

$$\prod_{i=0}^{n} |\overline{x} - x_i| \le \frac{1}{4} h^{n+1} n!$$

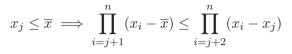
Proof:

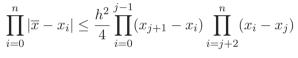
Assume that $\overline{x} \in [x_j, x_{j+1}]$. Then you can prove that

$$|\overline{x} - x_j||\overline{x} - x_{j+1}| \le \frac{h^2}{4}$$

Therefore,

$$\prod_{i=0}^{n} |\overline{x} - x_i| \le \frac{h^2}{4} \prod_{i=0}^{j-1} (\overline{x} - x_i) \prod_{i=j+2}^{n} (x_i - \overline{x})$$
$$\overline{x} \le x_{j+1} \implies \prod_{i=0}^{j-1} (\overline{x} - x_i) \le \prod_{i=0}^{j-1} (\overline{x}_{j+1} - x_i)$$





$$x_{j+1} - x_i = (j - i + 1)h, x_i - x_j = (i - j)h$$

$$\implies \prod_{i=0}^{n} |\overline{x} - x_i| \le \frac{h^2}{4} \left(h^j \prod_{i=0}^{j-1} (j-i+1) \right) \left(h^{n-(j+2)+1} \prod_{i=j+2}^{n} (i-j) \right)$$
$$\implies \prod_{i=0}^{n} |\overline{x} - x_i| \le \frac{h^{n+1}}{4} (j+1)! (n-j)! \le \frac{h^{n+1}}{4} n!$$

Hence the proof.

Theorem 5 (Second Interpolation Error Theorem)

Let $f \in C^{n+1}[a,b]$ and $|f^{(n+1)}(x)| \leq M$. Let P_n be a polynomial of degree at most n that interpolates the function f at n+1 equally spaced points $x_0 = a, x_1 = a + h, x_2 = a + 2h, \dots, x_n = a + nh = b$ in the interval [a,b], where h = (b-a)/n. Then for each $\overline{x} \in [a,b]$, there corresponds to $\xi \in (a,b)$ such that

$$|f(\overline{x}) - P_n(\overline{x})| \le \frac{1}{4(n+1)} M h^{n+1}$$
(2)

Proof:

Applying first interpolation error theorem

$$f(\overline{x}) - P_n(\overline{x}) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^n (\overline{x} - x_i)$$

and upper bound lemma

$$\prod_{i=0}^{n} |\overline{x} - x_i| \le \frac{h^{n+1}}{4} n!$$

we get that

$$|f(\overline{x}) - P_n(\overline{x})| = \left| \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^n (\overline{x} - x_i) \right|$$
$$= \frac{1}{(n+1)!} |f^{(n+1)}(\xi)| \left| \prod_{i=0}^n (\overline{x} - x_i) \right|$$
$$\leq \frac{1}{(n+1)!} M \frac{h^{n+1}}{4} n!$$
$$= \frac{1}{4(n+1)} M h^{n+1}$$

Hence the proof.

This theorem gives loose upper bound on the interpolation error for different values of n.

Theorem 6 (Third Interpolation Error Theorem)

If P_n is a polynomial of degree at most n that interpolates the function f at n + 1 distinct points $x_0, x_1, x_2, \dots, x_n$, then for any \overline{x} that is not in the node,

$$f(\overline{x}) - P_n(\overline{x}) = f[x_0, x_1, x_2, \cdots, x_n, \overline{x}] \prod_{i=0}^n (\overline{x} - x_i)$$
(3)

Proof:

Recall that,

$$P_n(x) = \sum_{k=0}^n f[x_0, x_1, \cdots, x_k] \prod_{i=0}^{k-1} (x - x_i)$$
(4)

Let t be any point other than a node, where f(t) is defined. Let Q_{n+1} be the polynomial of degree that interpolates f at x_0, x_1, \dots, x_n, t . Then, we have

$$Q_{n+1}(x) = P_n(x) + f[x_0, x_1, x_2, \cdots, x_n, t] \prod_{i=0}^n (x - x_i)$$

Since $Q_{n+1}(t) = f(t)$, we have

$$f(t) = P_n(t) + f[x_0, x_1, x_2, \cdots, x_n, t] \prod_{i=0}^n (t - x_i)$$

Hence the proof.

Theorem 7 (Relation between divided difference and derivatives) Let $f \in C^n[a, b]$ and if there n + 1 distinct points $x_0, x_1, x_2, \cdots, x_n, \overline{x}$ in the interval [a, b]. Then for some $\xi \in (a, b)$,

$$f[x_0, x_1, \cdots, x_n, \overline{x}] = \frac{1}{(n+1)!} f^{(n+1)}(\xi)$$
(5)

Proof:

The proof follows by combining first and third interpolation error theorems.

Consider the following table

- Earlier we have given x and the requested to find f(x) using interpolation. Now, suppose f(x) is given, is it possible to find x.
- For example, what is x that corresponds to f(x) = 0.3 from the above table. You can observe that f(x) = 1/x is the function, therefore, x = 3.33333 provides f(x) = 0.3.
- This is called inverse interpolation.

Observations:

- For more complicated case, you may switch the f(x) and x values and apply Lagrange or Newton Interpolation methods.
- Unfortunately, when we reverse the variables, no guarantee that the values along the new abscissa will be evenly spaced.

Remedy:

- Alternatively, fit an $n{\rm th}$ order interpolation polynomial $f_n(x)$ to the original data
- Since *x* is evenly spaced, this polynomials will not be ill-conditioned.
- Hence, finding the value of x that makes this polynomial equal to given f(x), the interpolation reduces to root finding problem.

The above problem gives $f_2(x)$ results

```
f_2(x) = 1.08333 - 0.375x + 0.041667x^2
```

Hence finding f(x) = 0.3 is nothing but finding the roots of the problem

 $0.78333 - 0.375x + 0.041667x^2 = 0$

That is, x = 5.701458 or 3.295842

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

MA633L-Numerical Analysis

Lecture 12 : Error in Polynomial Interpolation

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

January 30, 2025

