
MA633L-Numerical Analysis
Lecture 14 : Spline Interpolation

Panchatcharam Mariappan1

1Associate Professor
Department of Mathematics and Statistics

IIT Tirupati, Tirupati

January 31, 2025



Runge’s Phenomenon
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Runge’s Phenomenon
Polynomial Interpolation:
• When using high-degree polynomial interpolation over evenly spaced

data points, you can experience oscillations
Consider

f(x) =
1

1 + 25x2
, x ∈ [−1, 1]

When we interpolate it using polynomial interpolation, you can see large
oscillations. This was observed by German mathematician Carl Runge (1901).
It is referred as Runge’s phenomenon
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Runge’s Phenomenon

Figure 1: Runge’s Phenomenon
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Runge’s Phenomenon

Figure 2: Runge’s Phenomenon
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Runge’s Phenomenon

Figure 3: Runge’s Phenomenon
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Runge’s Phenomenon

Figure 4: Runge’s Phenomenon
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Runge’s Phenomenon

Figure 5: Runge’s Phenomenon
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Runge’s Phenomenon

Figure 6: Runge’s Phenomenon
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Runge’s Phenomenon

Figure 7: Runge’s Phenomenon
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Spline Interpolation
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Spline Interpolation
Polynomial Interpolation:
• nth-order polynomials were used to interpolate between n+ 1 data

points.
• This polynomial captures all n+ 1 points.
• However, it can lead to erroneous results due to round-off error and

overshoot.
• Also, high degree polynomials suffer from Runge’s phenomenon

(oscillations at endpoints)
Spline Interpolation:
• Alternatively, we can apply low-order polynomials to subset of data

points.
• Such connecting polynomials are called spline functions.
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Spline Interpolation: History

• Fairing Rooted in the work of draftsman. Needed to draw a gently turning
curve between points on drawing.

• French Curve, adhoc devices, made of plastic and presenting a number
of curves of different curvature for the draftsman to select.

12



Spline Interpolation: History

• Long strips of wood were used. It was made to pass through control
points by weights laid on the draftsman’s table and attached to the strips.
The weights are called ducks and strips of wood are called splines (1891)

• The elastic nature of the strips allowed them to bend only a little while
still passing through the prescribed points.

• The first book giving a systematic exposition of spline theory by Ahlberg,
Nilson and Walsh [1967]
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Spline Interpolation: Applications

• Computer Graphics: Smooth Curve Modeling (Bezier, B-splines)
• CAD and Engineering: Car Design, Flight Design, Ship Design, etc
• Image Interpolation: Smoothly fill missing pixels
• Data Science: Data smooth to avoid noise in datasets
• Data Signal Processing: Filter signals by smoothing out noise
• Medical Imaging: Smoother surface reconstruction from CT/MRI scan

data
• Animation and Robotics: Smooth Motion Control
• Climate Modeling: Fitting Weather Data
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Cubic Spline Interpolation: Advantages

• Smoothness: Produces continuous curves with smooth derivatives and
avoids sharp corners

• Flexible: Closely approximate complex data sets with high degree of
accuracy

• Local Control: Modify as per individual data points only affect the nearby
segment.
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Linear Spline

Definition 1 (Spline of Degree 1)
A function S is called a spline of degree 1 or a linear spline if
• The domain of S is an interval [a, b]
• S is continous on [a, b]

• There is a partitioning of the interval a = t0 < t1 < · · · < tn = b such that
S is a linear polynomial on each subinterval [ti, ti+1]
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Linear Spline

• A spline function is a function that consists of polynomial pieces joined
together with certain conditions.

• Polynomial function whose pieces are linear polynimial joined together
to achieve continuity

• Consider the points t0, t1, t2, · · · , tn. The function changes its character
at ti’s are called knots
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Linear Spline: Explicit Form

S(x) =



S0(x) x ∈ [x0, x1]

S1(x) x ∈ [x1, x2]
...

...
Si(x) x ∈ [xi−1, xi]
...

...
Sn−1(x) x ∈ [xn−1, xn]

where
Si(x) = aix+ bi
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Linear Spline

• Each piece of S(x) is a linear polynomial.
• If the knots x0, x1, · · · , xn were given and if the coefficients

a0, b0, a1, b1, · · · , an−1, bn−1 were all known, then the evaluation of S(x) at
a specific x would proceed by first determining the interval that contains
x and then using appropriate linear function for that interval.

• If the function S is continuous, we call it a first-degree spline.
• Outside the interval [a, b], S(x) is usually defined to be the same function

on the left of a as it is on the leftmost interval [x0, x1] and the same on
the right of b as it is on the rightmost subinterval [xn−1, xn]

S(x) =

{
S0(x) x < a

Sn−1(x) x > b
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Linear Spline

• Continuity of a function f at a point s can be defined by the condition

lim
x→s+

f(x) = lim
x→s−

f(x) = f(s)

Example 2
Check whether the following S(x) is a first degree spline.

S(x) =


x x ∈ [−1, 0]

1− x x ∈ (0, 1)

2x− 2 x ∈ [1, 2]

It is linear but not spline as it is discontinuous at 0.
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Linear Spline
Interpolation
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Linear Spline Interpolation
The linear spline can be used for interpolation
• Consider (x0, f(x0)), (x1, f(x1)), · · · , (xn, f(xn))
• We can draw a polygonal line through these points without drawing a

vertical segment. This polygonal line is a graph of a function.
Si(x) = f(xi) +mi(x− xi), x ∈ [xi, xi+1]

where mi is the slope of the line and is therefore given by formula

mi =
f(xi+1)− f(xi)

xi+1 − xi
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Linear Spline Interpolation
Observations:
• The function S has 2n parameters: n coefficients ai and n constants bi

• We are imposing 2n conditions. Each constituted function Si must
interpolate the data at the ends of its subinterval.

• number of parameters = number of conditions
• For higher-degree splines, there will be a mismatch.
• The above equation is much better for practical evaluation.
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Linear Spline

Example 3
Fit the following data with linear spline and evaluate the function at x = 5

x 3.0 4.5 7.0 9.0
f(x) 2.5 1.0 2.5 0.5

For fitting the data, we need to find all linear splines. However, for evaluating
the function at x = 5, it is enough to compute the spline between 4.5 and 7.5,
that is,

S1(x) = f(x1) +
f(x2)− f(x1)

x2 − x1
(x− x1), x ∈ [x1, x2]

That is,
S1(x) = f(4.5) +

2.5− 1

7− 4.5
(x− 4.5) = 1 + 0.60(x− 4.5)

Hence S1(5) = f(5) = 1.3
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Linear Spline
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Theorems on Linear
Spline
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Modulus of Continuity
In order to find the goodness of fit for a linear spline, let us introduce modulus
of continuity.

Definition 4 (Modulus of Continuity)
Let f be a function defined on the interval [a, b]. The modulus of continuity of
f is

ω(f ;h) = sup{|f(u)− f(v)| : a ≤ u ≤ v ≤ b, |u− v| ≤ h}

• The quantity ω(f ;h) measures how much f can change over a small
interval of width h.

• If f is continuous, then f is uniformly continuous and ω will tend to zero
as h tends to zero.

• If f is not continuous, ω will not tend to zero.
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Modulus of Continuity

• If f is differentiable, and if f ′ is bounded on (a, b), then by MVT, we can
obtain the estimate of ω.

|f(u)− f(v)| = |f ′(c)(u− v)| ≤ M1|u− v| ≤ M1h

• If f(x) = x3 on [1, 4], then ω ≤ 48h
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First-degree Polynomial Accuracy Theorem

Theorem 5 (First-degree Polynomial Accuracy Theorem)
If p is the first-degree polynomial that interpolates a function f at the endpoints
of an interval [a, b], then with h = b− a, we have

|f(x)− p(x)| ≤ ω(f ;h) x ∈ [a, b]

Proof: The linear function p is given explicitly by the formula,

p(x) =

(
x− a

b− a

)
f(b) +

(
b− x

b− a

)
f(a)

=⇒ f(x)− p(x) =

(
x− a

b− a

)
[f(x)− f(b)] +

(
b− x

b− a

)
[f(x)− f(a)]
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First-degree Polynomial Accuracy Theorem
Proof (Continued):

|f(x)− p(x)| ≤
(
x− a

b− a

)
|f(x)− f(b)|+

(
b− x

b− a

)
|f(x)− f(a)|

≤
(
x− a

b− a

)
ω(f ;h) +

(
b− x

b− a

)
ω(f ;h)

=

(
x− a

b− a
+

b− x

b− a

)
ω(f ;h)

= ω(f ;h)
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Linear Spline Accuracy Theorem

Theorem 6 (Linear Spline Accuracy Theorem)
If p is a linear spline having knots a = x0 < x1 < · · · < xn = b. If p interpolates
a function f at these knots, then with h = max

i
(xi − xi−1), we have

|f(x)− p(x)| ≤ ω(f ;h) x ∈ [a, b]

Proof: Apply the above theorem for each subinterval.
• The first theorem tells us that if more knots are inserted in such a way

that the maximum spacing h goes to zero, then the corresponding linear
spline will converge to f .
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Quadratic Splines
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Quadratic Splines

• Splines of degree higher than 1 are more complicated
• Let us use Q to remind ourselves that we are considering piecewise

quadratic functions.

Definition 7 (Quadratic Splines)
A function Q is called quadratic splines if
• The domain of Q is an interval [a, b]
• Q and Q′ are continuous on [a, b]

• There are points xi (called knots) such that a = x0 < x1 < · · · < xn = b
and Q is a polynomial of degree at most 2 on each subinterval [xi, xi+1]
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Quadratic Spline

Example 8
Check whether the following S(x) is a first degree spline.

Q(x) =


x2 x ∈ [−10, 0]

−x2 x ∈ (0, 1)

1− 2x x ∈ [1, 20]

It is a quadratic spline, for,

lim
x→0−

Q(x) = lim
x→0−

x2 = 0, lim
x→0+

Q(x) = lim
x→0−

(−x2) =0

lim
x→1−

Q(x) = lim
x→1+

(−x2) =− 1, lim
x→1+

Q(x) = lim
x→0−

(1− 2x) =− 1

lim
x→0−

Q′(x) = lim
x→0−

2x =0, lim
x→0+

Q′(x) = lim
x→0+

(−2x) =0

lim
x→1−

Q′(x) = lim
x→1−

(−2x) =− 2, lim
x→1+

Q′(x) = lim
x→1+

(−2) =− 2 34



Quadratic Splines

• The objective of the quadratic splines is to derive second-order
polynomial for each interval between data points. That is,

Qi(x) = aix
2 + bix+ ci

• For n+ 1 data points, there are n intervals and 3n unknown constants to
evaluate.

• Requirement: 3n conditions to evaluate unknowns
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Quadratic Splines

• The function values of adjacent polynomials must be equal to the interior
knots.

Qi−1(xi−1) = f(xi−1) =⇒ ai−1x
2
i−1 + bi−1xi−1 + ci−1 = f(xi−1) (1)

Qi(xi−1) = f(xi−1) =⇒ aix
2
i−1 + bixi−1 + ci = f(xi−1) (2)

for i = 2, 3, · · · , n
• Since only interior knots are used, we obtain 2n− 2 conditions
• The first and last functions must pass through the end points.

a1x
2
0 + b1x0 + c1 = f(x0) (3)

anx
2
n + bnxn + cn = f(xn) (4)

• Hence a total of 2n conditions. 36



Quadratic Splines

• The first derivatives at the interior knots must be equal

Q′
i−1(xi−1) = Q′

i(xi−1) =⇒ 2ai−1xi−1 + bi−1 = 2aixi−1 + bi (5)

for i = 2, 3, · · · , n
• It provides another n− 1 conditions
• Hence, we have 3n− 1 conditions and 3n unknowns. Therefore, there is a

shortfall of 1 condition. There are different ways to obtain the condition,
but let us use the following:

• Assume that second derivative is zero at the first point. That is,

a1 = 0 (6)

• Hence a total of 3n conditions.
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Quadratic Spline

Example 9
Fit the following data with quadratic spline and evaluate the function at x = 5

x 3.0 4.5 7.0 9.0
f(x) 2.5 1.0 2.5 0.5

For this case, we need to find 3n unknowns, here n = 3, therefore, 9 unknowns
must be determined

Qi−1(xi−1) = f(xi−1) =⇒ ai−1x
2
i−1 + bi−1xi−1 + ci−1 = f(xi−1)

Qi(xi−1) = f(xi−1) =⇒ aix
2
i−1 + bixi−1 + ci = f(xi−1)

for i = 2, 3
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Quadratic Spline
Using equations (1) and (2), we obtain

4.52a1 + 4.5b1 + c1 = 1.0

4.52a2 + 4.5b2 + c2 = 1.0

72a2 + 7b2 + c2 = 2.5

72a3 + 7b3 + c3 = 2.5

From equations (3) and (4), we obtain

32a1 + 3b1 + c1 = 2.5

92a3 + 9b3 + c3 = 0.5
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Quadratic Spline
Using equations (5), we obtain

9a1 + b1 = 9a2 + b2

14a2 + b2 = 14a3 + b3

Finally, we have

a1 = 0
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Quadratic Spline
Solving for unknowns, we obtain

4.5 1 0 0 0 0 0 0
0 0 20.25 4.5 1 0 0 0
0 0 49 7 1 0 0 0
0 0 0 0 0 49 7 1
3 1 0 0 0 0 0 0
0 0 0 0 0 81 9 1
1 0 −9 −1 0 0 0 0
0 0 14 1 0 −14 −1 0





b1
c1
a2
b2
c2
a3
b3
c3


=



1
1
2.5
2.5
2.5
0.5
0
0
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Quadratic Spline
Upon solving this we obtain 

a1
b1
c1
a2
b2
c2
a3
b3
c3


=



0
−1
5.5
0.64
−6.76
18.46
−1.6
24.6
−91.3
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Quadratic Spline
Hence the Quadratic spline is given by

Q(x) =


−x+ 5.5 x ∈ [3, 4.5]

0.64x2 − 6.76x+ 18.46 x ∈ [4.5, 7.0]

−1.6x2 + 24.6x− 91.3 x ∈ [7, 9]

When we use f2 and Q(5) = f(5) = f2(5) = 0.66

43



Quadratic Spline
A Quadratic spline consists of n separate quadratic functions
x → aix

2 + bix+ ci one for each subinterval created by the n+ 1 knots.

Q(x) =


Q0(x) x ∈ [x0, x1]

Q1(x) x ∈ [x1, x2]
...

...
Qn−1(x) x ∈ [xn−1, xn]

It is continuously differentiable on the entire interval [x0, xn], that is
Q(xi) = f(xi).
Since Q′ is continuous, let zi = Q′(xi)
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Quadratic Spline
The following formula for Qi is given as below

Qi(x) =
zi+1 − zi

2(xi+1 − xi)
(x− xi)

2 + zi(x− xi) + f(xi) (7)

We can verify thatQi(xi) = f(xi) andQ′
i(xi) = zi. Also, Q′

i(xi+1) = zi+1 where

zi+1 = −zi + 2

(
f(xi+1)− f(xi)

xi+1 − xi

)
(8)
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Quadratic Spline
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Cubic Splines
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Spline of degree k

Definition 10 (Spline of degree k)
A function S is called a spline of degree k if
• The domain of S is an interval [a, b]
• S, S′, S′′, · · · , S(k−1) are continuous on [a, b]

• There are points xi (called knots) such that a = x0 < x1 < · · · < xn = b
and S is a polynomial of degree at most k on each subinterval [xi, xi+1]
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Cubic Spline

Definition 11 (Cubic Spline)
A function C is called a cubic spline if
• The domain of C is an interval [a, b]
• C,C ′, C ′′ are continuous on [a, b]

• There are points xi (called knots) such that a = x0 < x1 < · · · < xn = b
and C is a polynomial of degree at most 3 on each subinterval [xi, xi+1]
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Cubic Spline
A cubic spline consists of n separate cubic functions
x → aix

3 + bix
2 + cix+ di one for each subinterval created by the n+ 1 knots.

C(x) =


C0(x) x ∈ [x0, x1]

C1(x) x ∈ [x1, x2]
...

...
Cn−1(x) x ∈ [xn−1, xn]

There are 4n unknowns, hence, we require 4n conditions.
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Cubic Spline
We can use the following 4n conditions
• The function values must be equal at the interior knots (2n− 2

conditions)
• The first and last function must pass through the end points (2

conditions)
• The first derivatives at the interior knots must be equal (n− 1 conditions)
• The second derivatives at the interior knots must be equal (n− 1

conditions)
• The second derivatives at the end knots are zero (2 conditions)
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Cubic Spline
Cubic splines for each interval is given by

Ci(x) =
C ′′
i (xi−1)

6(xi − xi−1)
(xi − x)3 +

C ′′
i (xi)

6(x− xi−1)
(x− xi−1)

3

+

[
f(xi−1)

xi − xi−1
− f ′′(xi−1)(xi − xi−1)

6

]
(xi − x) (9)

+

[
f(xi)

xi − xi−1
− f ′′(xi)(xi − xi−1)

6

]
(x− xi−1)

This equation contains only two unknowns-the second derivatives at the end
of each interval.
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Cubic Spline
These unknowns can be evaluated using the following equation

(xi − xi−1)C
′′(xi−1) + 2(xi+1 − xi−1)C

′′(xi) + (xi+1 − xi)C
′′(xi+1)

=
6

xi+1 − xi
[f(xi+1)− f(xi)] +

6

xi − xi−1
[f(xi−1)− f(xi)] (10)

If this equation is written for all interior knots n− 1 simultaneous equations
result with n− 1 unknowns.

53



Cubic Spline

Example 12
Fit the following data with cubic spline and evaluate the function at x = 5

x 3.0 4.5 7.0 9.0
f(x) 2.5 1.0 2.5 0.5

For this case, we need to find 4n unknowns, here n = 3, therefore, 12 unknowns
must be determined

By equation (10), we get

(4.5− 3)C ′′(3) + 2(7− 3)C ′′(4.5) + (7− 4.5)C ′′(7)

=
6

7− 4.5
[2.5− 1] +

6

4.5− 3
[2.5− 1]
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Cubic Spline
Since C ′′(3) = 0, we obtain,

8C ′′(4.5) + 2.5C ′′(7) = 9.6

Similarly, we obtain
2.5C ′′(4.5) + 9C ′′(7) = −9.6

Upon solving, we get

C ′′(4.5) = 1.67909, C ′′(7) = −1.53308
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Cubic Spline
Now

Ci(x) =
C ′′
i (xi−1)

6(xi − xi−1)
(xi − x)3 +

C ′′
i (xi)

6(x− xi−1)
(x− xi−1)

3

+

[
f(xi−1)

xi − xi−1
− f ′′(xi−1)(xi − xi−1)

6

]
(xi − x)

+

[
f(xi)

xi − xi−1
− f ′′(xi)(xi − xi−1)

6

]
(x− xi−1)

C1(x) =
1.67909

6(4.5− 3)
(x− 3)3 +

[
2.5

4.5− 3

]
(4.5− x)

+

[
1

4.5− 3
− 1.67909(4.5− 3)

6

]
(x− 3)

56



Cubic Spline
Hence,

C0(x) = 0.186566(x− 3)3 + 1.666667(4.5− x) + 0.246894(x− 3)

Similarly,

C1(x) = 0.111939(7− x)3 − 0.102205(x− 4.5)3 − 0.299621(7− x) + 1.638783(x− 4.5)

C2(x) = −0.127757(9− x)3 + 1.761027(9− x) + 0.25(x− 7)

Hence C2(5) = 1.102886
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Cubic Spline

58



Comparison
Property Linear Quadratic Cubic
Continuity C[a, b] C1[a, b] C2[a, b]

Smoothness No (kinks) First derivative Very smooth
smooth no kinks

Computation Low Moderate Higher
Accuracy Low Medium High

Application Simple Application with Physics, Graphics,
Models first derivative data fitting,

smooth is sufficient medical imaging
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Comparison
Feature Polynomial Spline
Definition Single high-degree polynomial Piecewise low-degree polynomials

to fit all data points
Smoothness C∞ C2 for cubic
Oscillation Oscillate No large oscillations

Computation Requires large solving system Tridiagonal system solver
Accuracy High for small datasets High accuracy

but unstable for large datasets but stable for large datasets
Runge’s phenomenon Severe oscillations for No oscillations

for large datasets stable for large datasets
Applications Good for small datasets Good for large datasets

smooth and stable approximations
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Bezier Curve
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Parametric Curves
Linear Bezier Curve

B(t) = (1− t)P0 + tP1, 0 ≤ t ≤ 1

Quadratic Bezier Curve

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2, 0 ≤ t ≤ 1

Cubic Bezier Curve

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3, 0 ≤ t ≤ 1
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Parametric Curves

B(t) =

n∑
i=0

(
n

i

)
(1− t)n−itiPi
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