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Nonlinear Equations:
Open Methods
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Recap: Bracketing Methods

• For bracketing methods, the root is located within an interval.
• Iteratively applying the bracketing methods, we estimate a closer values

to the true value of the root.
• These methods converge because they move closer to the truth.
• However, there is a disadvantage that, we have to find the two guesses

one for a0 and one for b0 which brackets the roots.
• A wrong guess of either a0 or b0 will go vain.
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Introduction: Open Methods

• In contrast, the open methods require a single starting value or two
starting value that do not necessarily bracket the root.

• Open methods converge much faster that bracketing methods.
• However, the disadvantage of open methods is that, it can diver or move

away from the true root.
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Newton-Raphson
Method
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Newton-Raphson Method From Fixed Point
The easiest way to construct a fixed point iteration associated with a
root-finding problem f(x) = 0 is to subtract f(x) from x. So, let us consider

xn+1 = g(xn)

where g is of the form
g(x) = x− ϕ(x)f(x)

where ϕ is a differentiable function. For the iterative scheme to be
quadratically convergence, we need to have g′(xr) = 0 when f(xr) = 0

g′(x) = 1− ϕ′(x)f(x)− f ′(x)ϕ(x) =⇒ ϕ(xr) = 1/f ′(xr)

So, choose,
ϕ(x) = 1/f ′(x)
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Secant Method
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Secant Method

• As we have seen earlier, Newton-Raphson method requires calculation of
derivatives always.

• Instead of this, Secant method uses an equivalent method to compute
the roots as a general-purpose procedure, however the convergence is as
fast as Newton-Raphson method.

• However, Secant method requires two starting values.
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Secant Method
As per the Newton-Raphson method we have

xn+1 = xn − f(xn)

f ′(xn)

By the definition of derivative we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

f ′(x) ≈ f(x+ h)− f(x)

h
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Secant Method
In particular, let us choose, x = xn and h = xn−1 − xn, we have

f ′(x) ≈ f(xn−1)− f(xn)

xn−1 − xn

Therefore, the Newton-Raphson method becomes

xn+1 = xn − xn − xn−1

f(xn)− f(xn−1)
f(xn)
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Secant Method

• The name Secant is used because on the right hand side instead of the
tangent f ′(x) we have used the slope of the secant line to the graph of f .

• For the same reason, Newton-Raphson method is called as tangent
method.

• From the equation, it is clear that we require two starting values say
x0, x1.

• Then the sequence can generate the rest.
• Once again if f(xn)− f(xn−1) are nearly zero, either loss of significant

digits or overflow error can occur.
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Secant Method : Convergence Analysis
From the comparison of False-position method and Secant method you can
observe that both are almost same and hence the order of convergence of
Secant method is also the golden ratio.
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Secant Method

Example 1
UseSecantmethod to locate the root of f(x) = ex−1.5−tan−1(x), withx0 = −7
and x1 = −10.0.

Iteration (i) xi−1 xi xi+1 |f(xi+1)|
0 -7.000000 -10.000000 -12.090831 0.011718
1 -10.000000 -12.090831 -13.522760 0.003017
2 -12.090831 -13.522760 -14.019379 0.000412
3 -13.522760 -14.019379 -14.097931 0.000017
4 -14.019379 -14.097931 -14.101250 0.000000

The root is -14.101250. N-R took, 6 steps.
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Secant Method

Example 2
Use Secant method to locate the root of f(x) = cos(x) − x with x0 = 0 and
x1 = π/4.

Iteration (i) xi−1 xi xi+1 |f(xi+1)|
0 0.000000 0.785398 0.728373 0.017886
1 0.785398 0.728373 0.738978 0.000180
2 0.728373 0.738978 0.739085 0.000000

The root is 0.739085. N-R Method took, 3 steps.
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Secant Method

Example 3
Use Secant method to locate the root of f(x) = x10 − 1 with x0 = 0, x1 = 0.78.

Iteration (i) xi−1 xi xi+1 |f(xi+1)|
0 1.200000 2.000000 1.195919 4.984373
1 2.000000 1.195919 1.191982 4.790263
2 1.195919 1.191982 1.094827 1.474313
3 1.191982 1.094827 1.051630 0.654365
4 1.094827 1.051630 1.017157 0.185442
5 1.051630 1.017157 1.003524 0.035806
6 1.017157 1.003524 1.000262 0.002623
7 1.003524 1.000262 1.000004 0.000041
8 1.000262 1.000004 1.000000 0.000000

The root is 1.0. N-R took 43 steps.
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Multiple Roots

15



Multiple Roots
One of the disadvantage of Newton-Raphson and Secant method is that we
must have f ′(xr) ̸= 0 and f(xr) ̸= 0. To overcome this difficulty, let us employ
another way.

Definition 4
Multiplicity: A root xr of f(x) = 0 is a root of multiplicity m of f if for x ̸= xr ,
we can write

f(x) = (x− xr)
mQ(x)

where
lim
x→xr

Q(x) ̸= 0

Theorem 5
The function f ∈ C1[a, b] has a simple root at xr in (a, b) if and only if f(xr) = 0
and f ′(xr) ̸= 0.
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Multiple Roots

Theorem 6
The function f ∈ Cm[a, b] has a root of multiplicity m at xr in (a, b) if and only
if

f(xr) = f ′(xr) = f ′′(xr) = f (m−1)(xr) = 0 but f (m)(xr) ̸= 0

If a root is simple root, then Newton-Raphson method can be applied. Now,
let us define a new function

µ(x) =
f(x)

f ′(x)

If xr is a root of f of multiplicity m with f(x) = (x− xr)
mQ(x), then

f ′(x) = m(x− xr)
m−1Q(x) + (x− xr)

mQ′(x)
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Multiple Roots

µ(x) =
(x− xr)

mQ(x)

m(x− xr)m−1Q(x) + (x− xr)mQ′(x)

= (x− xr)
Q(x)

mQ(x) + (x− xr)Q′(x)

At x = xr , we have µ(xr) = 0. Now,

µ′(x) =
Q(x)

mQ(x) + (x− xr)Q′(x)
+ (x− xr)

[
Q(x)

mQ(x) + (x− xr)Q′(x)

]′
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Multiple Roots
At x = xr , we have

µ′(xr) =
1

m

If we apply the Newton-Raphson method for the function µ(x), we obtain that

xn+1 = xn − µ(xn)

µ′(xn)
= x− f(xn)

f ′(xn)

f ′(xn)
2

f ′(xn)2 − f(xn)f ′′(xn)

xn+1 = xn − f(xn)f
′(xn)

f ′(xn)2 − f(xn)f ′′(xn)

The above iteration provides the root of the function f under certain
continuity and differentiability conditions and it converges quadratically for
the root of multiplicity m of f . Here, we need more work on f with
computation of f ′′ also. 19



Comparison
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Comparison of Methods

Method Initial Guess Formula
Bisection a0, b0with xr

n = an+bn
2

f(a0)f(b0) < 0 change an+1 = xr
n

or bn+1 = xr
n

False Position a0, b0 with xr
n = bn − f(bn) an−bn

f(an)−f(bn)
f(a0)f(b0) < 0 change an+1 = xr

n or
bn+1 = xr

n
Fixed Point x0 , then rewrite xn+1 = f(xn)

g(x) = 0 as f(x) = x

Newton-Raphson x0 xn+1 = xn − f(xn)

f′(xn)

Secant xn+1 = xn −
f(xn)(xn−1−xn)

f(xn−1)−f(xn)

x0, x1 xn+1 = xn
xn = xn−1

Modified

Newton-Raphson x0 xn+1 = xn − f(xn)f′(xn)

f′(xn)2−f(xn)f′′(xn)
for multiple roots
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Comparison of Methods

Method Merits Demerits Failures
Bisection Always converge Slow Convergence For complex roots

Linear Convergence or even multiple roots
False Position Always converge, 1.618 Slow Convergence For complex roots

Faster than Bisection or even multiple roots
convergence order 1.618 for significant curvature

Fixed Point Simple to compute Converges Fails for |f ′(x)| > 1
Linear Convergence when |f ′(x)| < 1

Newton-Raphson Widely used, Converges Finding derivative inflection point
faster if it does is difficult, diverge extrema
Quadratic convergence or poor convergence tangent or slope zero

Secant No derivatives Selecting initial guess inflection point
faster if it does is difficult, diverge extrema
convergence order 1.618 or poor convergence tangent or slope zero

Modified Useful for multiples Finding derivatives are Not useful
Newton-Raphson root cases difficult, inefficient for functions
for multiple roots Quadratic convergence for simple roots with simple roots
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Complex Roots and
Müller’s Method
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Müller’s Method
One problem with applying the Secant, False Position, or Newton’s method to
polynomials is the possibility of the polynomial having complex roots even
when all the coefficients are real numbers. If the initial approximation is a real
number, all subsequent approximations will also be real numbers. One way to
overcome this difficulty is to begin with a complex initial approximation and
do all the computations using complex arithmetic. An alternative approach
has its basis in the following theorem.

Theorem 7
If z = a+ib is a complex root of multiplicitym of the polynomial Pn(x)with real
coefficients, then z = a − ib is also a root of multiplicity m of the polynomial
Pn(x), and

Pn(x) = (x2 − 2ax+ a2 + b2)mQ(x)
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Polynomials
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Polynomials
Many physics, engineering and real life problems are getting benefits of
polynomials, for example, third equation of motion

u2 − v2 = 2as

in finance to compute the interest

A = P
i(1 + i)n

(1 + i)n − 1

in RNN, the Legendre polynomials

P3(x) =
1

2
(5x3 − 3x)
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Polynomials
In control systems, transfer functions for a robotic position system is given by

G(s) =
s3 + 9s2 + 26s+ 24

s4 + 15s3 + 77s2 + 153s+ 90

Finding the roots of a polynomial is another important task in engineering
sciences. For example, when we solve an ordinary differential equations with
constant coefficients, we will end up with a polynomial. In order to find the
solution of this differential equation, we must solve this polynomial.
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Quadratic/Cubic Equations

ax2 + bx+ c = 0

x =
−b±

√
b2 − 4ac

2a

ax3 + bx2 + cx+ d = 0 (1)

In general, the roots of the Cubic equation (1) is given by

xk =
1

3a

(
b+ µkP +

∆0

µkP

)
, k = 0, 1, 2

µ =
−1 +

√
−3

2
, P =

3

√
∆1 ±

√
∆2

1 − 4∆3
0

2

∆0 = b2 − 3ac,∆1 = 2b3 − 9abc+ 27a2d
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Cubic Equations

Example 8
Find the roots of the following equation x3 − 5x2 + 8x− 4 = 0

µ = −1+
√
3i

2

∆0 = 25− 24 = 1

∆1 = −250 + 360− 108 = 2

P =
3

√
2±

√
22−4∗13
2 = 1

x0 = 1
3

(
−5 + 1 + 1

1

)
= 1

x1 = 1
3

(
−5 + −1+

√
3i

2 + 2
−1+

√
3i

)
= 2

x2 = 1
3

(
−5 +

(
−1+

√
3i

2

)2
+
(

2
−1+

√
3i

)2
)

= 2

Therefore, the roots are 1, 2, 2. 29



Quartic Equation
The four roots of the general quartic equation

ax4 + bx3 + cx2 + dx+ e = 0 (2)

is given by

x = − b

4a
± S ± 1

2

√
−4S2 − 2p+

q

S

S =
1

2

√
−2

3
p+

1

3a

(
Q+

∆0

Q

)
, Q =

3

√
∆1 +

√
∆2

1 − 4∆3
0

2

p =
8ac− 3b2

8a2
, q =

b3 − 4abc+ 8a2d

8a3

∆0 = c2 − 3bd+ 12ae

∆1 = 2c3 − 9bcd+ 27b2e+ 27ad2 − 72ace
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Fundamental Theorem of Algebra
A polynomial Pn(x) of degree n has the form

Pn(x) =

n∑
i=0

aix
i (3)

Theorem 9 (Fundamental Theorem of Algebra)
Every nonconstant polynomial has at least one zero in the complex field.
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Remainder Theorem
Note that fundamental theorem does not guarantee the existence of real
roots for even simple problems such as x2 + 1 = 0 although all its
coefficients are real.

Theorem 10 (Remainder Theorem)
If we divide a polynomial by (x− xr) then we obtain

Pn(x) = (x− xr)Qn−1(x) + Pn(xr)

where Qn−1(x) is a polynomial of degree n− 1 and Pn(xr) is the remainder
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Factor Theorem
Let us say a root of Pn(x) is xr1 , then Pn(x) = (x− xr1)Qn−1(x). If Qn−1(x) is
a nonconstant polynomial of degree ≥ 1, then by fundamental theorem
Qn−1(x) has a root say xr2 . Hence, we can write

Pn(x) = (x− xr1)(x− xr2)Rn−2(x)
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Factor Theorem
Repeating this procedure we obtain the following theorem.

Theorem 11 (Factor Theorem)
If Pn(x) is a polynomial of degree n ≥ 1with real or complex coefficients, then
there exists unique constants xr1 , xr2 , · · · , xrk , possibly complex and unique
positive integers m1,m2, · · · ,mk such that

Pn(x) = an(x− xr1)
m1(x− xr2)

m2 · · · (x− xrk)
mk (4)

where
k∑

i=0

mi = n

Here mi is the multiplicity of the root xri .
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Locate the Roots
We have identified that if the initial guesses are near the root, then most
probably methods will converge to the root. However, how to localize the
roots is a question. The following theorem helps to identify the upper bound
for the roots.

Theorem 12 (Locate the Roots)
All roots of a polynomial Pn(x) lie in a annulus in the complex plane whose
inner radius r and outer radius R is given by

1

r
= 1 +

1

|a0|
max
0≤i≤n

|ai| (5)

R = 1 +
1

|an|
max
0≤i≤n

|ai| (6)
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Locate the Roots

Example 13
Find the annulus that contains all the roots of the polynomial

P4(x) = x4 − 4x3 + 7x2 − 5x− 2

R = 1 + |a4|−1 max
0≤i≤4

|ai| = 8 and
1

r
= 1 + |a0|−1 max

0≤i≤4
|ai| =

9

2

Therefore, all the roots of the polynomial P4(x) lies in the annulus 2
9 < |z| < 8
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Horner’s Method
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Horner’s Method
When we apply the Newton-Raphson method to find the roots of a polynomial
Pn(x), we obtain that

xn+1 = xn − Pn(x)

P ′
n(x)

(7)

Using theorem (12) we can identify the disk or annulus where the roots are
located. However, to find the approximate roots of the polynomial Pn(x), we
need to compute both Pn(x) and P ′

n(x) at prescribed values at each step.
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Horner’s Method
In order to compute the polynomial evaluation in computer, it is better to use
the following method. A polynomial Pn(x)

Pn(x) = anx
n + an−1x

n−1 + · · · a1x+ a0

can also be written as

Pn(x) = (· · · ((anx+ an−1)x+ an−2)x+ · · · a1)x+ a0
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Horner’s Method

Theorem 14 (Horner’s Method)
Let

Pn(x) = anx
n + an−1x

n−1 + · · · a1x+ a0

Define bn = an and

bk = ak + bk+1x0, for k = n− 1, n− 2, · · · 1, 0,

then Pn(x0) = b0. Further,

Pn(x) = (x− x0)Qn−1(x) + b0

where
Qn−1(x) = bnx

n−1 + bn−1x
n−2 + · · ·+ b2x+ b1
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Horner’s Method
Horner’s method uses the nesting technique to compute the n-degree
polynomial which requires only n multiplications and n additions. Also it has
an advantage that when the Newton-Raphson method is implemented, both
Pn(x) and P ′

n(x) can be evaluated in the same manner as P ′
n(x0) = Qn−1(x0).

With the assistance of Horner’s method, Newton-Raphson iteration we will
obtain a simple root xr1 of the polynomial Pn(x). In such case the polynomial
can be written as

Pn(x) = (x− xr1)Qn−1(x)
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Horner’s Method
Upon obtaining the root of xr1 , we need to obtain Qn−1(x), which is called
polynomial deflation as the degree of Qn−1(x) is one less than the
polynomial Pn(x). The below algorithm produces the deflated polynomial.
Note that if xr1 is a simple root, then b0 will become zero from this algorithm.
If xr1 is a root, then b0 will survive. We can now employ the Newton-Raphson
method again on Qn−1(x) and obtain that

Qn−1(x) = (x− xr2)Rn−2(x)

Pn(x) = (x− xr1)(x− xr2)Rn−2(x)
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panch.m@iittp.ac.in
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