MA633L-Numerical Analysis

Lecture 19 : Solution of Nonlinear Equations: Open Methods - Secant Method

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

February 20, 2025

Nonlinear Equations: Open Methods

Recap: Bracketing Methods

- For bracketing methods, the root is located within an interval.
- Iteratively applying the bracketing methods, we estimate a closer values to the true value of the root.
- These methods converge because they move closer to the truth.
- However, there is a disadvantage that, we have to find the two guesses one for a_0 and one for b_0 which brackets the roots.
- A wrong guess of either a_0 or b_0 will go vain.

Introduction: Open Methods

- In contrast, the open methods require a single starting value or two starting value that do not necessarily bracket the root.
- Open methods converge much faster that bracketing methods.
- However, the disadvantage of open methods is that, it can diver or move away from the true root.

Newton-Raphson Method

Newton-Raphson Method From Fixed Point

The easiest way to construct a fixed point iteration associated with a root-finding problem f(x) = 0 is to subtract f(x) from x. So, let us consider

$$x_{n+1} = g(x_n)$$

where g is of the form

$$g(x) = x - \phi(x)f(x)$$

where ϕ is a differentiable function. For the iterative scheme to be quadratically convergence, we need to have $g'(x_r) = 0$ when $f(x_r) = 0$

$$g'(x) = 1 - \phi'(x)f(x) - f'(x)\phi(x) \implies \phi(x_r) = 1/f'(x_r)$$

So, choose,

$$\phi(x) = 1/f'(x)$$

- As we have seen earlier, Newton-Raphson method requires calculation of derivatives always.
- Instead of this, Secant method uses an equivalent method to compute the roots as a general-purpose procedure, however the convergence is as fast as Newton-Raphson method.
- However, Secant method requires two starting values.

As per the Newton-Raphson method we have

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

By the definition of derivative we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

In particular, let us choose, $x = x_n$ and $h = x_{n-1} - x_n$, we have

$$f'(x) \approx \frac{f(x_{n-1}) - f(x_n)}{x_{n-1} - x_n}$$

Therefore, the Newton-Raphson method becomes

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

- The name Secant is used because on the right hand side instead of the tangent f'(x) we have used the slope of the secant line to the graph of f.
- For the same reason, Newton-Raphson method is called as tangent method.
- From the equation, it is clear that we require two starting values say x_0, x_1 .
- Then the sequence can generate the rest.
- Once again if $f(x_n) f(x_{n-1})$ are nearly zero, either loss of significant digits or overflow error can occur.

Secant Method : Convergence Analysis

From the comparison of False-position method and Secant method you can observe that both are almost same and hence the order of convergence of Secant method is also the golden ratio.

MUMERICAL ANALYSY

Example 1

Use Secant method to locate the root of $f(x) = e^x - 1.5 - \tan^{-1}(x)$, with $x_0 = -7$ and $x_1 = -10.0$.

Iteration (i)	x_{i-1}	x_i	x_{i+1}	$ f(x_{i+1}) $
0	-7.000000	-10.000000	-12.090831	0.011718
1	-10.000000	-12.090831	-13.522760	0.003017
2	-12.090831	-13.522760	-14.019379	0.000412
3	-13.522760	-14.019379	-14.097931	0.000017
4	-14.019379	-14.097931	-14.101250	0.000000

The root is -14.101250. N-R took, 6 steps.

Example 2

Use Secant method to locate the root of $f(x) = \cos(x) - x$ with $x_0 = 0$ and $x_1 = \pi/4$.

Iteration (i)	x_{i-1}	x_i	x_{i+1}	$ f(x_{i+1}) $
0	0.000000	0.785398	0.728373	0.017886
1	0.785398	0.728373	0.738978	0.000180
2	0.728373	0.738978	0.739085	0.000000

The root is 0.739085. N-R Method took, 3 steps.

Example 3

Use Secant method to locate the root of $f(x) = x^{10} - 1$ with $x_0 = 0$, $x_1 = 0.78$.

Iteration (i)	x_{i-1}	x_i	x_{i+1}	$ f(x_{i+1}) $
0	1.200000	2.000000	1.195919	4.984373
1	2.000000	1.195919	1.191982	4.790263
2	1.195919	1.191982	1.094827	1.474313
3	1.191982	1.094827	1.051630	0.654365
4	1.094827	1.051630	1.017157	0.185442
5	1.051630	1.017157	1.003524	0.035806
6	1.017157	1.003524	1.000262	0.002623
7	1.003524	1.000262	1.000004	0.000041
8	1.000262	1.000004	1.000000	0.000000

The root is 1.0. N-R took 43 steps.

One of the disadvantage of Newton-Raphson and Secant method is that we must have $f'(x_r) \neq 0$ and $f(x_r) \neq 0$. To overcome this difficulty, let us employ another way.

Definition 4

Multiplicity: A root x_r of f(x) = 0 is a root of multiplicity m of f if for $x \neq x_r$, we can write

$$f(x) = (x - x_r)^m Q(x)$$

where

$$\lim_{x \to x_r} Q(x) \neq 0$$

Theorem 5

The function $f \in C^1[a, b]$ has a simple root at x_r in (a, b) if and only if $f(x_r) = 0$ and $f'(x_r) \neq 0$.

Theorem 6

The function $f \in C^m[a, b]$ has a root of multiplicity m at x_r in (a, b) if and only if $f(x_r) = f'(x_r) = f''(x_r) = f^{(m-1)}(x_r) = 0 \quad \text{but } f^{(m)}(x_r) \neq 0$

If a root is simple root, then Newton-Raphson method can be applied. Now, let us define a new function

$$\mu(x) = \frac{f(x)}{f'(x)}$$

If x_r is a root of f of multiplicity m with $f(x) = (x - x_r)^m Q(x)$, then

$$f'(x) = m(x - x_r)^{m-1}Q(x) + (x - x_r)^m Q'(x)$$

$$\mu(x) = \frac{(x - x_r)^m Q(x)}{m(x - x_r)^{m-1} Q(x) + (x - x_r)^m Q'(x)}$$
$$= (x - x_r) \frac{Q(x)}{mQ(x) + (x - x_r)Q'(x)}$$

At $x = x_r$, we have $\mu(x_r) = 0$. Now,

$$\mu'(x) = \frac{Q(x)}{mQ(x) + (x - x_r)Q'(x)} + (x - x_r) \left[\frac{Q(x)}{mQ(x) + (x - x_r)Q'(x)}\right]'$$

At $x = x_r$, we have

If we apply the Newton-Raphson method for the function $\mu(x)$, we obtain that

$$x_{n+1} = x_n - \frac{\mu(x_n)}{\mu'(x_n)} = x - \frac{f(x_n)}{f'(x_n)} \frac{f'(x_n)^2}{f'(x_n)^2 - f(x_n)f''(x_n)}$$
$$x_{n+1} = x_n - \frac{f(x_n)f'(x_n)}{f'(x_n)^2 - f(x_n)f''(x_n)}$$

The above iteration provides the root of the function f under certain continuity and differentiability conditions and it converges quadratically for the root of multiplicity m of f. Here, we need more work on f with computation of f'' also.

Comparison

Comparison of Methods

MUMERICAL MALVER
-

Method	Initial Guess	Formula
Bisection	a_0, b_0 with	$x_n^r = \frac{a_n + b_n}{2}$
	$f(a_0)f(b_0) < 0$	change $a_{n+1} = x_n^r$
		or $b_{n+1} = x_n^r$
False Position	a_0, b_0 with	$ \begin{array}{l} x_n^r = b_n - f(b_n) \frac{a_n - b_n}{f(a_n) - f(b_n)} \\ \text{change } a_{n+1} = x_n^r \text{ or } \end{array} $
	$f(a_0)f(b_0) < 0$	change $a_{n+1} = x_n^r$ or
		$b_{n+1} = x_n^r$
Fixed Point	x_0 , then rewrite	$x_{n+1} = f(x_n)$
	g(x) = 0 as $f(x) = x$	
Newton-Raphson	x_0	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
Secant		$x_{n+1} = x_n - \frac{f(x_n)(x_{n-1} - x_n)}{f(x_{n-1}) - f(x_n)}$
	x_0, x_1	$x_{n+1} = x_n$
		$x_n = x_{n-1}$
Modified		,
Newton-Raphson	x_0	$x_{n+1} = x_n - \frac{f(x_n)f'(x_n)}{f'(x_n)^2 - f(x_n)f''(x_n)}$
for multiple roots		$\int (xn) - \int (xn) \int (xn)$

Comparison of Methods

Method	Merits	Demerits	Failures
Bisection	Always converge	Slow Convergence	For complex roots
	Linear Convergence		or even multiple roots
False Position	Always converge, 1.618	Slow Convergence	For complex roots
	Faster than Bisection		or even multiple roots
	convergence order 1.618		for significant curvature
Fixed Point	Simple to compute	Converges	Fails for $ f'(x) > 1$
	Linear Convergence	when $ f'(x) < 1$	
Newton-Raphson	Widely used, Converges	Finding derivative	inflection point
	faster if it does	is difficult, diverge	extrema
	Quadratic convergence	or poor convergence	tangent or slope zero
Secant	No derivatives	Selecting initial guess	inflection point
	faster if it does	is difficult, diverge	extrema
	convergence order 1.618	or poor convergence	tangent or slope zero
Modified	Useful for multiples	Finding derivatives are	Not useful
Newton-Raphson	root cases	difficult, inefficient	for functions
for multiple roots	Quadratic convergence	for simple roots	with simple roots

Complex Roots and Müller's Method

Müller's Method

One problem with applying the Secant, False Position, or Newton's method to polynomials is the possibility of the polynomial having complex roots even when all the coefficients are real numbers. If the initial approximation is a real number, all subsequent approximations will also be real numbers. One way to overcome this difficulty is to begin with a complex initial approximation and do all the computations using complex arithmetic. An alternative approach has its basis in the following theorem.

Theorem 7

If z = a + ib is a complex root of multiplicity m of the polynomial $P_n(x)$ with real coefficients, then z = a - ib is also a root of multiplicity m of the polynomial $P_n(x)$, and

$$P_n(x) = (x^2 - 2ax + a^2 + b^2)^m Q(x)$$

Polynomials

Polynomials

Many physics, engineering and real life problems are getting benefits of polynomials, for example, third equation of motion

$$u^2 - v^2 = 2as$$

in finance to compute the interest

$$A = P \frac{i(1+i)^n}{(1+i)^n - 1}$$

in RNN, the Legendre polynomials

$$P_3(x) = \frac{1}{2}(5x^3 - 3x)$$

Polynomials

In control systems, transfer functions for a robotic position system is given by

$$G(s) = \frac{s^3 + 9s^2 + 26s + 24}{s^4 + 15s^3 + 77s^2 + 153s + 90}$$

Finding the roots of a polynomial is another important task in engineering sciences. For example, when we solve an ordinary differential equations with constant coefficients, we will end up with a polynomial. In order to find the solution of this differential equation, we must solve this polynomial.

Quadratic/Cubic Equations

$$ax^2 + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$ax^3 + bx^2 + cx + d = 0$$

In general, the roots of the Cubic equation (1) is given by

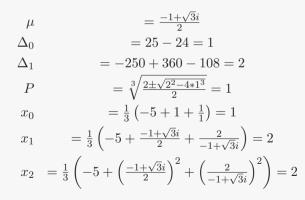
$$x_{k} = \frac{1}{3a} \left(b + \mu^{k} P + \frac{\Delta_{0}}{\mu^{k} P} \right), k = 0, 1, 2$$
$$\mu = \frac{-1 + \sqrt{-3}}{2}, P = \sqrt[3]{\frac{\Delta_{1} \pm \sqrt{\Delta_{1}^{2} - 4\Delta_{0}^{3}}}{2}}$$
$$\Delta_{0} = b^{2} - 3ac, \Delta_{1} = 2b^{3} - 9abc + 27a^{2}d$$

(1)

Cubic Equations

Example 8

Find the roots of the following equation $x^3 - 5x^2 + 8x - 4 = 0$



Therefore, the roots are 1, 2, 2.

Quartic Equation

The four roots of the general quartic equation

$$ax^4 + bx^3 + cx^2 + dx + e = 0$$

is given by

$$\begin{aligned} x &= -\frac{b}{4a} \pm S \pm \frac{1}{2}\sqrt{-4S^2 - 2p + \frac{q}{S}} \\ S &= \frac{1}{2}\sqrt{-\frac{2}{3}p + \frac{1}{3a}\left(Q + \frac{\Delta_0}{Q}\right)}, Q = \sqrt[3]{\frac{\Delta_1 + \sqrt{\Delta_1^2 - 4\Delta_0^3}}{2}} \\ p &= \frac{8ac - 3b^2}{8a^2}, q = \frac{b^3 - 4abc + 8a^2d}{8a^3} \\ \Delta_0 &= c^2 - 3bd + 12ae \\ \Delta_1 &= 2c^3 - 9bcd + 27b^2e + 27ad^2 - 72ace \end{aligned}$$

(2)

Fundamental Theorem of Algebra

A polynomial $P_n(x)$ of degree n has the form

$$P_n(x) = \sum_{i=0}^n a_i x^i$$

(3)

Theorem 9 (Fundamental Theorem of Algebra)

Every nonconstant polynomial has at least one zero in the complex field.

Remainder Theorem

Note that fundamental theorem does not guarantee the existence of real roots for even simple problems such as $x^2 + 1 = 0$ although all its coefficients are real.

Theorem 10 (Remainder Theorem)

If we divide a polynomial by $(x - x_r)$ then we obtain

$$P_n(x) = (x - x_r)Q_{n-1}(x) + P_n(x_r)$$

where $Q_{n-1}(x)$ is a polynomial of degree n-1 and $P_n(x_r)$ is the remainder

Factor Theorem

Let us say a root of $P_n(x)$ is x_{r_1} , then $P_n(x) = (x - x_{r_1})Q_{n-1}(x)$. If $Q_{n-1}(x)$ is a nonconstant polynomial of degree ≥ 1 , then by fundamental theorem $Q_{n-1}(x)$ has a root say x_{r_2} . Hence, we can write

$$P_n(x) = (x - x_{r_1})(x - x_{r_2})R_{n-2}(x)$$

Factor Theorem

Repeating this procedure we obtain the following theorem.

Theorem 11 (Factor Theorem)

If $P_n(x)$ is a polynomial of degree $n \ge 1$ with real or complex coefficients, then there exists unique constants $x_{r_1}, x_{r_2}, \cdots, x_{r_k}$, possibly complex and unique positive integers m_1, m_2, \cdots, m_k such that

$$P_n(x) = a_n (x - x_{r_1})^{m_1} (x - x_{r_2})^{m_2} \cdots (x - x_{r_k})^{m_k}$$
(4)

where

$$\sum_{i=0}^{k} m_i = n$$

Here m_i is the multiplicity of the root x_{r_i} .

Locate the Roots

NUMERICAL AMALTER

We have identified that if the initial guesses are near the root, then most probably methods will converge to the root. However, how to localize the roots is a question. The following theorem helps to identify the upper bound for the roots.

Theorem 12 (Locate the Roots)

All roots of a polynomial $P_n(x)$ lie in a annulus in the complex plane whose inner radius r and outer radius R is given by

$$\frac{1}{r} = 1 + \frac{1}{|a_0|} \max_{0 \le i \le n} |a_i|$$

$$R = 1 + \frac{1}{|a_n|} \max_{0 \le i \le n} |a_i|$$
(6)

Locate the Roots

Example 13

Find the annulus that contains all the roots of the polynomial

$$P_4(x) = x^4 - 4x^3 + 7x^2 - 5x - 2$$

$$R = 1 + |a_4|^{-1} \max_{0 \le i \le 4} |a_i| = 8$$
 and $\frac{1}{r} = 1 + |a_0|^{-1} \max_{0 \le i \le 4} |a_i| = \frac{9}{2}$

Therefore, all the roots of the polynomial $P_4(x)$ lies in the annulus $\frac{2}{9} < |z| < 8$

When we apply the Newton-Raphson method to find the roots of a polynomial $P_n(x)$, we obtain that

$$x_{n+1} = x_n - \frac{P_n(x)}{P'_n(x)}$$
(7)

Using theorem (12) we can identify the disk or annulus where the roots are located. However, to find the approximate roots of the polynomial $P_n(x)$, we need to compute both $P_n(x)$ and $P'_n(x)$ at prescribed values at each step.

NUMERICAL MALTER

In order to compute the polynomial evaluation in computer, it is better to use the following method. A polynomial $P_n(x)$

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

can also be written as

$$P_n(x) = (\cdots ((a_n x + a_{n-1})x + a_{n-2})x + \cdots + a_1)x + a_0$$

Theorem 14 (Horner's Method) Let $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ Define $b_n = a_n$ and $b_k = a_k + b_{k+1} x_0$, for $k = n - 1, n - 2, \cdots + 1, 0$, then $P_n(x_0) = b_0$. Further,

$$P_n(x) = (x - x_0)Q_{n-1}(x) + b_0$$

where

$$Q_{n-1}(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$$

Horner's method uses the nesting technique to compute the *n*-degree polynomial which requires only *n* multiplications and *n* additions. Also it has an advantage that when the Newton-Raphson method is implemented, both $P_n(x)$ and $P'_n(x)$ can be evaluated in the same manner as $P'_n(x_0) = Q_{n-1}(x_0)$. With the assistance of Horner's method, Newton-Raphson iteration we will obtain a simple root x_{r_1} of the polynomial $P_n(x)$. In such case the polynomial can be written as

$$P_n(x) = (x - x_{r_1})Q_{n-1}(x)$$

Upon obtaining the root of x_{r_1} , we need to obtain $Q_{n-1}(x)$, which is called **polynomial deflation** as the degree of $Q_{n-1}(x)$ is one less than the polynomial $P_n(x)$. The below algorithm produces the deflated polynomial. Note that if x_{r_1} is a simple root, then b_0 will become zero from this algorithm. If x_{r_1} is a root, then b_0 will survive. We can now employ the Newton-Raphson method again on $Q_{n-1}(x)$ and obtain that

$$Q_{n-1}(x) = (x - x_{r_2})R_{n-2}(x)$$

 $P_n(x) = (x - x_{r_1})(x - x_{r_2})R_{n-2}(x)$

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

MA633L-Numerical Analysis

Lecture 19 : Solution of Nonlinear Equations: Open Methods - Secant Method

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

February 20, 2025

