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Preliminaries



Rolle’s Theorem
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Source: Thomas Calculus Book

Theorem 1 (Rolle’s Theorem)
Suppose f € Cla,b] and f is differentiable on (a,b). If f(a) = f(b), then a
number ¢ € (a, b) exists with f'(c¢) = 0.




Mean Value Theorem

Parallel lines

Source: Thomas Calculus Book

Theorem 2 (Mean Value Theorem)
If f € Cla,b] and f is differentiable on (a,b), then a number ¢ € (a,b) exists
with




Extreme Value Theorem

Source: Thomas Calculus Book

Theorem 3 (Extreme Value Theorem)

If f € Cla,bl], then c1,co € [a,b] exists with f(c1) < f(x) < f(e2), forall z €
[a, b]. Inaddition, if f is differentiable on (a, b), then the numbers ¢; and ¢, occur
either at the end points of [a, b] or where f’ is zero.




Generalized Rolle’s Theorem

Theorem 4 (Generalized Rolle’s Theorem)

Suppose f € Cl[a,b] and f is n times differentiable on (a,b). If f(z) = 0, at the
n + 1 distinct numbers a < zp < 21 < -+ < x, < b, then a number ¢ € (zg, z,)
exists with (™) (c) = 0.




Intermediate Value Theorem
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Source: Thomas Calculus Book

Theorem 5 (Intermediate Value Theorem)
Suppose f € C[a,b] and K is any number between f(a) and f(b), then a number
¢ € (a,b) exists with f(c) = K.




Taylor's Theorem

Theorem 6 (Taylor's Theorem)
Suppose f € C"[a,b], f™+1) exists and zq € [a,b]. For every x € [a,b], there
exists a number £(z) between z, and x with

f(x) = Pu(z) + Rn(2),

where P, (z) and R,,(x) are called the nth Taylor polynomials and the remainder
term or truncation error respectively and are given by
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Remarks

Remarks

1. R,(x) depends on P, (z).

2. One of the common problem in numerical methods is try to determine a
realistic bound for the value of f(**1)(¢(x)).

3. The infinite series obtained by taking the limit P, (z) as n — oo is called
the Taylor series of f about z.

4. If o = 0, then the Taylor Polynomial is often called Maclaurin polynomial
and the Taylor series is often called a Maclaurin series.




Example

Example 7
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where z € [0,1],¢ € (0,z)




Riemann Integral

Definition 8 (Riemann Integral)
The Riemann integral of a function f on the interval [a, b] is the following limit,
provided it exists:
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where the numbers zg, 21, - , 2, satisfya = 29 < 21y <21 < -+ < 2, = b,
where Az; = x; — x;_1, foreach: = 1,2,--- ,n and z; is arbitrarily chosen in
the interval [l’i_l, l’l]




Riemann Integral of continuous function

Definition 9 (Riemann Integral of continuous function)
A function f that is continuous on an interval [a, b] is also Riemann integrable
on [a,b]. Therefore, we can select equidistance points in [a,b] and for each

1=1,2,--- ,nchoose z; = z; and we can write the integral as
& b—a—
x)dr = lim 423
[ #eyia = tim 225 ()
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where the numbers g, z1, - ,z, satisfya =z < 2y <21 < --- <z, = b,

andwi:a+z’b‘7“




Weighted Mean Value Theorem for Integrals

Theorem 10 (Weighted Mean Value Theorem for Integrals)
Suppose f € C[a, b], the Riemann integral of g exists on [a, b] and g(z) does not
change sign on [a, b]. Then there exists a number ¢ € (a,b) with
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When g(z) = 1, we obtain
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Asymptotic Notations
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Big O

Definition 11 (Big O)
Let {z,} and {«,} be two different sequences. We write

Ty = O(ay)
if there exist constants C such that
|zn| < Clay| VYV n > ng.

If o, # 0 for all n, that is,
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lim <C
n—oo

Here, we say z,, is big O of a,.




Little o

Definition 12 (Little o)

We write
T = o(ap)
if C = 0. That is,
lim 2| =0
n—00

Here, we say z,, is little o of «,.
Let z,, — 0and o,, — 0.

1. If ,, = O(«v,), then z,, converges to 0 at least as rapidly as «,.
2. If z, = o(a,), then z,, converges to 0 more rapidly than «,.




Little o and Big O

Example 13
Verify whether the following is true or not?
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10In(n) + 5(In(n))® 4+ 7n + 3n% + 60> = O(n®)




Little o and Big O

Example 14
Verify whether the following is true or not?
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