MA633L-Numerical Analysis

Lecture 2 : Preliminaries and Asymptotic Notations

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

January 9, 2025

Preliminaries

Rolle's Theorem

Source: Thomas Calculus Book

Theorem 1 (Rolle's Theorem)

Suppose $f \in C[a, b]$ and f is differentiable on (a, b). If f(a) = f(b), then a number $c \in (a, b)$ exists with f'(c) = 0.

Mean Value Theorem

Theorem 2 (Mean Value Theorem) If $f \in C[a,b]$ and f is differentiable on (a,b), then a number $c \in (a,b)$ exists with

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Extreme Value Theorem

Source: Thomas Calculus Book

Theorem 3 (Extreme Value Theorem)

If $f \in C[a, b]$, then $c_1, c_2 \in [a, b]$ exists with $f(c_1) \leq f(x) \leq f(c_2)$, for all $x \in [a, b]$. In addition, if f is differentiable on (a, b), then the numbers c_1 and c_2 occur either at the end points of [a, b] or where f' is zero.

Generalized Rolle's Theorem

Theorem 4 (Generalized Rolle's Theorem)

Suppose $f \in C[a, b]$ and f is n times differentiable on (a, b). If f(x) = 0, at the n + 1 distinct numbers $a \le x_0 < x_1 < \cdots < x_n \le b$, then a number $c \in (x_0, x_n)$ exists with $f^{(n)}(c) = 0$.

Intermediate Value Theorem

Source: Thomas Calculus Book

Theorem 5 (Intermediate Value Theorem)

Suppose $f \in C[a, b]$ and K is any number between f(a) and f(b), then a number $c \in (a, b)$ exists with f(c) = K.

Taylor's Theorem

Theorem 6 (Taylor's Theorem)

Suppose $f \in C^n[a,b]$, $f^{(n+1)}$ exists and $x_0 \in [a,b]$. For every $x \in [a,b]$, there exists a number $\xi(x)$ between x_0 and x with

 $f(x) = P_n(x) + R_n(x),$

where $P_n(x)$ and $R_n(x)$ are called the *n*th Taylor polynomials and the remainder term or truncation error respectively and are given by

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

and

$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}$$

Remarks

Remarks

- **1.** $R_n(x)$ depends on $P_n(x)$.
- 2. One of the common problem in numerical methods is try to determine a realistic bound for the value of $f^{(n+1)}(\xi(x))$.
- 3. The infinite series obtained by taking the limit $P_n(x)$ as $n \to \infty$ is called the Taylor series of f about x_0 .
- **4**. If $x_0 = 0$, then the Taylor Polynomial is often called Maclaurin polynomial and the Taylor series is often called a Maclaurin series.

Example

Example 7

$$\ln(1+x) = \sum_{k=1}^{n-1} (-1)^{k-1} \frac{x^k}{k} + \frac{(-1)^n}{n+1} (1+\xi)^{-(n+1)} x^{n+1}$$
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + \frac{x^{n+1}}{(n+1)!} e^\xi$$

where $x \in [0, 1], \xi \in (0, x)$

Riemann Integral

Definition 8 (Riemann Integral)

The Riemann integral of a function f on the interval [a, b] is the following limit, provided it exists:

$$\int_{a}^{b} f(x)dx = \lim_{\max \Delta x_i \to x_0} \sum_{i=1}^{n} f(z_i)\Delta x_i$$

where the numbers x_0, x_1, \dots, x_n satisfy $a = x_0 \le x_1 \le x_1 \le \dots \le x_n = b$, where $\Delta x_i = x_i - x_{i-1}$, for each $i = 1, 2, \dots, n$ and z_i is arbitrarily chosen in the interval $[x_{i-1}, x_i]$

Riemann Integral of continuous function

Definition 9 (Riemann Integral of continuous function)

A function f that is continuous on an interval [a, b] is also Riemann integrable on [a, b]. Therefore, we can select equidistance points in [a, b] and for each $i = 1, 2, \dots, n$ choose $z_i = x_i$ and we can write the integral as

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f(x_i)$$

where the numbers x_0, x_1, \cdots, x_n satisfy $a = x_0 \le x_1 \le x_1 \le \cdots \le x_n = b$, and $x_i = a + i \frac{b-a}{n}$

Weighted Mean Value Theorem for Integrals

Theorem 10 (Weighted Mean Value Theorem for Integrals)

Suppose $f \in C[a, b]$, the Riemann integral of g exists on [a, b] and g(x) does not change sign on [a, b]. Then there exists a number $c \in (a, b)$ with

$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx$$

When $g(x) \equiv 1$, we obtain

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Asymptotic Notations

Big O

Definition 11 (Big O)

Let $\{x_n\}$ and $\{\alpha_n\}$ be two different sequences. We write

 $x_n = O(\alpha_n)$

if there exist constants \boldsymbol{C} such that

 $|x_n| \le C |\alpha_n| \quad \forall \ n \ge n_0.$

If $\alpha_n \neq 0$ for all n, that is,

$$\lim_{n \to \infty} \left| \frac{x_n}{\alpha_n} \right| \le C$$

Here, we say x_n is big 0 of α_n .

Little o

Definition 12 (Little o)

We write

if C = 0. That is,

$$\lim_{n \to \infty} \left| \frac{x_n}{\alpha_n} \right| = 0$$

 $x_n = o(\alpha_n)$

Here, we say x_n is little o of α_n .

Let $x_n \to 0$ and $\alpha_n \to 0$.

- 1. If $x_n = O(\alpha_n)$, then x_n converges to 0 at least as rapidly as α_n .
- **2**. If $x_n = o(\alpha_n)$, then x_n converges to 0 more rapidly than α_n .

Little o and Big O

Example 13

Verify whether the following is true or not?

$$\frac{n+1}{n^2} = O\left(\frac{1}{n}\right)$$
$$\frac{1}{n\ln n} = o\left(\frac{1}{n}\right)$$
$$\frac{1}{n} = o\left(\frac{1}{n}\right)$$
$$\frac{1}{n} = o\left(\frac{1}{\ln n}\right)$$
$$\frac{5}{n} + e^{-n} = O\left(\frac{1}{n}\right)$$
$$10\ln(n) + 5(\ln(n))^3 + 7n + 3n^2 + 6n^3 = O(n^3)$$

Little o and Big O

Example 14

Verify whether the following is true or not?

$$e^{-n} = o\left(\frac{1}{n^2}\right)$$
$$\ln 2 - \sum_{k=1}^{n-1} (-1)^{k-1} \frac{1}{k} = O\left(\frac{1}{n}\right)$$
$$e^x - \sum_{k=0}^{n-1} x^k \frac{1}{k!} = O\left(\frac{1}{n!}\right) \quad (|x| \le 1)$$

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

MA633L-Numerical Analysis

Lecture 2 : Preliminaries and Asymptotic Notations

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

January 9, 2025

