
MA633L-Numerical Analysis
Lecture 20 : Solution of Nonlinear Equations: Complex Roots and Roots of Polynomials

Panchatcharam Mariappan1

1Associate Professor
Department of Mathematics and Statistics

IIT Tirupati, Tirupati

February 24, 2025



Nonlinear Equations:
Open Methods
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Recap: Bracketing Methods

• For bracketing methods, the root is located within an interval.
• Iteratively applying the bracketing methods, we estimate a closer values

to the true value of the root.
• These methods converge because they move closer to the truth.
• However, there is a disadvantage that, we have to find the two guesses

one for a0 and one for b0 which brackets the roots.
• A wrong guess of either a0 or b0 will go vain.
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Introduction: Open Methods

• In contrast, the open methods require a single starting value or two
starting value that do not necessarily bracket the root.

• Open methods converge much faster that bracketing methods.
• However, the disadvantage of open methods is that, it can diver or move

away from the true root.
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Newton-Raphson
Method for Horner’s
Method
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Newton-Raphson Method

Example 1
Find the approximations to within 10−4 to all the real roots of the following
polynomial using Newton-Raphson method

P4(x) = x4 − 18x3 + 111x2 − 278x+ 240

Solution: As per theorem, r = 240
518 and R = 279. Let us start with x0 = 0 in the

Newton-Raphson method

Iteration (i) xi ϵa |f(xi)| |g(xi)|
0 0.000000 240.000000 -278.000000
1 0.863309 1.000000 71.702426 -124.017979
2 1.441471 0.401091 20.315976 -58.216158
...

...
...

...
...

7 2.000000 0.000006 0.000000 -18.000000
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Newton-Raphson Method
The first root is xr1 = 2 and the deflated polynomial is

Q3(x) = x3 − 16x2 + 79x− 120

Again with x0 = 1 on Q3(x) in the Newton-Raphson method we obtain

Iteration (i) xi ϵa |f(xi)| |g(xi)|
0 0.000000 -120.000000 79.000000
1 1.518987 1.000000 -33.412367 37.314373
2 2.414416 0.370868 -8.456998 19.226898
3 2.854269 0.154103 -1.609072 12.103952
4 2.987206 0.044502 -0.129084 10.179602
5 2.999887 0.004227 -0.001130 10.001582
6 3.000000 0.000038 -0.000000 10.000000
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Newton-Raphson Method
Therefore, the second root is xr2 = 3 and the deflated polynomial is

R2(x) = x2 − 13x+ 40

and the roots are xr3 = 5, xr4 = 8 Hence

P4(x) = (x− 2)(x− 3)(x− 5)(x− 8)

7



Remainder Theorem

Example 2
Find the approximations to within 10−4 to all the real roots of the following
polynomial using Newton-Raphson method

P4(x) = x4 − 4x3 + 7x2 − 5x− 2

Solution: As discussed earlier, r = 2
9 , R = 8. We begin with 0 again

Iteration (i) xi ϵa |f(xi)| |g(xi)|
0 0.000000 -2.000000 -5.000000
1 -0.400000 1.000000 1.401600 -12.776000
2 -0.290294 0.377912 0.146322 -10.173223
3 -0.275911 0.052129 0.002258 -9.860299
4 -0.275682 0.000831 0.000001 -9.855368
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Newton-Raphson Method
The first root is xr1 = −0.275682 and the deflated polynomial is

Q3(x) = x3 − 4.27568x2 + 8.1787x− 7.2547

Again with x0 = 0 on Q3(x) in the Newton-Raphson method, we obtain

Iteration (i) xi ϵa |f(xi)| |g(xi)|
0 0.000000 -7.254731 8.178730
1 0.887024 1.000000 -2.666236 2.953898
2 1.789640 0.504356 -0.580073 2.483300
3 2.023230 0.115454 0.072397 3.157730
4 2.000303 0.011462 0.000931 3.077045
5 2.000000 0.000151 0.000000 3.076001

9



Newton-Raphson Method
Therefore, the second root is xr2 = 2 and the deflated polynomial is

R2(x) = x2 − 2.27568x+ 3.62736

and the roots are xr3 = 1.1378 + 1.5273i, xr4 = 1.1378− 1.5273i
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Newton-Raphson Method
Note that, in the first example, all roots are real whereas the second example
has two complex roots. However, once the polynomial reaches the second
degree we can employ the root finding methods for quadratic equation. What
will happen if all roots are complex for a polynomial of a degree 4? How can
we employ this algorithm when a polynomial of degree 4 or more has at least
4 complex roots? Will it work? Since, our initial guess is always a real number
and Newton-Raphson method works around this number, we can find only the
real roots. The next section deals with complex roots.
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Complex Roots and
Müller’s Method
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Müller’s Method
One problem with applying the Secant, False Position, or Newton’s method to
polynomials is the possibility of the polynomial having complex roots even
when all the coefficients are real numbers. If the initial approximation is a real
number, all subsequent approximations will also be real numbers. One way to
overcome this difficulty is to begin with a complex initial approximation and
do all the computations using complex arithmetic. An alternative approach
has its basis in the following theorem.

Theorem 3
If z = a+ib is a complex root of multiplicitym of the polynomial Pn(x)with real
coefficients, then z = a − ib is also a root of multiplicity m of the polynomial
Pn(x), and

Pn(x) = (x2 − 2ax+ a2 + b2)mQ(x)
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Müller’s Method
Secant method obtains a root estimate by projecting a straight line to the
x-axis through function values. Müller’s method takes a similar approach but
projects a parabola through three points.

Figure 1: Müller’s Method
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Müller’s Method
Let us find a parabola equation joining three points: (x0, f(x0)), (x1, f(x1))
and (x2, f(x2)).
Consider the following parabola

y = a(x− x2)
2 + b(x− x2) + c

At given three points

f(x0) = a(x0 − x2)
2 + b(x0 − x2) + c

f(x1) = a(x1 − x2)
2 + b(x1 − x2) + c

f(x2) = a(x2 − x2)
2 + b(x2 − x2) + c
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Müller’s Method
On simplification, we obtain

c = f(x2)

f(x0)− f(x2)

x0 − x2
= a(x0 − x2) + b

f(x1)− f(x2)

x1 − x2
= a(x1 − x2) + b

Let h0 = x1 − x0, h1 = x2 − x1

δ0 =
f(x1)− f(x0)

x1 − x0
, and δ1 =

f(x2)− f(x1)

x2 − x1
,

then
a =

δ1 − δ0
h1 + h0

, b = ah1 + δ1, c = f(x2)
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Müller’s Method
For,

f(x2)− f(x1)

x2 − x1
− f(x2)− f(x0)

x2 − x0
= a(x1 − x0)

(x2 − x0)(f(x2)− f(x1))− (x2 − x1)(f(x2)− f(x0))

(x2 − x1)(x2 − x0)(x1 − x0)
= a

1

(x2 − x0)

f(x2)(x2 − x0 − x2 + x1)− f(x1)(x2 − x0) + (x2 − x1)f(x0)

(x2 − x1)(x1 − x0)
= a

1

(x2 − x0)

[
f(x2)

x2 − x1
+

−f(x1)(x2 − x1 + x1 − x0) + (x2 − x1)f(x0)

(x2 − x1)(x1 − x0)

]
= a

1

(x2 − x0)

[
f(x2)− f(x1)

x2 − x1
− f(x1)− f(x0)

x1 − x0

]
= a
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Müller’s Method
Therefore

x− x2 =
−2c

b±
√
b2 − 4ac

The formula for Müller’s method is given by

xn+1 = xn +
−2c

b±
√
b2 − 4ac

, n ≥ 2 (1)

This formula gives two possibilities for xn+1, depending on the sign preceding
the radical term. In Müller’s method, the sign is chosen to agree with the sign
of b. Chosen in this manner, root of Pn(x) to xn. If only real roots are being
located, we choose the two original points that are nearest the new root
estimate, xn+1. If both real and complex roots are being evaluated, a
sequential approach is employed. 18



Müller’s Method
Find the roots of the polynomial. x4 − 3x3 + x2 + x+ 1 = 0 Let us start with
x0 = 0.5, x1 = −0.5, x2 = 0 in the Müllers method

Iteration (i) x0 |P4(xi)|
0 0.500000 + 0.000000i 1.437500
1 -0.500000 + 0.000000i 1.187500
2 0.000000 + 0.000000i 1.000000
3 -0.100000 + -0.888819i 3.014896
4 -0.492146 + -0.447031i 0.755895
5 -0.352226 + -0.484132i 0.179524
6 -0.340229 + -0.443036i 0.015964
7 -0.339095 + -0.446656i 0.000112
8 -0.339093 + -0.446630i 0.000000
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Müller’s Method
The first root is xr1 = −0.339093− 0.446630i and the second root is
xr2 = −0.339093 + 0.446630i If we use x0 = 0.5, x1 = 1.5, x2 = 1.5 in the
Müller’s method

Iteration (i) x0 |P4(xi)|
0 0.500000 + 0.000000i 1.437500
1 1.000000 + 0.000000i 1.000000
2 1.500000 + 0.000000i 0.312500
3 1.406327 + 0.000000i 0.048513
4 1.388783 + 0.000000i 0.001741
5 1.389390 + 0.000000i 0.000003
6 1.389391 + 0.000000i 0.000000
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Müller’s Method
The third root is xr3 = 1.38391 and finally if we use x0 = 1.5, x1 = 2.0, x2 = 2.5
in the Müller’s method then

Iteration (i) x0 |P4(xi)|
0 1.500000 + 0.000000i 0.312500
1 2.000000 + 0.000000i 1.000000
2 2.500000 + 0.000000i 1.937500
3 2.247332 + 0.000000i 0.245066
4 2.286522 + 0.000000i 0.014464
5 2.288775 + 0.000000i 0.000125
6 2.288795 + 0.000000i 0.000000

The fourth root is xr3 = 2.88795
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Müller’s Method
From this you can observe that, Müller’s Method can be used to find both
complex and real roots. In fact Müller’s method generally converges to the
root of a polynomial for any initial approximation choice, although problems
can be constructed for which convergence will not occur. For example,
suppose that for some i we have f(xi) = f(xi+1) = f(xi+2) ̸= 0. The
quadratic equation then reduced to a nonzero constant function and never
intersects the x−axis.
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Müller’s Method
The order of convergence of Müller’s method is approximately 1.84.
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Accelerating the
Convergence
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Accelerating the Convergence

• From previous discussions we have observed that bisection method and
fixed point methods converge linearly, whereas Newton-Raphson and
modified Newton-Raphson method for multiple roots converge
quadratically.

• Also, false-position and secant methods converge with the order of
convergence as golden ratio.

• Now, using the Aitken’s ∆2 method, we can accelerate the convergence
regardless of a sequence that is linearly convergent
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Aitken’s ∆2 method
Suppose {xn}∞n=0 is a linearly convergent sequence converging to xr. We can
accelerate the convergence based on the following assumptions:
xn − xr, xn+1 − xr, xn+2 − xr are having same signs and for a large n, we have

xn+1 − xr
xn − xr

≈ xn+2 − xr
xn+1 − xr
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Aitken’s ∆2 method
Then, we have

(xn+1 − xr)
2 ≈ (xn+2 − xr)(xn − xr)

x2n+1 − 2xn+1xr + x2r ≈ xn+2xn − (xn + xn+2)xr + x2r

(xn+2 + xn − 2xn+1)xr ≈ xn+2xn − x2n+1

xr ≈
xn+2xn − x2n+1

xn+2 + xn − 2xn+1

=
xn+2xn − x2n+1 − 2xnxn+1 + 2xnxn+1 − x2n + x2n

xn+2 + xn − 2xn+1

= xn − (xn+1 − xn)
2

xn+2 + xn − 2xn+1
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Aitken’s ∆2 method
Using the Aitken’s ∆2 method, based on the assumption that the sequence
{yn}∞n=0 defined by

yn = xn − (xn+1 − xn)
2

xn+2 + xn − 2xn+1
(2)

converges more rapidly to xr than the original sequence {xn}∞n=0 converges
to xr
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Aitken’s ∆2 method

Theorem 4
If the sequence {xn}∞n=0 converges to xr , then the sequence generated by
Aitken’s method {yn}∞n=0 converges to xr faster if xn+1−xr = (c+δn)(xn−xr)
with |c| < 1 and lim

n→∞
δn = 0. That is,

lim
n→∞

yn − xr
xn − xr

= 0

Proof: Exercise
One of the important assumption in Aitken’s method is that following
assumptions: xn − xr, xn+1 − xr, xn+2 − xr are having same signs and for a
large n. We can relax this assumption and have another assumption

xn+1 − xr
xn − xr

≈ −xn+2 − xr
xn+1 − xr

Then extend it further. For more details refer here. 29



Aitken’s ∆2 method
Now, if we define ∆xn = xn+1 − xn, for n ≥ 0 and
∆2xn = ∆xn+1 −∆xn = xn+2 − 2xn+1 + xn, then yn can be written as

yn = xn − (∆xn)
2

∆2xn
(3)

From this we can understand the meaning of Aitken’s ∆2 method.
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Steffensen’s Method for fixed point iteration
By employing the Aitken’s method to a linearly convergent sequence obtained
from fixed point iteration, we can accelerate the convergence to quadratic.
This procedure is known as Steffensen’s method. Suppose we have fixed
point iteration

x0, x1 = f(x0), x2 = f(x1)

Then use Aitken’s ∆2 method to compute

x3 = y0, x4 = f(x3), x5 = f(x4), x6 = y3

and repeat the above steps. That is every third term of the Steffensen
sequence is generated by the Aitken’s ∆2 method whereas the rest are
calculated using fixed-point iteration.
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Steffensen’s Method for fixed point iteration

Theorem 5
Suppose that f(x) = x has a fixed point xr with f ′(xr) ̸= 1. If there exists δ > 0
such that f ∈ C2([xr − δ, xr + δ]), then Steffensen’s method gives quadratic
convergence for any x0 ∈ [xr − δ, xr + δ].

Proof: Exercise.
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Accelerating the Newton-Raphson Method
Newton-Raphson method is not applicable when the derivative of any
function is not defined. Therefore, the Newton-Raphson method was
modified by Steffensen. The Steffensen method for solving the equation
f(x) = 0 uses the formula

xn+1 = xn − (f(xn))
2

f(xn + f(xn))− f(xn)
(4)

This method also converges quadratically like Newton-Raphson method
however it is free from derivatives.
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Accelerating the Newton-Raphson Method
The following modifications on Newton-Raphson method converges cubically

xn+1 = xn − 2f(xn)f
′(xn)

2f ′(xn)2 − f(xn)f ′′(xn)
(5)

It is called as Halley’s Method
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Generalized Newton-Raphson Method
A generalized Newton-Raphson method is given by

xn+1 = xn − ω
(f(xn))

2

f ′(xn)
(6)

where the constant ω is a an acceleration factor chosen to increase the rate
of convergence.
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Olver’s Method
Assume that f ∈ C4[a, b], f(xr) = 0, f ′(xr) ̸= 0.

xn+1 = xn − f(xn)

f ′(xn)
− 1

2

f ′′(xn)f(xn)
2

f ′(xn)3
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Other Methods

1. Bairstow’s method (Polynomials)
2. Jenkins-Traub Method
3. Laguerre’s Method
4. Brent (Hybrid)
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Exercises

Exercise 1: Medium

1. Using Newton-Raphson method, compute the root of
√
2 with

x0 = 1

2. Find the root of the following equations (with appropriate starting
values)
2.1 2x(1− x2 + x) lnx = x2 − 1 in [0, 1]
2.2 tanx− x = 0 with x0 = 7
2.3 ex −

√
x+ 9 with x0 = 2

2.4 x3 = sinx+ 7 with x0 = 1
2.5 sinx = 1− x with x0 = 2
2.6 e−x − cosx = 0 with x0 = π/2
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Exercises

Exercise 2: Medium

1. The iteration formula

xn+1 = xn − cosxn sinxn +R cos2 xn

where R is a positive constant was obtained by applying Newton
method to some function f . What was f(x)?

2. Two of the four roots of x4 + 2x3 − 7x2 + 3 are positive. Find them
by using Newton-Raphson method.

3. What happens if the Newton-Raphson method is applied to
f(x) = tan−1 x with x0 = 2? For what values of x0,
Newton-Raphson method converge?
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Exercises

Exercise 3: Medium

1. Find the root of the following functions (with appropriate starting
values)
1.1 f(x) = x

2 + 1
x with x0 = 1

1.2 f(x) = 10− 2x+ sinx
1.3 f(x) = ex + 1
1.4 x2 − 4 sinx
1.5 x3 + 6x2 + 11x− 6
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Complex Roots

Exercise 4: Medium

1. Find all the real roots of the following polynomials using Müllers
method.
1.1 x3 − 2x2 + 5
1.2 x3 + 3x2 + 1
1.3 x5 − x4 + 2x3 − 3x2 + x− 4
1.4 x4 + 5x3 − 9x2 − 85x− 136
1.5 x5 + 11x4 − 21x3 − 10x2 − 21x− 5

2. Use Bisection, Secant, Newton-Raphson, False-Position together
with Müllers methods to find all roots of the following polynomial
in the interval [0.1, 1]

600x4 − 550x3 + 200x2 − 20x− 1
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Complex Roots

Exercise 5: Medium

1. Aerospace engineers sometimes compute the trajectories of
projectiles such as rockets. A related problem deals with the
trajectory of a thrown ball. The trajectory of a ball thrown by a right
fielder is defined by the (x, y) coordinates as displayed in Figure.
The trajectory can be modeled as

y = tan θ0x− g

2v20 cos
2 θ0

x2 + y0

Find the appropriate initial angle θ0 , if v0 = 30m/s, and the
distance to the catcher is 90m. Note that the throw leaves the right
fielder’s hand at an elevation of 1.8m and the catcher receives it at
1m. 42



Nonlinear Systems
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Nonlinear Systems
When you have system of differential equations, we may require to find the
equilibrium points. For example, consider Volterra predator-prey equations

ẋ1 = x1 + x1x2

ẋ2 = x2 − x1x2

Consider the nonlinear circuit equations

ẋ1 = v − x1 + x2

ẋ2 = x1 − f(x2)
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System of nonlinear equations
Let us consider the system of n nonlinear equations of the form

f1(x1, x2, · · · , xn) = 0

f2(x1, x2, · · · , xn) = 0

· · ·
fn(x1, x2, · · · , xn) = 0

This system of nonlinear equations in n unknowns can be represented by
defining a function F mapping Rn into Rn

F(x1, x2, · · · , xn) = (f1(x1, x2, · · · , xn), f2(x1, x2, · · · , xn), · · · , fn(x1, x2, · · · , xn))
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System of nonlinear equations
Newton-Raphson method can also be applied to system of nonlinear
equations. Let JF(x) denote the Jacobian matrix and it is defined as

JF(x) =



∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

· · · ∂f2
∂xn

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

· · · ∂f3
∂xn...

...
... . . .

...
∂fn
∂x1

∂fn
∂x2

∂fn
∂x3

· · · ∂fn
∂xn

 (7)
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Newton-Raphson Method for System of
nonlinear equations
If we apply Newton-Raphson method for system of nonlinear equations,

F(x) = 0

the we obtain
xn+1 = xn − [JF(x

n)]−1F(xn)

The above equation can also be written as

[JF(x
n)]xn+1 = [JF(x

n)]xn − F(xn)
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Numerical Linear Algebra
The above equation can also be written in the form

Axn+1 = b

Hence, we apply the Newton-Raphson method for a system of nonlinear
equations, you must also learn solving a linear system through numerical
linear algebra. In the next lecutre, let us discuss "Numerical Linear Algebra"
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