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Introduction
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Linear System

• One of the important problem in many science and engineering.
• To solve an algebraic linear system

Ax = b

for the unknown vector x.
• The coefficient matrix A and the right-hand side vector b are known.
• What is the size of A, x and b?
• Assume: A is n× n, x and b are n−dimensional vector.
• The system may or may not have a solution.
• It may have an infinite solutions or unique solution.
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Applications of Linear System

• Linear Regression, where A is feature matrix, x is the model parameters
and b is the target values

• Ridge Regression (λ: Regularization parameter):

min
x

∥Ax− b∥2 + λ∥x∥2 =⇒ (ATA+ λI)x = AT b

• PCA: ATAv = λv, ATA covariance matrix, v principal components, λ
variance explained by each component

• SVM: Solve the quadratic optimization for α in dual formulation (Gram
matrix)

• Gaussian Process: (K + σ2I)y = f , where K is the kernel matrix, σ2I
noise in observations
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Applications of Linear System

• Vandermonde Matrix in Numerical Linear Interpolation
• Hessian Matrix in Newton-Raphson Method, Conjugate Gradient Method
• Numerical PDEs where PDEs are converted to Linear System
• CFD, FEM, Molecular Dynamics, Quantum Chemistry
• Electrical: Control Systems. Electric Circuits, Image processing
• Finance: Portfolio optimization, Risk Management
• Robotics: Inverse Kinematics, Physics-Based Simulations
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Linear System

• Gaussian elimination method: one of the standard method for solving
the linear system

• Computer or calculator
• School days.
• However, in pure mathematics, the solution is given by

x = A−1b

where A−1 denotes the inverse of the matrix A.
• But, in most of the real applications, it is not advised to find A−1

explicitly, indeed, it is recommended to solve for x.
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Linear System

• But, in most of the real applications, it is not advised to find A−1

explicitly, indeed, it is recommended to solve for x.
• In applied mathematics, the largest and fastest computers can also face

difficulty to solve the system accurately when the number of unknowns
are in millions.
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Linear System: Important 10 Questions

1. How do we store such a large linear system in the computer?
2. How do we know that the computed answers are correct?
3. How does the computer precision affects the results?
4. Can the algorithm fail?
5. How long will it take to compute the answers?
6. What is the asymptotic operation count of the algorithm?
7. Will the algorithm be stable for perturbation?
8. Can stability be controlled by pivoting?
9. Which strategy of pivoting should be used?

10. How do we know whether the matrix is ill-conditioned?
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Diagonal Linear System

Definition 1 (Diagonal linear system)
A matrix A of order n is diagonal if all its nonzero entries are on its diagonal. A
diagonal linear system of order n is one whose coefficient matrix is diagonal.
That is

Aij =

{
dii ̸= 0 if i = j

0 if i ̸= j

A diagonal linear system can be represented as
d11 0 0 · · · 0
0 d22 0 · · · 0
0 0 d33 · · · 0
...

...
... . . . ...

0 0 0 · · · dnn




x1
x2
x3
...
xn

 =


b1
b2
b3
...
bn


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Diagonal Linear System
Finding the solution of the linear system is easy because each equation
determines the value of one unknown, provided that each diagonal entry is
nonzero. The solution is given by

xi =
bi
dii

, i = 1, 2, · · · , n

Example 1
Consider the following linear system and find the solution.

9x1 = 3, 25x2 = 5, , 16x3 = 4, 36x4 = 6, 49x5 = 7
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Diagonal Linear System
It is a diagonal linear system and it can be written as

9 0 0 0 0
0 25 0 0 0
0 0 16 0 0
0 0 0 36 0
0 0 0 0 49



x1
x2
x3
x4
x5

 =


3
5
4
6
7


Without constructing this matrix also we can immediately conclude that

x1
x2
x3
x4
x5

 =


1
3
1
5
1
4
1
6
1
7


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Upper Triangular Linear System

Definition 2 (Upper triangular linear system)
A matrix A of order n is upper triangular if all its nonzero entries are on its
diagonal or strictly on the upper triangular entries. An upper triangular linear
system of order n is one whose coefficient matrix is upper triangular. That is

Aij =

{
uij if i ≥ j

0 if i < j

An upper triangular linear system can be represented as
u11 u12 u13 · · · u1n
0 u22 u23 · · · u2n
0 0 u33 · · · u3n
...

...
... . . . ...

0 0 0 · · · unn




x1
x2
x3
...
xn

 =


y1
y2
y3
...
yn


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Backward Substitution
In order to solve an upper triangular linear system, we need a backward
substitution which is given by the following algorithm

xi =

yi −
n∑

j=i+1

uijxj

uii
, i = n, n− 1, · · · , 1 (1)
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Backward Substitution

Example 2
Find the solution of the following linear system.

2 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10



x1
x2
x3
x4

 =


20
34
25
10


It is an upper triangular system. Using backward substitution, we obtain that

x4 =
10

10
= 1 =⇒ x3 =

25− 9x4
8

=⇒ x3 =
16

8
= 2

=⇒ x2 =
34− 6x3 − 7x4

5
=⇒ x2 =

15

5
= 3

=⇒ x1 =
20− 2x2 − 3x3 − 4x4

2
=⇒ x1 =

4

2
= 2
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Forward Substitution

Definition 3 (Lower triangular linear system)
A matrix A of order n is upper triangular if all its nonzero entries are on its
diagonal or strictly on the lower triangular entries. A lower triangular linear
system of order n is one whose coefficient matrix is lower triangular. That is

Aij =

{
lij if i ≤ j

0 if i > j

A lower triangular linear system can be represented as
l11 0 0 · · · 0
l21 l22 0 · · · 0
l31 l32 u33 · · · 0
...

...
... . . . ...

ln1 ln2 ln3 · · · lnn




y1
y2
y3
...
yn

 =


b1
b2
b3
...
bn


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Forward Substitution
In order to solve a lower triangular linear system, one can apply forward
substitution. In the backward substitution, we obtain the value of xn first and
then using xn, we obtain the value of yn−1 Using yn, yn−1, yn−2 is calculated.
Finally the value of y1 is calculated. On the other hand, in forward
substitution, we obtain the value of x1 first. Using x1, we obtain the value of
x2 and so on. The value of

yi =

bi −
i−1∑
j=1

lijyj

lii
, i = 1, 2, · · · , n (2)
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LU Decomposition
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LU Decomposition
If we can decompose a square matrix A by in the form of

A = LU

then one can easily obtain the solution of the linear system

Ax = b

Ax = b =⇒ LUx = b =⇒ Ly = b where Ux = y

Since Ly = b is a lower triangular system, by the forward substitution, we can
solve for y. Using y in Ux = y, which is an upper triangular system, and the
backward substitution, we can obtain x.
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LU Decomposition
The following steps are used to solve the linear system Ax = b.
1. Find L and U such that A = LU

2. Using forward substitution, Solve for y from Ly = b

3. Use y in Ux = y

4. Using backward substitution, Solve for x from Ux = y

As per the LU decomposition, we can write A as
a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
... . . . ...

an1 an2 an3 · · · ann

 =


l11 0 0 · · · 0
l21 l22 0 · · · 0
l31 l32 l33 · · · 0
...

...
... . . . ...

ln1 ln2 ln3 · · · lnn




u11 u12 u13 · · · u1n
0 u22 u23 · · · u2n
0 0 u33 · · · u3n
...

...
... . . . ...

0 0 0 · · · unn


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LU Decomposition

Example 3
Obtain the LU decomposition and then obtain the solution x.

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18



x1
x2
x3
x4

 =


16
26
−19
−34




6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18

 =


l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44



u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44


As per LU Decomposition
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LU Decomposition
Comparing the first entry of LU with A, we obtain that l11u11 = 6. Now, we can
choose any real number l11 such that l11u11 = 6. For the sake of convenience,
we always choose lii = aii, then we obtain that l11 = 6 and u11 = 1.

l11u11 = 6, l11 = 6 =⇒ u11 = 1

l11u12 = −2 =⇒ u12 =
−1

3

l11u13 = 2 =⇒ u13 =
1

3

l11u14 = 4 =⇒ u14 =
2

3

Since u11 is known, we can easily compute the first column of L by the
following formula.

li1 =
ai1
u11

, i > 1
20



LU Decomposition


6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18

 =


6 0 0 0
12 l22 0 0
3 l32 l33 0
−6 l42 l43 l44



1 −1/3 1/3 2/3
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44


Therefore, the formula to compute u2j is given by

u2j =
a2j − l21u1j

l22
, j > 2

Since u22 and u12 are known, we can compute the second column of L by the
following formula

li2 =
ai2 − li1u12

u22
, i > 2
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LU Decomposition
Similarly the formula to compute u2j is given by

u3j =
a3j − l31u1j − l32u2j

l33
, j > 3

Since u22 and u12 are known, we can compute the second column of L by the
following formula

li3 =
ai3 − li1u13 − li2u23

u33
, i > 3

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18

 =


6 0 0 0
12 −8 0 0
3 −24 9 0
−6 4 18 −18



1 −1/3 1/3 2/3
0 1/2 −1/4 −1/4
0 0 2/9 −5/9
0 0 0 1/6


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LU Decomposition
Now, let us consider the system Ly = b

6 0 0 0
12 −8 0 0
3 −24 9 0
−6 4 18 −18



y1
y2
y3
y4

 =


16
26
−19
−34


Using forward substitution, we obtain that

y1 =
16

6
=

8

3
=⇒ 12

(
8

3

)
− 8y2 = 26 =⇒ y2 =

3

4

=⇒ 3

(
8

3

)
− 24

(
3

4

)
+ 9y3 = −19 =⇒ y3 = −1

=⇒ −6

(
8

3

)
+ 4

(
3

4

)
+ 18(1)− 18y4 = −34 =⇒ y4 =

1

6
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LU Decomposition
Now, let us consider the system Ly = b

y1
y2
y3
y4

 =


8/3
3/4
−1
1/6


Now, consider the system Ux = y

1 −1/3 1/3 2/3
0 1/2 −1/4 −1/4
0 0 2/9 −5/9
0 0 0 1/6



x1
x2
x3
x4

 =


8/3
3/4
−1
1/6


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LU Decomposition
Using backward substitution, we obtain that

x4 =
1/6

1/6
= 1 =⇒ 2

9
x3 −

5

9
= −1 =⇒ x3 = −2

=⇒
(
1

2

)
x2 +

(
−1

4

)
(−2) +

(
−1

4

)
(1) =

(
3

4

)
=⇒ x2 = 1

=⇒ x1 −
(
1

3

)
− 2

(
1

3

)
+

2

3
=

8

3
=⇒ x1 = 3
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LU Decomposition
For a general LU decomposition, we have first guess lkk ̸= 0 value or ukk ̸= 0
values and use the following formula for j > k and i > k

ukj =

akj −
k−1∑
s=1

lksusj

lkk
(3)

lik =

aik −
k−1∑
s=1

lisusk

ukk
(4)

From the above two equations, it is easy to note that lkk ̸= 0 and ukk ̸= 0 are
necessary.
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LU Decomposition

Theorem 4
If all n leading principal minors of A are nonsingular, then A has an LU-
decomposition.

Hint: Prove by induction. Since a11 ̸= 0, apply the first step in Gaussian
elimination and obtain

A2 = L2U2 =

(
1 0

a21/a11 1

)(
a11 a22
0 u22

)
Assume Ai = LiUi, i = 1, 2, · · · , k − 1. Prove that Ak = LkUk.(

Ak−1 c
d akk

)
=

(
Lk−1 0
l 1

)(
Uk−1 u
0 ukk

)
where c = (a1k, · · · , ak−1k)

t,d = (ak1, · · · , akk−1)
t,l = (lk1, · · · , lkk−1)

t,u =
(u1k, · · · , uk−1k) Solve the above system to obtain ukk. 27



LU Decomposition
How about the converse?
Exercise: Assume that A is invertible. Prove that A has an LU decomposition
if and only if all principal minors of A are nonsingular.
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Crout, Doolittle, LDLT ,
Cholesky
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Crout’s Decomposition
In LU-decomposition one of the condition specified is that lkk ̸= 0 and ukk ̸= 0
are necessary. If we choose, ukk = 1, then U is an upper triangular matrix with
its diagonal entries as 1. This decomposition is called Crout’s decomposition.
a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
... . . . ...

an1 an2 an3 · · · ann

 =


l11 0 0 · · · 0
l21 u22 0 · · · 0
l31 l32 u33 · · · 0
...

...
... . . . ...

ln1 ln2 ln3 · · · lnn




1 u12 u13 · · · u1n
0 1 u23 · · · u2n
0 0 1 · · · u3n
...

...
... . . . ...

0 0 0 · · · 1


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Doolittle’s Decomposition
If we choose, lkk = 1, then L is a lower triangular matrix with its diagonal
entries as 1. This decomposition is called Doolittle’s decomposition.
a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
... . . . ...

an1 an2 an3 · · · ann

 =


1 0 0 · · · 0
l21 1 0 · · · 0
l31 l32 1 · · · 0
...

...
... . . . ...

ln1 ln2 ln3 · · · 1




u11 u12 u13 · · · u1n
0 u22 u23 · · · u2n
0 0 u33 · · · u3n
...

...
... . . . ...

0 0 0 · · · unn


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Diagonally Dominant

Definition 5 (Diagonally Dominant)
A square matrix A = (aij) is said to be diagonally dominant if it satisfies the
following inequality:

|aii| >
n∑

j=1

j ̸=i

|aij | 1 ≤ i ≤ n

There is also called row diagonal dominance. Look for column diagonal domi-
nance also.
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Gershgorin Disc

Definition 6 (Gershgorin Disc)
The closed disc Di centered at aii with radius

ri =

n∑
j=1

j ̸=i

|aij |

is called a Gershgorin disc.

Di =

λ : |λ− aii| ≤ ri =

n∑
j=1

j ̸=i

|aij |

 , 1 ≤ i ≤ n
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Gershgorin Disc Theorem

Theorem 7 (Gershgorin Disc Theorem)
Every eigenvalue of A lies within at least one of Gershgorin disc.

Proof: Let λ be any eigenvalue of A and xk = (xk1, xk2, · · · , xkn) be the
corresponding eigenvector. Choose the eigenvector such that{

xkj = 1 j = k

|xkj | ≤ 1 j ̸= k

Such an x always exist as it can be obtained by dividing any eigenvector by its
largest modulus. (If not possible, indexing of λk can be interchanged).

Axk = λxk =

n∑
j=1

j ̸=k

akjxkj + akk = λk

34



Gershgorin Disc Theorem
Hence,

n∑
j=1

j ̸=k

akjxkj = λ− akk

=⇒ |λ− akk| =

∣∣∣∣∣∣∣∣
n∑

j=1

j ̸=k

akjxkj

∣∣∣∣∣∣∣∣ ≤
n∑

j=1

j ̸=k

|akj ||xkj | ≤
n∑

j=1

j ̸=k

|akj | = rk

Hence the proof.
Let λ be an eigenvalue of A. Then as per this theorem

λ ∈
n⋃

i=1

Di

35



Gershgorin Disc Theorem

• Now define Ci as follows?

Ci =

λ : |λ− aii| ≤ ri =

n∑
i=1
j ̸=i

|aij |

 , 1 ≤ i ≤ n

• Is the following statements true?

λ ∈
n⋃

i=1

Ci

λ ∈

(
n⋃

i=1

Di

)⋂(
n⋃

i=1

Ci

)
36



Gershgorin Disc Theorem

λ ∈

(
n⋃

i=1

Di

)⋂(
n⋃

i=1

Ci

)
This statement tightens our bounds on the eigenvalues in some case. Let

Sk =

(
k⋃

i=1

Di

)
and Sn−k =

(
n−k⋃

i=k+1

Di

)

such that
Sk

⋂
Sn−k = ϕ

then Sk contains exactly k eigenvalues of A.
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Gershgorin Disc
If

|aii − ajj | > ri + rj ,∀i ̸= j

then A has distinct eigenvalues each lying in a distinct Gerschgorin disc.
Prove or Disprove.
Is the converse true?
Suppose

|aii − ajj | ≤ ri + rj

for some, i and j, prove or disprove that multiple eigenvalues are in the same
disc.
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LU Decomposition

Theorem 8
Every diagonally dominant matrix is non-singular and has an LU-
decomposition.

Proof: Let A be a diagonally dominant matrix. As per Gershgorin Disc
theorem, we have to prove that λ ̸= 0. Suppose λ = 0, then

|aii| ≤
n∑

j=1

j ̸=k

|aij |

which is a contradiction as we have assumed that A is a diagonally dominant
matrix. Also, you can observe that all leading principal minors are nonsingular
as you can repeat the above argument using Gershgorin Disc theorem for
principal minors. Hence proof follows by Theorem 1.
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LU Decomposition

Theorem 9
Let L be unit lower triangular matrix, andU be an upper triangular matrix. Then
A = LU is nonsingular if and only if U has no zeros on its diagonal.

Proof: Let A = LU be nonsingular. Since L is unit lower triangular

det(A) = det(L) det(U) =⇒ det(A) = det(U) =

uii∏
i

Hence the proof.
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LDLT Decomposition
Observe that when Doolittle’s decomposition is applied, the first row of U and
A are same. Similarly, when Crout’s decomposition is applied, then the first
column of L and A are same. In fact, we can prove uniqueness of LU
decomposition in case of Doolittle and Crout assumptions as follows:

Theorem 10
Every nonsingular matrix has a unique LU decomposition.

Suppose
A = L1U1 = L2U2 =⇒ L−1

1 L2 = U1U
−1
2

Since left side is lower triangular and right side is upper triangular, it should
be a diagonal matrix. Since diag(L−1

1 L2) = I (for Doolittle) or
diag(U1U

−1
2 ) = I (for Crout), it leads to L1 = L2 and U1 = U2. Using

Gauss-Jordan method it can be obtained easily.
41



LDLT Decomposition
If A is a symmetric matrix and A has an LU decomposition, then it has an
LDLT decomposition. For,

A = LU =⇒ AT = UTLT

A = AT =⇒ LU = UTLT

Since L is unit lower triangular, it is invertible, we can write

U = L−1UTLT =⇒ U(LT )−1 = L−1UT

Transpose of an upper triangular matrix is a lower triangular and vice versa.
Since L is lower triangular, L−1 is also a lower triangular and hence L−1UT is
a lower triangular matrix. On the other side, we have U(LT )−1 is an upper
triangular matrix. Therefore,

U(LT )−1 = L−1UT = D =⇒ U = DLT =⇒ A = LDLT
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LU Decomposition
When A is symmetric and positive definite and U = LT , then we obtain that

A = LLT

Definition 11 (Positive Definite)
A real symmetric matrix A is positive definite if for all nonzero vectors x ∈ Rn

xTAx > 0

• All eigenvalues of a positive definite matrix is strictly positive.
• A is positive definite if and only if all its leading principal minors are

positive.
• Positive definite matrix is always nonsingular.
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Theorem 12
If A is real, symmetric and positive definite, then it has a unique factorization

A = LLT

in which L is lower triangular with positive diagonal.
Since A > 0, A = AT by LDLT decomposition, we can obtain

A = LDLT

A > 0 =⇒ D > 0 =⇒ L̃ ≡ LD1/2 =⇒ A = L̃L̃T

where the entries of D1/2 are
√
dii.
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LU Decomposition for
Rectangular Matrices
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LU Decomposition

Definition 13 (LU Decomposition)
Given a matrix A ∈ Rm×n with m ≥ n. Its LU -decomposition is given by

A = LU

whereL ∈ Rm×n is a unit trapezoidal matrix andU ∈ Rn×n is a upper triangular
with nonzeros on its diagonal.
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LU Decomposition

Definition 14 (Principal Leading Submatrix)
Given a matrix A ∈ Rm×n with m ≥ n. For k ≤ n, the k × k principal leading
submatrix of A is a square matrix

ATL ∈ Rk×k

such that
A =

[
ATL ATR

ABL ABR

]
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LU Decomposition

Theorem 15 (LU Decomposition)
Given a matrix A ∈ Rm×n with m ≥ n have linearly independent columns.
Then A has a unique LU decomposition if and only if all its principal leading
submatrices are nonsingular.

Proof is similar to Theorem 4.

Definition 16 (LU Decomposition)
Given a matrix A ∈ Rm×n with m ≤ n. Its LU -decomposition is given by

A = LU

where L ∈ Rm×n is a unit lower triangular matrix and U ∈ Rm×n is a upper
triangular.
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