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Gaussian Elimination
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Gaussian Elimination
Do elementary row operation to convert the matrix A to an upper triangular
system.
Example 1 

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18



x1
x2
x3
x4

 =


16
26
−19
−34


Apply the following row operations R2 → R2 − 2R1 on the second row, R3 →
R3− 1

2R1 on the third row andR4 → R4+R1 on the fourth row. Then we obtain
that 

6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14



x1
x2
x3
x4

 =


16
−6
−27
−18


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Gaussian Elimination
Now, we try to make the last two entries of the second column to be equal.
Applying the following row operations R3 → R3 − 3R2 on the third row and
R4 → R4 +

1
2R2 on the fourth row produces

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13



x1
x2
x3
x4

 =


16
−6
−9
−21


Finally, the row operation R4 → R4 − 2R3 produces

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3



x1
x2
x3
x4

 =


16
−6
−9
−3


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Gaussian Elimination
The final system is a upper triangular system. Therefore, applying the
backward substitution, we get the following result.

x1
x2
x3
x4

 =


3
1
−2
1


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Gaussian Elimination

aij ← aij −
(
ai1
a11

)
a1j 1 ≤ j ≤ n (1)

bi ← bi −
(
ai1
a11

)
b1 (2)

Now, the coefficient of x1 is the ith equation becomes zero. After this step,
we do not need to alter the first equation. Now with second equation as the
pivot equation, we repeat the above step for the remaining n− 1× n− 1
matrix as follows

aij ← aij −
(
ai2
a22

)
a2j 2 ≤ j ≤ n (3)

bi ← bi −
(
ai2
a22

)
b2 (4)
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Gaussian Elimination
After repeating this, the kth step can be applied on n− k × n− k matrix with

aij ← aij −
(
aik
akk

)
akj k ≤ j ≤ n (5)

bi ← bi −
(
aik
akk

)
bk (6)

Here, aik
akk

is called the multiplier or factor. After applying these steps n− 1
times, we obtain an upper triangular system. Finally, applying the backward
substitution method produces the solution of the system.
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Gaussian Elimination
Failure
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Gaussian Elimination Failure
There are a few cases where Gaussian elimination could fail while
implementing in a computer.

Failure 1: Division by Zero
When akk = 0 for some k in the above algorithm, then it can cause division by
zero. Problem may also occur when a coefficient is very close to zero.

Failure 2: Roundoff errors
• Increased more digits, then the error might reduce further
• As a rule of thumb, round-off error is more important when the number of

equations are 100 or more.
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Gaussian Elimination Failure
There are a few cases where Gaussian elimination could fail while
implementing in a computer.

Failure 1: Ill-Conditioned
The adequacy of the solution depends on the condition of the system. Well-
conditioned systems are those where a small change in one or more of the
coefficients results in a similar change in the solution. Ill-conditioned systems
are those where small changes in coefficients results in large changes in the
solution. Since round-off errors can include small changes in the coefficients
of ill-conditioned system, these can produce large solution errors.
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Gaussian Elimination Failure

Example 2 (
1 2
1.1 2

)(
x1
x2

)
=

(
10
10.4

)
=⇒

(
x1
x2

)
=

(
4
3

)
However, consider the following system(

1 2
1.05 2

)(
x1
x2

)
=

(
10
10.4

)
=⇒

(
x1
x2

)
=

(
8
1

)
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Singular Systems

Failure 1: Ill-Conditioned
When two are more equations are almost identical, then we obtain ill-
conditions. When two or more equations are identical, we obtain a singularity.
So, if there are any zero’s on the diagonal, we can stop the Gauss elimination
by identifying that, the determinant is zero.
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Gaussian Elimination
as Doolittle
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Gaussian Elimination as Doolittle
Obtain the Doolittle decomposition using the Gaussian elimination

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18


For i = 1, u11 = 6, u12 = −2, u13 = 2, u14 = 4 and l11 = 1. Apply the following
row operations R2 → R2 − 2R1 on the second row, R3 → R3 − 1

2R1 on the
third row and R4 → R4 +R1 on the fourth row. Then we obtain that

6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14


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Gaussian Elimination as Doolittle
Now, u22 = −4, u23 = 2, u24 = 2 and l21 = −2, l31 = −1/2, l41 = 1, l22 = 1 Now,
we try to make the last two entries of the second column to be equal.
Applying the following row operations R3 → R3 − 3R2 on the third row and
R4 → R4 +

1
2R2 on the fourth row produces

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13


Therefore, u33 = 2, u34 = −5 and l32 = −3, l42 = 2, l33 = 1
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Gaussian Elimination as Doolittle
Finally, the row operation R4 → R4 − 2R3 produces

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3


and l44 = −3 and l43 = −2, l44 = 1 Therefore the Doolittle decomposition is

LU =


1 0 0 0
2 1 0 0

1/2 3 1 0
−1 1/2 2 1



6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3


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Operation Count
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Gaussian Elimination

aij ← aij −
(
ai1
a11

)
a1j 1 ≤ j ≤ n (7)

bi ← bi −
(
ai1
a11

)
b1 (8)

Now, the coefficient of x1 is the ith equation becomes zero. After this step,
we do not need to alter the first equation. Now with second equation as the
pivot equation, we repeat the above step for the remaining n− 1× n− 1
matrix as follows

aij ← aij −
(
ai2
a22

)
a2j 2 ≤ j ≤ n (9)

bi ← bi −
(
ai2
a22

)
b2 (10)
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Operation Count

Step (k) # Multiplications/Divisions # Additions/Subtractions
1 (n− 1)(n+ 1) (n− 1)n
2 (n− 2)(n) (n− 2)(n− 1)
3 (n− 3)(n− 1) (n− 3)(n− 2)
...

...
...

n− s (n− s)(n− s+ 2) (n− s)(n− s+ 1)
...

...
...

n− 1 1.3 1.2
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Operation Count
Upon summing, we obtain the following number of multiplications/divisions

n−1∑
s=1

(n− s)(n− s+ 2) =

n−1∑
s=1

(n− s)2 + 2

n−1∑
s=1

(n− s)

=

n−1∑
s=1

s2 + 2

n−1∑
s=1

s

=
(n− 1)n(2n− 1)

6
+ (n− 1)n

=
2n3 + 3n2 − 5n

6
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Operation Count
Similarly we obtain the number of additions/subtractions as

n−1∑
s=1

(n− s)(n− s+ 1) =

n−1∑
s=1

(n− s)2 +

n−1∑
s=1

(n− s)

=
(n− 1)n(2n− 1)

6
+

(n− 1)n

2

=
n3 − n

3

Therefore, the total number of operations to convert the linear system to
Upper triangular matrix

2n3 + 3n2 − 5n

6
+

2n3 − 2n

6
=

4n3 + 3n2 − 7n

6
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Operation Count
For solving the upper triangular system, we require n2 operations for
backward substitution, therefore, we require O(n3) operations.

4n3 + 3n2 − 7n

6
+ n2 =

4n3 + 9n2 − 7n

6

n # Operations
1 1
2 9
3 28
5 115
10 805
50 87025
100 681550
106 6.6667× 1017 ≈ 1018
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Thanks
Doubts and Suggestions

panch.m@iittp.ac.in
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