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Elementary Operations



Pivoting



Pivoting

Example 1

G E)-G) =)0

However, the correct solution is z; = z2 = 1. On the other hand, if we choose,
second row as the pivoting row, then the system becomes

G ()-() = ()-0)




Pivoting

® The simplest remedy for ill-conditioning is to use more significant figures
in the computation.

e |f your application can be extended to handle larger word size, such a
feature will greatly reduce the problem.

® QObvious problems occur when a pivot element is zero because the
normalization step leads to division by zero.

® Problems may also arise when the pivot element is close to, rather than
exactly equal to, zero because if the magnitude of the pivot element is
small compared to the other elements, and then round-off errors can be
introduced.



Pivoting

® Therefore, before each row is normalized, it is advantageous to
determine the largest available coefficient in the column below the pivot
element.

® The rows can then be switched so that the largest element is the pivot
element.

® This is called partial pivoting.

¢ |f columns as well as rows are searched for the largest element and then
switched, the procedure is called complete pivoting.



Pivoting

e Complete pivoting is rarely used because switching columns changes
the order of the x’s

® Consequently, adds significant and usually unjustified complexity to the
computer program.

¢ Aside from avoiding division by zero, pivoting also minimizes round-off
error.

® As such, it also serves as a partial remedy for ill-conditioning.




Pivoting

Example 2

0.0003 3.0000\ (z1) _(2.0001
1.0000 1.0000/) \ x5/ — \1.0000
If we apply Gaussian elimination, we obtain that
0.0003  3.0000 r1\ _ (2.0001
0 —-99999 ) \xo)  \ —6666
2 _2.0001 — 3(2/3)

5o 0.0003

The result is very sensitive to the number of significant figures as shown in the
below table

T =




Pivoting

Digits

T2

T

No obhw

0.667
0.6667
0.66667
0.666667
0.6666667

-3.33
0.0000
0.30000
0.330000
0.333000




Pivoting

However, consider the following system, where we swapped the first equation
and second equation

1.0000 1.0000\ (z1\  [1.0000

0.0003 3.0000/) \zo/  \2.0001
If we apply Gaussian elimination, we obtain that

1.0000 1.0000\ [z _ (2.0001

0.0000 2.9997) \z5/)  \1.9998

2 1-(2/3
R LT



Pivoting

Digits o 1

03 0.667 0.333

4 0.6667 0.3333

5 0.66667 0.33333

6 0.666667  0.333333
7 0.6666667 0.3333333

The pivoting produce much less sensitive results for the round-off errors.




Pivoting

Example 3

0 ) E)=6)

When ¢ is introduced in the first entry, we obtain that

) E)-6)




Pivoting
When Gaussian elimination is used we obtain

e 1.0000\ [z1\ 1
0 1—et)\ay) \2—¢t

_2—671
11—t

) ~1

1= (1—x)e P =0

However, the correct solution is




Pivoting
When we pivoting we obtain that
11 1\ (2
e 1.0000) \zo/) \1
Upon Gaussian elimination, we get
11 ) _ [ 2
0 1—€¢)\zo) \1—2¢

1— 2e¢
€Tro =
2 1—c¢

and
~ 1




Pivoting

e The pivoting strategy is that when ay;, = 0, the k" must be interchanged
with a p*" row, where p is the smallest integer greater than & with apr 7 0.

® To reduce the round-off error it is often necessary to perform row
interchanges even when the pivot elements are not zero.

® When ay;, after k' operations is small in magnitude compared to Ak
then the magnitude of the factor will be much larger than 1 while
computing z;.

® Round-off error introduced in this factor will contribute to the remaining
computation, consequently on each x; while performing the backward
substitution.



Pivoting

Example 4

0.003 59.14\ (x1\  (99.17
5291 —6.13) \z2/) \46.78

Using Gaussian elimination we obtain
0.003  59.14 x1\ _ ([ 59.17
0 —104300/) \as ) — \—104400

59.14
= —— =~ 2000 ~ —10
“27 0,003 M
This ruins the approximation as the true value is x; = 10.000. However, for
larger systems, it is not easy to predict the devastating round-off error in ad-

vance.

and




Pivoting

® The partial pivoting in general uses the following method to overcome
this issue.

® Select an element a,, with larger magnitude as the pivot elements after
the k' row operations.

e Interchange the k£ row and p'” row. That is, we determine p > k such
that

Gpl, = max ik

® Perform Ry <> R,,.




Pivoting

Example 5
For the above example,

max |a;1| = max{0.003,5.291} = 5.291
1<i<2

Therefore, interchange R, and R», the system becomes

5291 —6.13\ (a1 _ [46.78
0.003 59.14 ) \aa) ~ \59.17

Using Gaussian elimination and backward substitution, we obtain that

()= (%)




Scaled Partial Pivoting

18



Scaled Partial Pivoting

e Simply picking the largest number in magnitude is done in partial
pivoting may work well.

® |n this case, row scaling does not play a role, that is relative sizes of
entries in a row are not considered.

® |n certain situations, the simple partial pivoting may not work.
® Consider the following example




Scaled Partial Pivoting

Example 6
2 2c 1\ [2c
1 1 zo)  \ 2

E la;1| = max{2,1} = 2

Now,

Therefore, no interchange is required and by Using Gaussian elimination and
backward substitution, we obtain that

(1% ()= (%)




Scaled Partial Pivoting

Suppose our cis so large suchthat1 —c~ —cand 2 — ¢ ~ —¢, then
2 2c 1\ [ 2c
0 —c) \zo) \—c
I . 0
) N 1

and




Scaled Partial Pivoting

However, the correct solution is 1 = 29 = 1. On the other hand, if we choose,
second row as the pivoting row, then the system becomes

(5 2) (2) = ()

and then Gaussian elimination produces

(0 22) ()= (27 )



Scaled Partial Pivoting

Suppose our cis so large such that 2c — 2 ~ 2c and 2¢ — 4 ~ 2¢, then
11\ (=1 (2
0 2¢) \za) \2¢
I . 1
) N 1

and




Scaled Partial Pivoting

Remarks

® This example illustrates that the order in which we treat the equations
significantly affects the accuracy of the elimination algorithm in the
computer.

® |n the naive Gaussian elimination algorithm, we use the first equation to
eliminate z; from the rest of n — 1 equations.

® Then we use the second equations to eliminate x5 from the following
n — 2 equations.

e \We follow the natural order in it.

® The last is not used as an operating equation in the naive elimination, at
no time are factors of it subtracted from other equations.




Scaled Partial Pivoting

® Therefore, a new strategy is required for selecting the pivot row and pivot
element.

® The best approach is complete pivoting as it searches over all entries,
but that it is an expensive method.

® However, partial pivoting searches only the column entries.

® We advocate a strategy that simulates a scaling of the row vectors and
then selects a pivot element the relatively largest entry in a column.

® Also, rather than interchanging rows to move the desired element in the
pivot position, we use an indexing array to avoid the data movement.



Scaled Partial Pivoting
Example 7
30 591400\ (x1\ _ (591700
(5.291 —6.13> <:c2> B <46.78 >

This is same as example 9.14 but first row is multiplied by 10*. However, it
leads to the same inaccurate solution

30 591400 z1\ [ 9591700
0 —104300) \z2/)  \—104400

z9 ~ 1.001

and

T~ —10




Scaled Partial Pivoting

Scaled partial pivoting is needed for the above example. It places the element
in the pivot position that is the largest relative to the entries in its row. The
first step in this procedure is to define a scalar s; for each row as

5; = max |a;|
1<j<n



Scaled Partial Pivoting

If s; = 0 for some i, then the system has no unique solution as all entries in
ith row are 0. Therefore, assume that s; # 0. Therefore, we found an
appropriate row interchange to place zeros in the first column. This is found
by choosing the least integer p such that

apL k1

= Imax ——

Sp 1<k<n S

and then do the row operations R; < R,,.




Scaled Partial Pivoting

The effect of scaling is to ensure that the largest element in each row has a
relative magnitude of 1 before the comparison for row interchange is
performed. In a similar fashion, before eliminating the variable z; using the
operations

Rp— MR k=i+1,,n

(1

we select the smallest integer p > i with

An; Al
‘ pz| — max | kz|
Sp 1<k<n Sy
and perform R; <+ E, if i # p. The scale factors sy, s9,- - , s, are computed

only once at the start of the procedure. They are row dependent, so they must
also be interchanged when row interchanges are performed.



Scaled Partial Pivoting
Example 8
30 591400\ (z;\ _ (591700
(5.291 —6.13> <x2> B <46.78 >

s1 = max{|30], |591400|} = 591400
sg = max{|5.291|,| — 6.13|} = 6.13

In this example,

Consequently,
|a11| - 30

s1 591400
|a21| - 5.291

22— 0.8631
w 613 0803

=0.5073 x 1074




Scaled Partial Pivoting

Interchange R, <> Ry, then
5291  6.13 \ [z1\ [ 46.78
30 591400/ \zo/)  \ 591700

To ~ 1.00

and

5171%10

This produces the correct result.




Scaled Partial Pivoting

Example 9
3 —-13 9 3 1 —19
-6 4 1 -18 o | | =34
6 -2 2 4 z3 | | 16
12 -8 6 10 T4 26




Scaled Partial Pivoting
In this example,

S1 = 13,82 = 18,83 = 6,84 =12
Let s = [13, 18, 6, 12]. Consequently,

|(L11| 3 ]a21| 6 |a31| 6 ]a41] 12
:7%023,7:7%0337 :7:1‘0’7:7:
S1 13 S9 18 S3 6 S4 12

1.0

The largest value occur at R3, therefore interchange R3 <+ R; and then
5 =1[6,18,13,12]




Scaled Partial Pivoting

6 -2 2 4\ (= 16

3 13 9 3 |[|a]| |-34
—6 4 1 18] |az| | -19
12 -8 6 10/ \uy 26

Now apply Ry — Ry — %Rl,Rg — R3+ Ri,Ry — Ry — 2R,

6 —2 2 4\ [z 16
0 —12 8 z | | -27
0 2 3 —14||az|  |-18
0 —4 2 2 ) \m —6




Scaled Partial Pivoting

Now,

lassa| _ 2 |ass] _ 4

— ~0.33
2

12
laza| _ 125 666, ~ 0.15,
S9 18 S3 S4

Therefore, no row interchange required now, we do the row operations as
follows. Ry — R3 + ¢ Ry, Ry — Ry — 1 R,

6 -2 2 4 1 16
0 —-12 8 1 x| | —27
0 0 13/3 -—-83/6 x| | —45/2
0 0 -2/3 5/3 T4 3




Scaled Partial Pivoting

Now,

|a33| 13/3 |CL43| 2/3
55 13 ~ 0.333, s 12 ~ 0.055

Again, no interchange is required, and we apply Ry — R4 + %Rg

6 -2 2 4 b 16

0 —-12 8 1 x| | —27
0 0 13/3 —83/6]| |as| | —45/2
0 0 0 —6/13) \ay —6/13




Scaled Partial Pivoting

Using backward substitution, we obtain that

I 3
xI9 o 1
I3 o —2

Ty 1




Theorem

Theorem 10
Gaussian elimination without pivoting preserves the diagonal dominance of a
matrix.




Gauss-Jordan
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Gauss-Jordan

The Gauss-Jordan method is a variation of Gauss elimination method. The

major difference is that when an unknown is eliminated in the Gauss-Jordan

method, it is eliminated from all other equations, rather than just the

subsequent ones. In addition, all rows are normalized by dividing them by

their pivot elements. Thus, the elimination results in an identity matrix rather

than a triangular matrix. Therefore, back substitution method is not v ‘

necessary. '
Example 11 '

3 —-13 9 3 71 ~19
6 4 1 18| [a| |[-34

6 -2 2 4 zs | | 16 ’
12 -8 6 10/ \au 26

40



Gauss-Jordan

Row operations Ry — Ry — (—6)Ry, R3 — R3 — 6R1, Ry — Ry — 12R;, we
obtain that

1 -13/3 3 1 1 -19/3
0 =22 19 —12 o | —72
0 24 —-16 -2 x3 | 54
0 44 30 -2/ \ay 102 )
Normalize the second row, by dividing by the pivot element, that is,
Ry — —55 Ry Later using the row operations Ry — Ry — = Ry, 'v
R3 — R3 — 24R5, Ry — R4 — 44R5, we obtain that A
1 0 —49/66 222/66 T 518/66
0 1 —19/22 12/22 zo | | 72/22 /
0 0 104722 —332/22| | x5 | | —540/22
0 0 8 —26 T4 —42

41



Gauss-Jordan

Normalize the third row, by dividing by the pivot element, that is, Rs — 22 Rs.
Later using the row operations
Ry — Ry — T2 R3, Ry — Ry — 52 R3, Ry — R4 — 8R3, we obtain that

1 0 0 6820/6864 1 27412/6864
0 1 0 —5060/2288 xo | | 2772/2288
0 0 1 —332/104 xzg | | —540/104
0 0 0 —48/104 T4 —48/104



Gauss-Jordan

Normalize the fourth row, by dividing by the pivot element, that is,
Ry — 33 R,. Later using the row operations

Ry — Ry — 820Ry, Ry — Ry — 50 Ry, Ry — Ry — 5232 Ry, we obtain that

10 0 0\ [z 3
01 00| |a| |1
001 0] as]| |[-2
000 1) \z4 1
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Doubts and Suggestions
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