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Elementary Operations
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Pivoting
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Pivoting

Example 1 (
2 2c
1 1

)(
x1
x2

)
=

(
2c
2

)
=⇒

(
x1
x2

)
=

(
0
1

)
However, the correct solution is x1 = x2 = 1. On the other hand, if we choose,
second row as the pivoting row, then the system becomes(

1 1
2 2c

)(
x1
x2

)
=

(
2
2c

)
=⇒

(
x1
x2

)
=

(
1
1

)
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Pivoting

• The simplest remedy for ill-conditioning is to use more significant figures
in the computation.

• If your application can be extended to handle larger word size, such a
feature will greatly reduce the problem.

• Obvious problems occur when a pivot element is zero because the
normalization step leads to division by zero.

• Problems may also arise when the pivot element is close to, rather than
exactly equal to, zero because if the magnitude of the pivot element is
small compared to the other elements, and then round-off errors can be
introduced.
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Pivoting

• Therefore, before each row is normalized, it is advantageous to
determine the largest available coefficient in the column below the pivot
element.

• The rows can then be switched so that the largest element is the pivot
element.

• This is called partial pivoting.
• If columns as well as rows are searched for the largest element and then

switched, the procedure is called complete pivoting.
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Pivoting

• Complete pivoting is rarely used because switching columns changes
the order of the x’s

• Consequently, adds significant and usually unjustified complexity to the
computer program.

• Aside from avoiding division by zero, pivoting also minimizes round-off
error.

• As such, it also serves as a partial remedy for ill-conditioning.
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Pivoting

Example 2 (
0.0003 3.0000
1.0000 1.0000

)(
x1
x2

)
=

(
2.0001
1.0000

)
If we apply Gaussian elimination, we obtain that(

0.0003 3.0000
0 −99999

)(
x1
x2

)
=

(
2.0001
−6666

)

x2 =
2

3
, x1 =

2.0001− 3(2/3)

0.0003

The result is very sensitive to the number of significant figures as shown in the
below table
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Pivoting

Digits x2 x1
3 0.667 -3.33
4 0.6667 0.0000
5 0.66667 0.30000
6 0.666667 0.330000
7 0.6666667 0.333000
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Pivoting
However, consider the following system, where we swapped the first equation
and second equation(

1.0000 1.0000
0.0003 3.0000

)(
x1
x2

)
=

(
1.0000
2.0001

)
If we apply Gaussian elimination, we obtain that(

1.0000 1.0000
0.0000 2.9997

)(
x1
x2

)
=

(
2.0001
1.9998

)

x2 =
2

3
, x1 =

1− (2/3)

1
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Pivoting

Digits x2 x1
0 3 0.667 0.333
4 0.6667 0.3333
5 0.66667 0.33333
6 0.666667 0.333333
7 0.6666667 0.3333333

The pivoting produce much less sensitive results for the round-off errors.
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Pivoting

Example 3 (
0 1.0000
1 1

)(
x1
x2

)
=

(
1
2

)
When ϵ is introduced in the first entry, we obtain that(

ϵ 1.0000
1 1

)(
x1
x2

)
=

(
1
2

)
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Pivoting
When Gaussian elimination is used we obtain(

ϵ 1.0000
0 1− ϵ−1

)(
x1
x2

)
=

(
1

2− ϵ−1

)

x2 =
2− ϵ−1

1− ϵ−1
≈ 1

x1 = (1− x2)ϵ
−1 ≈ 0

However, the correct solution is

x2 =
1− 2ϵ

1− ϵ
≈ 1

x1 =
1

1− ϵ
≈ 1
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Pivoting
When we pivoting we obtain that(

1 1
ϵ 1.0000

)(
x1
x2

)
=

(
2
1

)
Upon Gaussian elimination, we get(

1 1
0 1− ϵ

)(
x1
x2

)
=

(
2

1− 2ϵ

)
and

x2 =
1− 2ϵ

1− ϵ
≈ 1

x1 =
1

1− ϵ
≈ 1
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Pivoting

• The pivoting strategy is that when akk = 0, the kth must be interchanged
with a pth row, where p is the smallest integer greater than k with apk ̸= 0.

• To reduce the round-off error it is often necessary to perform row
interchanges even when the pivot elements are not zero.

• When akk after kth operations is small in magnitude compared to ajk ,
then the magnitude of the factor will be much larger than 1 while
computing xi.

• Round-off error introduced in this factor will contribute to the remaining
computation, consequently on each xk while performing the backward
substitution.
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Pivoting

Example 4 (
0.003 59.14
5.291 −6.13

)(
x1
x2

)
=

(
59.17
46.78

)
Using Gaussian elimination we obtain(

0.003 59.14
0 −104300

)(
x1
x2

)
=

(
59.17

−104400

)
and

x2 =
59.14

0.003
≈ 2000, x1 ≈ −10

This ruins the approximation as the true value is x1 = 10.000. However, for
larger systems, it is not easy to predict the devastating round-off error in ad-
vance.
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Pivoting

• The partial pivoting in general uses the following method to overcome
this issue.

• Select an element apq with larger magnitude as the pivot elements after
the kth row operations.

• Interchange the kth row and pth row. That is, we determine p ≥ k such
that

apk = max
k≤i≤n

|aik|

• Perform Rk ↔ Rp.
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Pivoting

Example 5
For the above example,

max
1≤i≤2

|ai1| = max{0.003, 5.291} = 5.291

Therefore, interchange R1 and R2, the system becomes(
5.291 −6.13
0.003 59.14

)(
x1
x2

)
=

(
46.78
59.17

)
Using Gaussian elimination and backward substitution, we obtain that(

x1
x2

)
=

(
10
1.0

)
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Scaled Partial Pivoting
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Scaled Partial Pivoting

• Simply picking the largest number in magnitude is done in partial
pivoting may work well.

• In this case, row scaling does not play a role, that is relative sizes of
entries in a row are not considered.

• In certain situations, the simple partial pivoting may not work.
• Consider the following example
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Scaled Partial Pivoting

Example 6 (
2 2c
1 1

)(
x1
x2

)
=

(
2c
2

)
Now,

max
1≤i≤2

|ai1| = max{2, 1} = 2

Therefore, no interchange is required and by Using Gaussian elimination and
backward substitution, we obtain that(

2 2c
0 1− c

)(
x1
x2

)
=

(
2c

2− c

)
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Scaled Partial Pivoting
Suppose our c is so large such that 1− c ≈ −c and 2− c ≈ −c, then(

2 2c
0 −c

)(
x1
x2

)
=

(
2c
−c

)
and (

x1
x2

)
=

(
0
1

)
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Scaled Partial Pivoting
However, the correct solution is x1 = x2 = 1. On the other hand, if we choose,
second row as the pivoting row, then the system becomes(

1 1
2 2c

)(
x1
x2

)
=

(
2
2c

)
and then Gaussian elimination produces(

1 1
0 2c− 2

)(
x1
x2

)
=

(
2

2c− 4

)
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Scaled Partial Pivoting
Suppose our c is so large such that 2c− 2 ≈ 2c and 2c− 4 ≈ 2c, then(

1 1
0 2c

)(
x1
x2

)
=

(
2
2c

)
and (

x1
x2

)
=

(
1
1

)
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Scaled Partial Pivoting

Remarks
• This example illustrates that the order in which we treat the equations

significantly affects the accuracy of the elimination algorithm in the
computer.

• In the naive Gaussian elimination algorithm, we use the first equation to
eliminate x1 from the rest of n− 1 equations.

• Then we use the second equations to eliminate x2 from the following
n− 2 equations.

• We follow the natural order in it.
• The last is not used as an operating equation in the naive elimination, at

no time are factors of it subtracted from other equations.
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Scaled Partial Pivoting

• Therefore, a new strategy is required for selecting the pivot row and pivot
element.

• The best approach is complete pivoting as it searches over all entries,
but that it is an expensive method.

• However, partial pivoting searches only the column entries.
• We advocate a strategy that simulates a scaling of the row vectors and

then selects a pivot element the relatively largest entry in a column.
• Also, rather than interchanging rows to move the desired element in the

pivot position, we use an indexing array to avoid the data movement.
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Scaled Partial Pivoting

Example 7 (
30 591400

5.291 −6.13

)(
x1
x2

)
=

(
591700
46.78

)
This is same as example 9.14 but first row is multiplied by 104. However, it
leads to the same inaccurate solution(

30 591400
0 −104300

)(
x1
x2

)
=

(
591700
−104400

)
and

x2 ≈ 1.001

x1 ≈ −10
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Scaled Partial Pivoting
Scaled partial pivoting is needed for the above example. It places the element
in the pivot position that is the largest relative to the entries in its row. The
first step in this procedure is to define a scalar si for each row as

si = max
1≤j≤n

|aij |
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Scaled Partial Pivoting
If si = 0 for some i, then the system has no unique solution as all entries in
ith row are 0. Therefore, assume that si ̸= 0. Therefore, we found an
appropriate row interchange to place zeros in the first column. This is found
by choosing the least integer p such that

ap1
sp

= max
1≤k≤n

ak1
sk

and then do the row operations R1 ↔ Rp.
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Scaled Partial Pivoting
The effect of scaling is to ensure that the largest element in each row has a
relative magnitude of 1 before the comparison for row interchange is
performed. In a similar fashion, before eliminating the variable xi using the
operations

Rk −
aki
aii

Ri, k = i+ 1, · · · , n

we select the smallest integer p ≥ i with

|api|
sp

= max
1≤k≤n

|aki|
sk

and perform Ri ↔ Ep if i ̸= p. The scale factors s1, s2, · · · , sn are computed
only once at the start of the procedure. They are row dependent, so they must
also be interchanged when row interchanges are performed.
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Scaled Partial Pivoting

Example 8 (
30 591400

5.291 −6.13

)(
x1
x2

)
=

(
591700
46.78

)
In this example,

s1 = max{|30|, |591400|} = 591400

s2 = max{|5.291|, | − 6.13|} = 6.13

Consequently,
|a11|
s1

=
30

591400
= 0.5073× 10−4

|a21|
s2

=
5.291

6.13
= 0.8631
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Scaled Partial Pivoting
Interchange R1 ↔ R2, then(

5.291 6.13
30 591400

)(
x1
x2

)
=

(
46.78
591700

)
and

x2 ≈ 1.00

x1 ≈ 10

This produces the correct result.
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Scaled Partial Pivoting

Example 9 
3 −13 9 3
−6 4 1 −18
6 −2 2 4
12 −8 6 10



x1
x2
x3
x4

 =


−19
−34
16
26


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Scaled Partial Pivoting
In this example,

s1 = 13, s2 = 18, s3 = 6, s4 = 12

Let s = [13, 18, 6, 12]. Consequently,

|a11|
s1

=
3

13
≈ 0.23,

|a21|
s2

=
6

18
≈ 0.33,

|a31|
s3

=
6

6
= 1.0,

|a41|
s4

=
12

12
= 1.0

The largest value occur at R3, therefore interchange R3 ↔ R1 and then
s = [6, 18, 13, 12]
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Scaled Partial Pivoting


6 −2 2 4
3 −13 9 3
−6 4 1 −18
12 −8 6 10



x1
x2
x3
x4

 =


16
−34
−19
26


Now apply R2 → R2 − 1

2R1, R3 → R3 +R1, R4 → R4 − 2R1
6 −2 2 4
0 −12 8 1
0 2 3 −14
0 −4 2 2



x1
x2
x3
x4

 =


16
−27
−18
−6


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Scaled Partial Pivoting
Now,

|a22|
s2

=
12

18
≈ 0.666,

|a32|
s3

=
2

13
≈ 0.15,

|a42|
s4

=
4

12
≈ 0.33

Therefore, no row interchange required now, we do the row operations as
follows. R3 → R3 +

1
6R2, R4 → R4 − 1

3R2,
6 −2 2 4
0 −12 8 1
0 0 13/3 −83/6
0 0 −2/3 5/3



x1
x2
x3
x4

 =


16
−27
−45/2

3


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Scaled Partial Pivoting
Now,

|a33|
s3

=
13/3

13
≈ 0.333,

|a43|
s4

=
2/3

12
≈ 0.055

Again, no interchange is required, and we apply R4 → R4 +
2
13R3

6 −2 2 4
0 −12 8 1
0 0 13/3 −83/6
0 0 0 −6/13



x1
x2
x3
x4

 =


16
−27
−45/2
−6/13


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Scaled Partial Pivoting
Using backward substitution, we obtain that

x1
x2
x3
x4

 =


3
1
−2
1


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Theorem

Theorem 10
Gaussian elimination without pivoting preserves the diagonal dominance of a
matrix.
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Gauss-Jordan
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Gauss-Jordan
The Gauss-Jordan method is a variation of Gauss elimination method. The
major difference is that when an unknown is eliminated in the Gauss-Jordan
method, it is eliminated from all other equations, rather than just the
subsequent ones. In addition, all rows are normalized by dividing them by
their pivot elements. Thus, the elimination results in an identity matrix rather
than a triangular matrix. Therefore, back substitution method is not
necessary.

Example 11 
3 −13 9 3
−6 4 1 −18
6 −2 2 4
12 −8 6 10



x1
x2
x3
x4

 =


−19
−34
16
26


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Gauss-Jordan
Row operations R2 → R2 − (−6)R1, R3 → R3 − 6R1, R4 → R4 − 12R1, we
obtain that 

1 −13/3 3 1
0 −22 19 −12
0 24 −16 −2
0 44 −30 −2



x1
x2
x3
x4

 =


−19/3
−72
54
102


Normalize the second row, by dividing by the pivot element, that is,
R2 → 1

−22R2. Later using the row operations R1 → R1 − −13
3 R2,

R3 → R3 − 24R2, R4 → R4 − 44R2, we obtain that
1 0 −49/66 222/66
0 1 −19/22 12/22
0 0 104/22 −332/22
0 0 8 −26



x1
x2
x3
x4

 =


518/66
72/22

−540/22
−42


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Gauss-Jordan
Normalize the third row, by dividing by the pivot element, that is, R3 → 22

104R2.
Later using the row operations
R1 → R1 − −49

66 R3, R2 → R2 − −19
22 R3, R4 → R4 − 8R3, we obtain that

1 0 0 6820/6864
0 1 0 −5060/2288
0 0 1 −332/104
0 0 0 −48/104



x1
x2
x3
x4

 =


27412/6864
2772/2288
−540/104
−48/104


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Gauss-Jordan
Normalize the fourth row, by dividing by the pivot element, that is,
R4 → −48

104 R2. Later using the row operations
R1 → R1 − 6820

6864R4, R2 → R2 − −5060
2288 R4, R3 → R3 − −332

104 R4, we obtain that
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



x1
x2
x3
x4

 =


3
1
−2
1


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Thanks
Doubts and Suggestions

panch.m@iittp.ac.in
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