MA633L-Numerical Analysis

Lecture 26 : Numerical Linear Algebra - Norms

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

March 10, 2025

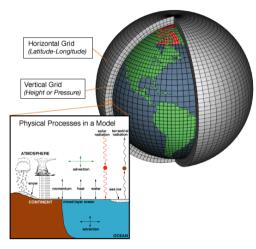


Figure 1: Atmospheric Model Grids, Source: Wikipedia

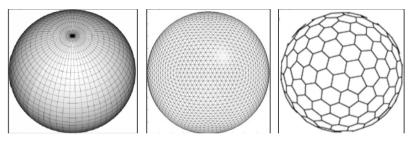


Figure 2: Atmospheric Model Grids Other Pattern, Source: Intech Open

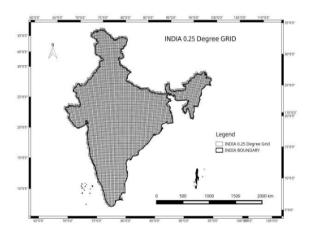


Figure 3: Atmospheric Model Grids: India, Source: Forest Fire Locations in India their spatio temporal patterns

- Weather Prediction of India for the next 10 days
- Area of India is 3.2 million sq.km
- To predict the weather pattern, you should model the atmosphere from sea level to 20 km
- Assume that, we make prediction of weather at each cubical gird with each cube measuring 0.1 km on each side.
- Compute F(lattitude, longitude, elevation, time)=Temperature or Pressure or Rain or ...

MUMERICAL MALVER

- Total number of points = $3.2 \times 10^6 \times 20 \times 10^3 = 6.4 \times 10^{10}$
- If these nodes are connected to each other and influences, the size of the matrix is $10^{10}\,$

Gaussian Elimination

- To solve the NWP matrix, of size 10^{10} using GFLOP machine, it requires, $10^{30}/10^9 = 10^{21}$ seconds, that is, 10^{13} years to compute, but age of earth is 4.5×10^9 years.
- For a tera flops machine (1 TFLOPS = 10^{12} FLOPS), it requires, 10^{10} years.
- For a peta flops machine (1 PFLOPS = 10^{15} FLOPS), it requires, 3.16×10^{7} years.
- Researchers use HPC, Supercomputers and sparse linear solvers

Sparse Matrix and Iterative Schemes

Sparse Matrix

Note: there is no strict or standard definition regarding the sparse matrix, but the following is commonly used

Definition 1 (Sparse Matrix)

A sparse matrix is a matrix in which most of the elements are zero. A common criterion is that the number of zeros is roughly equal to the number of rows or column.

Definition 2 (Sparsity)

The sparsity of matrix can be represented as

 $Sparsity = \frac{\text{Number of Zero Elements}}{\text{Total Number of Elements}}$

Typically, a matrix is considered sparse if sparsity is > 0.5

Iterative Schemes

The underlying principles behind iterative methods to solve Ax = b are as follows:

- 1. Guess any $x^{(0)}$
- 2. Compute the residual $r^{(0)} = b Ax^{(0)}$
- 3. Compute the residual norm, that is $\|r^{(0)}\|$
- 4. Use an algorithm to compute $x^{(1)}$ involving A, b and $x^{(0)}$
- 5. Recompute the residual norm $\|r^{(1)}\| = \|b Ax^{(1)}\|$
- 6. For given $x^{(i)}$, iterate this process until you get the residual as zero or an equivalent condition

Norms

Definition 3 (Vector Norms)

A vector norm, usually denoted by $\|.\|$, is a function from a vector space V to the set of nonnegative real numbers that obeys the following three postulates. $\|.\|: V \to \mathbb{R}_+$ such that

$$\|\mathbf{x}\| > 0 \quad \text{if } \mathbf{x} \neq 0, \mathbf{x} \in V$$
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\| \quad \text{if } \alpha \in \mathbb{R}, \mathbf{x} \in V$$
$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| \quad \text{if } \mathbf{x}, \mathbf{y} \in V$$

The most familiar norm on \mathbb{R}^n is the Euclidean norm defined by

$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}, \text{ where } \mathbf{x} = (x_1, x_2, \cdots, x_n)$$
 (1)

This is the norm that corresponds to usual concept of length. The other norms are also used. The simplest and easiest norm is ℓ_∞ -norm

$$\|\mathbf{x}\|_{\infty} = \max_{0 \le i \le n} |x_i| \tag{2}$$

The third important norm is $\ell_1\text{-norm}$

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

22

Example 4

Compute the $\|.\|_1, \|.\|_2$ and $\|.\|_\infty$ norms of the following vectors. x = (4, 4, -4, 4) v = (0, 2, 2, 2), w = (8, 0, 0, 0)

	$\ \cdot\ _1$	$\ \cdot \ _2$	$\ \cdot\ _{\infty}$
x	16	8	4
v	6	$\sqrt{12}$	2
w	8	8	8

(3)

The p- norm or ℓ_p norm of a vector is defined by

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}, \text{ where } \mathbf{x} = (x_{1}, x_{2}, \cdots, x_{n})$$
 (4)

Definition 5

If $\mathbf{x} = (x_1, x_2, \cdots, x_n)$ and $\mathbf{y} = (y_1, y_2, \cdots, y_n)$ are two vectors in \mathbb{R}^n , the ℓ_2 and ℓ_{∞} distances between x and y are defined by

$$\|\mathbf{x} - \mathbf{y}\|_2 = \left(\sum_{i=1}^n |x_i - y_i|^2\right)^{1/2}$$

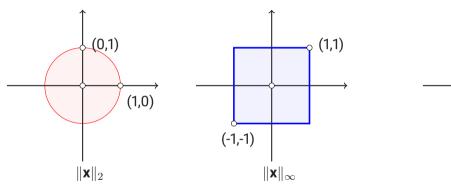
and

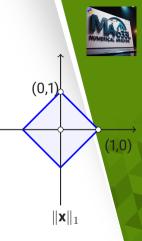
$$\|\mathbf{x} - \mathbf{y}\|_{\infty} = \max_{1 \le i \le n} |x_i - y_i|$$

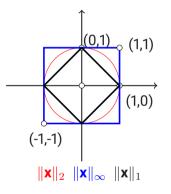
To understand these norms better, see the visualization of the following picture which gives the sketch of the set

$$\{\mathbf{X}: \mathbf{X} \in \mathbb{R}^2, \|\mathbf{X}\| \le 1\}$$

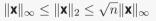
This set is called unit cell or the unit ball in two-dimensional vector space.

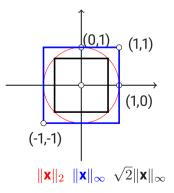






Theorem 6 For each $x \in \mathbb{R}^n$,





Matrix Norm

If $A = (a_{ij})$ is an $n \times n$ matrix and $\|.\|$ is a vector norm in \mathbb{R}^n , then the matrix norm is

$$\|A\| = \max_{\|x\|=1} \|Ax\| \quad \text{(Vector Induced Norm)}$$
$$\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \quad \text{(Row Sum Norm)}$$
$$\|A\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}| \quad \text{(Column Sum Norm)}$$
$$\|A\|_{F} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2}} \quad \text{(Frobenius Norm)}$$
$$\|A\|_{2} = \sqrt{\rho(A^{T}A)} = \sigma_{max}(A)$$

Condition Number

If A is an invertible matrix, then its condition number $\kappa(A)$ is defined by

$$\begin{split} \kappa(A) &= \|A\| \|A^{-1}\| \\ \kappa(A) &= \frac{\sigma_{max}(A)}{\sigma_{min}(A)} \quad (l_2 \text{Norm}) \\ \kappa(A) &= \frac{|\lambda_{max}(A)|}{|\lambda_{min}(A)|} \quad (A * A = AA * \text{A is normal}) \\ \kappa(A) &= 1 \quad (A * A = AA * = I\text{A is unitary}) \end{split}$$

(5)

Theorems

If A is and $n \times n$ matrix such that ||A|| < 1, then I - A is invertible, and

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k$$

From this theorem, we can observe that

$$||(I-A)^{-1}|| \le \sum_{k=0}^{\infty} ||A^k|| \le \sum_{k=0}^{\infty} ||A||^k = \frac{1}{1-||A||}$$

Theorems

Theorem 8

If A and B are $n\times n$ matrices such that $\|I-AB\|<1$, then A and B are invertible. Furthermore,

$$A^{-1} = B \sum_{k=0}^{\infty} (I - AB)^k$$

and

$$B^{-1} = \sum_{k=0}^{\infty} (I - AB)^k A$$

The general algorithm for solving a system Ax = b is as follows:

- 1. Choose a nonsingular matrix Q
- 2. Choose an arbitrary starting vector $x^{(0)}$
- 3. Generate vectors $x^{(1)}, x^{(2)}, \cdots$ recursively from the equation

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b, \quad k = 1, 2, 3, \cdots$$
 (6)

Suppose x is the solution of the system Ax=b and $x^{(k)}$ converges to x, as $k\to\infty,$ then

$$Qx = (Q - A)x + b$$

Note, that the system (6) should be easy to solve for $x^{(k)}$ when the right hand side is known. Also, Q should be chosen to ensure that $x^{(k)}$ converges to x, no matter, what initial vector is used and the convergence should be rapid.

Note that the true solution x satisfies the equation

$$x = (I - Q^{-1}A)x + Q^{-1}b$$

Therefore, x is a fixed point of the mapping

$$f(x) = (I - Q^{-1}A)x + Q^{-1}b$$

From (6)

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b, \quad k = 1, 2, 3, \cdots$$
$$\implies x^{(k)} = (I - Q^{-1}A)x^{(k-1)} + Q^{-1}b, \quad k = 1, 2, 3, \cdots$$

Now,

$$x^{(k)} - x = (I - Q^{-1}A)(x^{(k-1)} - x), \quad k = 1, 2, 3, \cdots$$
 (8)

$$\implies ||x^{(k)} - x|| = ||(I - Q^{-1}A)||||(x^{(k-1)}) - x|$$
$$\implies ||x^{(k)} - x|| = ||(I - Q^{-1}A)||^k||(x^{(0)}) - x||$$

(7)

If $\|I - Q^{-1}A\| < 1$, we can conclude that

$$\lim_{k \to \infty} \|x^{(k)} - x\| = 0$$

By above theorem, it is guaranteed that if $||I - Q^{-1}A|| < 1$, then both $Q^{-1}A$ and A are invertible.

Theorem 9

If $||I - Q^{-1}A|| < 1$ for some matrix norm, then the sequence produced by (6) converges to the solution of Ax = b for any initial vector $x^{(0)}$.

Theorem 10

If all eigenvalues of $I - Q^{-1}A$ lies in the open unit disc |z| < 1, then the sequence produced by (6) converges to the solution of Ax = b for any initial vector $x^{(0)}$.

The above theorem implies that the spectral radius of $I - Q^{-1}A$ must be less than 1, that is,

$$o(I - Q^{-1}A) < 1$$

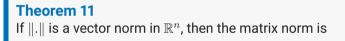
Let $\boldsymbol{r}^{(k)}$ denote the residual vector obtained from $\boldsymbol{x}^{(k)}$ after k iterations, then we get

$$r^{(k)} = b - Ax^{(k)}.$$

By above theorem, if $||I - Q^{-1}A|| < 1$, then $||r^{(k)}|| \to 0$.

Theorem

The distance between two matrices $A, B \in M_{n \times n}(\mathbb{R})$ is ||A - B||.



$$||A|| = \max_{||x||=1} ||Ax||$$

NUMERICAL ANALYSY

Theorem 12

If $\|.\|$ is a vector norm in \mathbb{R}^n , then the matrix norm is

$$||A|| = \max_{||x||=1} ||Ax||$$

Proof: It is enough to prove that $\|.\|$ is a matrix norm. If $A \neq 0$, at least one of its column is not a zero vector. Let *j* th column $(A)_j \neq 0$. Then

$$||A|| = \max_{||x||=1} ||Ax|| \ge ||Ae_j|| = ||(A_j)|| > 0$$

$$\|\alpha A\| = \max_{\|x\|=1} \|\alpha Ax\| = \max_{\|x\|=1} |\alpha| \|Ax\| = |\alpha| \max_{\|x\|=1} \|Ax\| = |\alpha| \|Ax|$$

Now,

$$\begin{split} \|A+B\| &= \max_{\|x\|=1} \|(A+B)x\| = \max_{\|x\|=1} \|Ax+Bx\| \le \max_{\|x\|=1} (\|Ax\|+\|Bx\|) \\ &\max_{\|x\|=1} \|Ax\| + \max_{\|x\|=1} \|Bx\| = \|A\| + \|B\| \\ \|AB\| &= \max_{\|x\|=1} \|ABx\| \le \max_{\|x\|=1} \|A\| \|Bx\| \le \max_{\|x\|=1} \|A\| \|B\| \|x\| = \|A\| \|B\| \\ \end{split}$$
 Hence the proof.

Theorem

Theorem 13 If $A = (a_{ij})$ is an $n \times n$ matrix, then

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

The $||A||_1$ norm is also called as the column sum norm as it computes the maximum absolute column sum of the matrix. The $||A||_{\infty}$ norm is also called as the row sum norm as it computes the maximum absolute row sum of the matrix.

Theorem 14 If $A = (a_{ij})$ is an $n \times n$ matrix, then $\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$ $\|A\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$

Proof: Observe that when Ax = b

$$b_i = \sum_{j=1}^n a_{ij} x_j \implies ||b||_{\infty} = \max_{1 \le i \le n} |b_i| = \max_{1 \le i \le n} \left| \sum_{j=1}^n a_{ij} x_j \right|$$

$$\begin{split} \|A\|_{\infty} &= \max_{\|x\|_{\infty}=1} \|Ax\| = \max_{\|x\|_{\infty}=1} \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}x_{j}| \le \max_{\|x\|_{\infty}=1} \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| |x_{j}| \\ \implies \|A\|_{\infty} \le \left(\max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \right) \max_{\|x\|_{\infty}=1} |x_{j}| = \left(\max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \right) \max_{\|x\|_{\infty}=1} \|x\| \\ \implies \|A\|_{\infty} \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \end{split}$$

It is enough to prove that the equality is achieved for some x. Choose your x such that $x_j = sign(A_{ij})$.

Then the proof follows for row sum follows

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

For column sum, consider the columns of A as A_1, A_2, \cdots, A_n

$$\|Ax\|_{1} = \left\|\sum_{i=1}^{n} A_{i}x\right\|_{1} \le \sum_{i=1}^{n} \|A_{i}x\|_{1} = \sum_{i=1}^{n} |x|\|A_{i}\|_{1} \le \max_{1 \le j \le n} \|x\|_{1} \sum_{i=1}^{n} |a_{ij}|$$
$$\implies \|A\|_{1} = \max_{\|x\|_{1}=1} \|Ax\|_{1} \le \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$$

The equality and the proof follows by taking the standard basis vector for x.

Theorem

The Frobenius norm is given by $||A||_F$

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2}$$

Theorem 15

$$\begin{split} \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2 &= \text{trace}(A^T A) \\ \|A\|_F^2 &= \text{trace}(A^T A) \end{split}$$

Proof: If $A = (a_{ij})$ and $B = (b_{ij})$, then $C = AB = (c_{ij})$ is given by, then

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \implies c_{ii} = \sum_{k=1}^{n} a_{ik} b_{ki}$$

When $C = A^T A$, we have

$$c_{ii} = \sum_{k=1}^{n} a_{ki} a_{ki} = \sum_{k=1}^{n} a_{ki}^2$$

$$\operatorname{trace}(A^T A) = \sum_{i=1}^n c_{ii} = \sum_{i=1}^n \sum_{k=1}^n a_{ki}^2 = \sum_{j=1}^n \sum_{i=1}^n a_{ij}^2 = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2$$

Since

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2$$

the proof follows.

Theorem 16

Frobenius norm is a norm.

Proof: If $A \neq 0$, at least one element is not a zero element. Let it be a_{pk} . Hence

$$\|A\|_{F} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2}} \ge |a_{pk}| > 0$$
$$\|\alpha A\|_{F} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |\alpha a_{ij}|^{2}} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |\alpha| |a_{ij}|^{2}} = |\alpha| \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2}} = |\alpha| \|A\|_{F}$$

We know

 $|a+b|^2 \le |a|^2 + |b|^2 + 2|a||b|$

Hence

$$||A + B||_F^2 = \sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2 + \sum_{i=1}^n \sum_{j=1}^n |b_{ij}|^2 + 2\sum_{i=1}^n \sum_{j=1}^n |a_{ij}| |b_{ij}|^2$$

$$|A + B||_F^2 = ||A||_F^2 + ||B||_F^2 + 2\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}||b_{ij}|_F$$

By Cauchy-Schwarz inequality

$$\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}| |b_{ij}| \le \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |b_{ij}|^2 \right)^{1/2} = \|A\|_F \|B\|_F$$

$$\begin{split} \|A+B\|_{F}^{2} &= \|A\|_{F}^{2} + \|B\|_{F}^{2} + 2\|A\|_{F}\|B\|_{F} \implies \|A+B\|_{F} \leq \|A\|_{F} + \|B\|_{F} \\ \|AB\|_{F}^{2} &= \sum_{i=1}^{n} \sum_{j=1}^{n} \left|\sum_{k=1}^{n} a_{ik}b_{kj}\right|^{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{k=1}^{n} |a_{ik}|^{2} \sum_{k=1}^{n} |b_{kj}|^{2}\right) \\ AB\|_{F}^{2} &\leq \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{k=1}^{n} |a_{ik}|^{2} \sum_{l=1}^{n} |b_{lj}|^{2}\right) = \sum_{i=1}^{n} \sum_{k=1}^{n} |a_{ik}|^{2} \sum_{l=1}^{n} \sum_{j=1}^{n} |b_{lj}|^{2} = \|A\|_{F}^{2} \|B\|_{F}^{2} \end{split}$$

Theorem 17

If \boldsymbol{U} and \boldsymbol{V} are orthogonal, then

$$||UA||_F = ||AV||_F = ||A||_F$$

Proof:

$$\|UA\|_F^2 = \operatorname{trace}((UA)^T(UA)) = \operatorname{trace}(A^TU^TUA) = \operatorname{trace}(A^TA) = \|A\|_F^2$$

Since $\mathbf{trace}(A^TA) = \mathbf{trace}(AA^T)$, we get

$$\|AV\|_F^2 = \operatorname{trace}((AV)^T (AV)) = \operatorname{trace}((AV) (AV)^T)$$
$$= \operatorname{trace}(AVV^T A^T) = \operatorname{trace}(AA^T) = \operatorname{trace}(A^T A) = \|A\|_F^2$$

Example

Example 18 Compute the $\|.\|_1, \|.\|_F$ and $\|.\|_\infty$ norms of the following matrix.

$$\begin{pmatrix} 6 & -2 & 2 & 4 \\ 12 & -8 & 6 & 10 \\ 3 & -13 & 9 & 3 \\ -6 & 4 & 1 & -18 \end{pmatrix}$$

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}| = \max\{27, 27, 18, 35\} = 35$$

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| = \max\{14, 36, 28, 29\} = 36$$
$$||A||_F = 32.3883$$

Eigenvalues

If I denotes the identity matrix, then ||I|| = 1. Also,

 $\|AB\| \leq \|A\| \|B\|$

Definition 19 (Characteristic Polynomial:)

If A is a square matrix, the characteristic polynomial of A is defined by

 $p(\lambda) = \det(A - \lambda I)$

Definition 20 (Eigenvalue and Eigenvector)

If p is a characteristic polynomial of A, the roots of p are called eigenvalues or characteristic values of A. If λ is an eigenvalue of A and $x \neq 0$ such that $A\mathbf{x} = \lambda \mathbf{x}$, then \mathbf{x} is an eigenvector of A.

Spectral Radius

Usually, the matrix is considered over the field *C* though the matrix entries can be real.

Definition 21 (Singular Values)

The singular values σ of an $m \times n$ matrix A are the positive square roots of the nonzero eigenvalues of the $n \times n$ symmetric matrix $A^T A$.

$$\sigma_i(A) = \sqrt{\lambda_i(A^T A)}$$

Definition 22 (Spectral Radius)

The spectral radius $\rho(A)$ of a matrix A is defined by

$$\rho(A) = \max_{1 \le i \le n} |\lambda_i|$$

This is also denoted as $\lambda_{max}(A)$.

Spectral Radius

The matrix norm induced by the Euclidean norm (ℓ_2 norm) is the spectral norm, and is given by

$$|A||_2 = \sqrt{\rho(A^T A)} = \sigma_{max}(A)$$

This is the minimum norm and provides the tightest measure of size.

Theorem 23 If $A = (a_{ij})$ is an $n \times n$ matrix, then $\|A\|_2 \le \|A\|_F \le \sqrt{n} \|A\|_2,$ $\|A\|_F = \sqrt{\operatorname{trace}(A^T A)}$

$$\rho(A) \le \|A\|$$

for any natural norm $\|.\|$.

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

MA633L-Numerical Analysis

Lecture 26 : Numerical Linear Algebra - Norms

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

March 10, 2025

