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Numerical Weather
Prediction



Numerical Weather Prediction
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Figure 1: Atmospheric Model Grids, Source: Wikipedia




Numerical Weather Prediction

Figure 2: Atmospheric Model Grids Other Pattern, Source: Intech Open



Numerical Weather Prediction
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Figure 3: Atmospheric Model Grids: India, Source: Forest Fire Locations in India their
spatio temporal patterns



Numerical Weather Prediction

e Weather Prediction of India for the next 10 days
® Area of India is 3.2 million sq.km

® To predict the weather pattern, you should model the atmosphere from
sea level to 20 km

® Assume that, we make prediction of weather at each cubical gird with
each cube measuring 0.1 km on each side.

e Compute F(lattitude, longitude, elevation, time)=Temperature or Pressure
or Rainor ...




Numerical Weather Prediction

e Total number of points = 3.2 x 10% x 20 x 103 = 6.4 x 10'°

e |f these nodes are connected to each other and influences, the size of the
matrix is 100



Gaussian Elimination

e To solve the NWP matrix, of size 10'° using GFLOP machine, it requires,
10%°/10? = 10%! seconds, that is, 10!3 years to compute, but age of earth
is 4.5 x 10? years.

e For a tera flops machine (1 TFLOPS = 10'? FLOPS), it requires, 10'° years.

® For a peta flops machine (1 PFLOPS = 10'® FLOPS), it requires, 3.16 x 107
years.

® Researchers use HPC, Supercomputers and sparse linear solvers



Sparse Matrix and
Iterative Schemes



Sparse Matrix

Note: there is no strict or standard definition regarding the sparse matrix, but
the following is commonly used

Definition 1 (Sparse Matrix)

A sparse matrix is a matrix in which most of the elements are zero. A common
criterion is that the number of zeros is roughly equal to the number of rows or
column.

Definition 2 (Sparsity)
The sparsity of matrix can be represented as

Number of Zero Elements
Total Number of Elements

Sparsity =

Typically, a matrix is considered sparse if sparsity is > 0.5



Iterative Schemes

The underlying principles behind iterative methods to solve Ax = b are as
follows:

1. Guess any z(¥)

Compute the residual #(© = b — Az

Compute the residual norm, that is |||

Use an algorithm to compute z(!) involving A, b and z(©)
Recompute the residual norm ||| = ||b — Az

For given z(%), iterate this process until you get the residual as zero or an
equivalent condition

o s N



Vector Norms
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Norms

Definition 3 (Vector Norms)
A vector norm, usually denoted by |||, is a function from a vector space V to

the set of nonnegative real numbers that obeys the following three postulates.
Il : V" — R4 such that
x| >0 ifx#£0,xeV
lax|| = |af||x|| faeR,xeV
x4yl < x|+ llyll ifxyeV




Vector Norms

The most familiar norm on R™ is the Euclidean norm defined by

n 1/2
[x[|2 = (ZlﬂﬁiIz) ,  Where x=(z1,22, -, 2n)
i=1

This is the norm that corresponds to usual concept of length. The other
norms are also used. The simplest and easiest norm is /..,-norm

[1Xl[oo = max [z]
0<i<n




Vector Norms

The third important norm is ¢;-norm

n
X[l = |l
i=1

Example 4
Compute the ||.||1, ||-||2 and ||.||cc norms of the following vectors.
T = (4747 _474) v = (0?27272)7 w = (8707070)

[ | B S

x 16 8 4
v 6 V12 2

w 8 8 8




Vector Norms

The p— norm or ¢, norm of a vector is defined by

n 1/p
Hpr = <Z|xz’p> , where x = (xl’x%... 71'71)
=1

Definition 5
Ifx = (21,22, - ,2,) andy = (y1,42, -, yn) are two vectors in R”, the ¢, and
/. distances between z and y are defined by

n 1/2
[x—yll2 = <Z |zi — yz‘|2>
g=il

and

1% = ¥lloo = max |z; —yil




Vector Norms

To understand these norms better, see the visualization of the following
picture which gives the sketch of the set

{x:x e R% x| <1}

This set is called unit cell or the unit ball in two-dimensional vector space.




Vector Norms
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Vector Norms
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Vector Norms

Theorem 6
For each z € R",

IXfloo < [X]l2 < vrlX]loo

(01, (11

(1,0)

@)

X2 [1Xlloo V2/X]loc




Matrix Norm

If A= (a;;)is ann x n matrix and ||.|| is a vector norm in R", then the matrix
norm is
Al = e |Az||  (Vector Induced Norm)
z||=1

n

| Alloc = max Z laij|  (Row Sum Norm)

1<i<n

Jj=1
n

|Ally = lrgjaégnz; la;;]  (Column Sum Norm)
1=

> a2 (Frobenius Norm)

i=1 j=1

1Al =

HA||2 = p(ATA) = Umam(A)




Condition Number

If Ais an invertible matrix, then its condition number «(A) is defined by

R(A) = A A7Y|
K(A) = Z:‘Z:((j)) (IaNorm)
Py aa A
Kk(A) = Donin (A)] (Ax A= AAxAisnormal)

k(A)=1 (Ax A= AAx=IAis unitary)




Iterative Methods
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Theorems

Theorem 7
If Aisand n x n matrix such that || A|| < 1,then I — A is invertible, and

IR
k=0

From this theorem, we can observe that

I =)~ < ZIIA’“I < Z 1A* = IAII




Theorems

Theorem 8

If A and B are n x n matrices such that ||[I — ABJ|| < 1, then A and B are
invertible. Furthermore,

o0
BZ (I — AB)*
k=0

and

B™'=> (I-AB)*A
k=0




Iterative Methods

The general algorithm for solving a system Az = b is as follows:
1. Choose a nonsingular matrix
2. Choose an arbitrary starting vector z(©)
3. Generate vectors (1, () ... recursively from the equation

Suppose z is the solution of the system Az = b and z(¥) converges to z, as
k — oo, then
Qr=(Q— Az +b

Note, that the system (6) should be easy to solve for z(*) when the right hand
side is known. Also, () should be chosen to ensure that z(F) converges to x,
no matter, what initial vector is used and the convergence should be rapid.



Iterative Methods

Note that the true solution x satisfies the equation
r=1T-Q 'A)z+Q '
Therefore, x is a fixed point of the mapping
fl@)=(I-Q 'A)z+Q '

From (6)
Ql'(k) = (Q - A)$(k_1) + ba k= 1’ 2’ 3’ o

— oW =T -Q A2V +Q, k=123, -

Now,
e® =T -Q ' A)* Y —2), k=123,

= ¥ —z| =11 - QA (z*) — 2|
= e —a| = I( - Q7" 4)|*|(='”) — =]




Iterative Methods

If ||I — Q~'A|| < 1, we can conclude that

lim ||z —z|| =0
k—o0

By above theorem, it is guaranteed that if ||/ — Q' A|| < 1, then both Q' A
and A are invertible.

Theorem 9
If |1 — Q'A| < 1 for some matrix norm, then the sequence produced by (6)
converges to the solution of Az = b for any initial vector 2(©),

Theorem 10

If all eigenvalues of I — QA lies in the open unit disc |z| < 1, then the se-
quence produced by (6) converges to the solution of Az = b for any initial
vector z(?).




Iterative Methods

The above theorem implies that the spectral radius of I — Q—' A must be less
than 1, that is,

p(I—Q7tA) <1
Let (%) denote the residual vector obtained from z(¥) after k iterations, then
we get

k) =p— Az,

By above theorem, if |1 — Q' A| < 1,then ||»(®)| — 0.



Theorem

The distance between two matrices A, B € M,,.,(R) is |A — B]|.

Theorem 11
If ||.|| is a vector norm in R™, then the matrix norm is

[A]l = max [[Az]
ll<ll=1




Theorems and Proof

Theorem 12
If ||.|| is a vector norm in R", then the matrix norm is

[A]l = max [[Az]
llefl=1

Proof: It is enough to prove that ||| is a matrix norm. If A # 0, at least one of
its column is not a zero vector. Let jth column (A4); # 0. Then

14l = max [Az] = [|Aes | = [[(A;)]] > 0

leAlf = max [ladz]] = max |of[ Az] = |af max |Az]| = ||| Az]



Theorems and Proof

Now,

1A+ Bl = X I(A+ B)z| = fax Az + Bz < m”aX(IIAwII + [1B])

e | Az|| + fax [Bx|| = [[All + (| B]]

4B = max [|ABz| < max |4l Bzl < max [A[[|B]llz]l = 1Al Bl

Hence the proof.




Theorem

Theorem 13
If A = (a;;) is an n x n matrix, then

n

|Afloo = max > as
1<i<n 4 1
]:

| Aln = g ZI%I

The ||Al|; norm is also called as the column sum norm as it computes the
maximum absolute column sum of the matrix. The || A||- normis also called
as the row sum norm as it computes the maximum absolute row sum of the
matrix.




Theorems and Proof

Theorem 14
If A = (a;;) is an n x n matrix, then

n

|Afloo = max > " as
1<i<n < 1
]:

Al = max Z|a”|

Proof: Observe that when Ax =10

bi —Z:lawfﬂy = [blloo = max [bi| = max Zlaz‘jl‘j
J J=




Theorems and Proof

_ _ el < 3" faslle;
[lo = max [l ]| = max, 1??5%; sl < e, 2 aij ;]

= [|A4]|oc < | max Z|GU| max |:L’]|— max Z|a”| max ||:L'H
1Si<n ¢ [ 1Si<n £ [

= [JAlleo < max Z!%!

1<i<n

It is enough to prove that the equality is achieved for some z. Choose your z
such that z; = sign(A;;).




Theorems and Proof

Then the proof follows for row sum follows
n
|A]loo = max > |aj;]

1<i<n 4
Jj=1

For column sum, consider the columns of A as Ay, As,--- , A,

n

Z Ail‘

=1

Azl =

n n n
< DMl =) fellAill < max el ) lai|
X : 1<j<n X
1 =1 =1 =1

n

= ||A|l; = max ||Az <maxZa~
411 = o, Aol < s 3 o

The equality and the proof follows by taking the standard basis vector for x.




Theorem

The Frobenius norm is given by || A|| ¢

[AllF =

ZZ|“2J|

=1 j=1




Theorems and Proof

Theorem 15

) a?; = trace(A” A)
J

i=1 j=1

| A||% = trace(AT A)

Proof: If A = (a;j) and B = (b;;), then C' = AB = (¢;;) is given by, then

n n
Cij = E aikbp; = ciy = E @ikbr;
k=1 k=1




Theorems and Proof

When C = AT A, we have

n n

2

Cii = E OkiQki = E Qi
k=1 k=1

n n n

trace(A” A) = Zn:cn Zzn:aiz = anza?j = Zza?j
=1

i=1 k=1 j=1i=1 =1 j=1

Since

n

n o n n
E 2 E 2
aij == |az_]|
=13

i=1 j=1 =1j=1

the proof follows.




Theorems and Proof

Theorem 16
Frobenius norm is a norm.

Proof: If A # 0, at least one element is not a zero element. Let it be a,.
Hence

n n
D0 laig? > lapk| >0

i=1 j=1

oAl = J izn: |aay|? = JZZ | lasj|? = o

IAllF =

ZZ |aij|? = |all|All F

i=1 j=1 i=1 j=1 i=1 j=1




Theorems and Proof

n n
JA+BlF =Y laij + byl?

i=1 j=1

We know
la+ 0> < |al® + b + 2|a||b]

Hence

1A+ BlE =D lagl+ D> 1bilP+2D ) lallbi]

i=1 j=1 i=1 j=1 =1 j=1

n n
|4+ BI% = 1415+ 1315 +2 503 Jag 16
i=1 j=1




Theorems and Proof

By Cauchy-Schwarz inequality

i=1 j=1 i=1 j=1 i=1 j=1

DO aijbiy| < (ZZ aiﬂ) (Zzszz) = [|Allpl|B r
|A+ B|% = |Al% + |BIIF + 2HAHFHB||F — [[A+ Blr < || Allr + | BlF

|ABI[3 = ZZ Zazkbkj < ZZ <Z |aik | Z |ka|2>

i=1 j=1 k=1 i=1 j=1 \k=1
n n n n n
IABIZ <> (Z Jairl* > \sz\z) ZZ |aix|? ZZ lbij1 > = | AIE Bl
=1 j=1 \k=1 =1 =1 k=1 =1 j=1



Theorems and Proof

Theorem 17
If U and V are orthogonal, then

IUA|lF = [|AV|F = [|AllF
Proof:
|UA|% = trace((UA)T(UA)) = trace(ATUTU A) = trace(AT A) = ||A||%
Since trace(A” A) = trace(AAT), we get
|AV||% = trace((AV)T(AV)) = trace((AV)(AV)T)

= trace(AVVT AT) = trace(AA”) = trace(AT A) = || A||%




Example

Example 18
Compute the ||.||1, ||.||» and ||. || norms of the following matrix.
6 -2 2 4
12 -8 6 10
3 =13 9 3
-6 4 1 —18

|All1 = jmax Z |aij| = max{27,27,18,35} = 35

[[Alloo = max Z|a”| = max{14, 36,28, 29} = 36

1<i<n

|Allr = 32.3883




Eigenvalues

If I denotes the identity matrix, then || I|| = 1. Also,

IAB| < [[Alll| Bl

Definition 19 (Characteristic Polynomial:)
If Ais a square matrix, the characteristic polynomial of A is defined by

p(A) = det(A — \I)

Definition 20 (Eigenvalue and Eigenvector)

If p is a characteristic polynomial of A, the roots of p are called eigenvalues
or characteristic values of A. If X is an eigenvalue of A and x # 0 such that
Ax = \x, then x is an eigenvector of A.




Spectral Radius

Usually, the matrix is considered over the field C' though the matrix entries
can be real.

Definition 21 (Singular Values)
The singular values o of an m x n matrix A are the positive square roots of the
nonzero eigenvalues of the n x n symmetric matrix AT A.

oi(A) = [ \(ATA)

Definition 22 (Spectral Radius)
The spectral radius p(A) of a matrix A is defined by

p(A) = max [\

1<i<n

This is also denoted as A4, (A).



Spectral Radius

The matrix norm induced by the Euclidean norm (¢ norm) is the spectral

norm, and is given by
|All2 = \/ p(ATA) = 0mau(A)

This is the minimum norm and provides the tightest measure of size.

Theorem 23
If A= (a;;)is ann x n matrix, then

[All2 < 1 AllF < Vrl|All2,

|Allp = \/trace(AT A)
p(A) < [ A]

for any natural norm ||.||.
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