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Numerical Weather
Prediction
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Numerical Weather Prediction

Figure 1: Atmospheric Model Grids, Source: Wikipedia 2



Numerical Weather Prediction

Figure 2: Atmospheric Model Grids Other Pattern, Source: Intech Open
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Numerical Weather Prediction

Figure 3: Atmospheric Model Grids: India, Source: Forest Fire Locations in India their
spatio temporal patterns 4



Numerical Weather Prediction

• Weather Prediction of India for the next 10 days
• Area of India is 3.2 million sq.km
• To predict the weather pattern, you should model the atmosphere from

sea level to 20 km
• Assume that, we make prediction of weather at each cubical gird with

each cube measuring 0.1 km on each side.
• Compute F(lattitude, longitude, elevation, time)=Temperature or Pressure

or Rain or ...
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Numerical Weather Prediction

• Total number of points = 3.2× 106 × 20× 103 = 6.4× 1010

• If these nodes are connected to each other and influences, the size of the
matrix is 1010
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Gaussian Elimination

• To solve the NWP matrix, of size 1010 using GFLOP machine, it requires,
1030/109 = 1021 seconds, that is, 1013 years to compute, but age of earth
is 4.5× 109 years.

• For a tera flops machine (1 TFLOPS = 1012 FLOPS), it requires, 1010 years.
• For a peta flops machine (1 PFLOPS = 1015 FLOPS), it requires, 3.16× 107

years.
• Researchers use HPC, Supercomputers and sparse linear solvers
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Sparse Matrix and
Iterative Schemes
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Sparse Matrix
Note: there is no strict or standard definition regarding the sparse matrix, but
the following is commonly used

Definition 1 (Sparse Matrix)
A sparse matrix is a matrix in which most of the elements are zero. A common
criterion is that the number of zeros is roughly equal to the number of rows or
column.

Definition 2 (Sparsity)
The sparsity of matrix can be represented as

Sparsity =
Number of Zero Elements
Total Number of Elements

Typically, a matrix is considered sparse if sparsity is > 0.5
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Iterative Schemes
The underlying principles behind iterative methods to solve Ax = b are as
follows:
1. Guess any x(0)

2. Compute the residual r(0) = b−Ax(0)

3. Compute the residual norm, that is ∥r(0)∥
4. Use an algorithm to compute x(1) involving A, b and x(0)

5. Recompute the residual norm ∥r(1)∥ = ∥b−Ax(1)∥
6. For given x(i), iterate this process until you get the residual as zero or an

equivalent condition
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Vector Norms
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Norms

Definition 3 (Vector Norms)
A vector norm, usually denoted by ∥.∥, is a function from a vector space V to
the set of nonnegative real numbers that obeys the following three postulates.
∥.∥ : V → R+ such that

∥x∥ > 0 if x ̸= 0, x ∈ V

∥αx∥ = |α|∥x∥ if α ∈ R, x ∈ V

∥x+ y∥ ≤ ∥x∥+ ∥y∥ if x, y ∈ V
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Vector Norms
The most familiar norm on Rn is the Euclidean norm defined by

∥x∥2 =

(
n∑

i=1

|xi|2
)1/2

, where x = (x1, x2, · · · , xn) (1)

This is the norm that corresponds to usual concept of length. The other
norms are also used. The simplest and easiest norm is ℓ∞-norm

∥x∥∞ = max
0≤i≤n

|xi| (2)
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Vector Norms
The third important norm is ℓ1-norm

∥x∥1 =
n∑

i=1

|xi| (3)

Example 4
Compute the ∥.∥1, ∥.∥2 and ∥.∥∞ norms of the following vectors.
x = (4, 4,−4, 4) v = (0, 2, 2, 2), w = (8, 0, 0, 0)

∥.∥1 ∥.∥2 ∥.∥∞
x 16 8 4
v 6

√
12 2

w 8 8 8
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Vector Norms
The p− norm or ℓp norm of a vector is defined by

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

, where x = (x1, x2, · · · , xn) (4)

Definition 5
If x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) are two vectors in Rn, the ℓ2 and
ℓ∞ distances between x and y are defined by

∥x− y∥2 =

(
n∑

i=1

|xi − yi|2
)1/2

and
∥x− y∥∞ = max

1≤i≤n
|xi − yi|
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Vector Norms
To understand these norms better, see the visualization of the following
picture which gives the sketch of the set

{x : x ∈ R2, ∥x∥ ≤ 1}

This set is called unit cell or the unit ball in two-dimensional vector space.
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Vector Norms
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Vector Norms
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Vector Norms

Theorem 6
For each x ∈ Rn,

∥x∥∞ ≤ ∥x∥2 ≤
√
n∥x∥∞

(0,1)

(1,0)

∥x∥2 ∥x∥∞
√
2∥x∥∞

(1,1)

(-1,-1)
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Matrix Norm
If A = (aij) is an n× n matrix and ∥.∥ is a vector norm in Rn, then the matrix
norm is

∥A∥ = max
∥x∥=1

∥Ax∥ (Vector Induced Norm)

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij | (Row Sum Norm)

∥A∥1 = max
1≤j≤n

n∑
i=1

|aij | (Column Sum Norm)

∥A∥F =

√√√√ n∑
i=1

n∑
j=1

|aij |2 (Frobenius Norm)

∥A∥2 =
√
ρ(ATA) = σmax(A)
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Condition Number
If A is an invertible matrix, then its condition number κ(A) is defined by

κ(A) = ∥A∥∥A−1∥ (5)

κ(A) =
σmax(A)

σmin(A)
(l2Norm)

κ(A) =
|λmax(A)|
|λmin(A)|

(A ∗A = AA ∗ A is normal)

κ(A) = 1 (A ∗A = AA∗ = IA is unitary)
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Iterative Methods

22



Theorems

Theorem 7
If A is and n× n matrix such that ∥A∥ < 1, then I −A is invertible, and

(I −A)−1 =
∞∑
k=0

Ak

From this theorem, we can observe that

∥(I −A)−1∥ ≤
∞∑
k=0

∥Ak∥ ≤
∞∑
k=0

∥A∥k =
1

1− ∥A∥
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Theorems

Theorem 8
If A and B are n × n matrices such that ∥I − AB∥ < 1, then A and B are
invertible. Furthermore,

A−1 = B

∞∑
k=0

(I −AB)k

and

B−1 =

∞∑
k=0

(I −AB)kA
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Iterative Methods
The general algorithm for solving a system Ax = b is as follows:
1. Choose a nonsingular matrix Q

2. Choose an arbitrary starting vector x(0)

3. Generate vectors x(1), x(2), · · · recursively from the equation

Qx(k) = (Q−A)x(k−1) + b, k = 1, 2, 3, · · · (6)

Suppose x is the solution of the system Ax = b and x(k) converges to x, as
k → ∞, then

Qx = (Q−A)x+ b

Note, that the system (6) should be easy to solve for x(k) when the right hand
side is known. Also, Q should be chosen to ensure that x(k) converges to x,
no matter, what initial vector is used and the convergence should be rapid.
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Iterative Methods
Note that the true solution x satisfies the equation

x = (I −Q−1A)x+Q−1b (7)

Therefore, x is a fixed point of the mapping

f(x) = (I −Q−1A)x+Q−1b

From (6)
Qx(k) = (Q−A)x(k−1) + b, k = 1, 2, 3, · · ·

=⇒ x(k) = (I −Q−1A)x(k−1) +Q−1b, k = 1, 2, 3, · · ·
Now,

x(k) − x = (I −Q−1A)(x(k−1) − x), k = 1, 2, 3, · · · (8)

=⇒ ∥x(k) − x∥ = ∥(I −Q−1A)∥∥(x(k−1))− x∥
=⇒ ∥x(k) − x∥ = ∥(I −Q−1A)∥k∥(x(0))− x∥
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Iterative Methods
If ∥I −Q−1A∥ < 1, we can conclude that

lim
k→∞

∥x(k) − x∥ = 0

By above theorem, it is guaranteed that if ∥I −Q−1A∥ < 1, then both Q−1A
and A are invertible.

Theorem 9
If ∥I − Q−1A∥ < 1 for some matrix norm, then the sequence produced by (6)
converges to the solution of Ax = b for any initial vector x(0).

Theorem 10
If all eigenvalues of I − Q−1A lies in the open unit disc |z| < 1, then the se-
quence produced by (6) converges to the solution of Ax = b for any initial
vector x(0).
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Iterative Methods
The above theorem implies that the spectral radius of I −Q−1A must be less
than 1, that is,

ρ(I −Q−1A) < 1

Let r(k) denote the residual vector obtained from x(k) after k iterations, then
we get

r(k) = b−Ax(k).

By above theorem, if ∥I −Q−1A∥ < 1, then ∥r(k)∥ → 0.

28



Theorem
The distance between two matrices A,B ∈ Mn×n(R) is ∥A−B∥.

Theorem 11
If ∥.∥ is a vector norm in Rn, then the matrix norm is

∥A∥ = max
∥x∥=1

∥Ax∥
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Theorems and Proof

Theorem 12
If ∥.∥ is a vector norm in Rn, then the matrix norm is

∥A∥ = max
∥x∥=1

∥Ax∥

Proof: It is enough to prove that ∥.∥ is a matrix norm. If A ̸= 0, at least one of
its column is not a zero vector. Let jth column (A)j ̸= 0. Then

∥A∥ = max
∥x∥=1

∥Ax∥ ≥ ∥Aej∥ = ∥(Aj)∥ > 0

∥αA∥ = max
∥x∥=1

∥αAx∥ = max
∥x∥=1

|α|∥Ax∥ = |α| max
∥x∥=1

∥Ax∥ = |α|∥Ax∥
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Theorems and Proof
Now,

∥A+B∥ = max
∥x∥=1

∥(A+B)x∥ = max
∥x∥=1

∥Ax+Bx∥ ≤ max
∥x∥=1

(∥Ax∥+ ∥Bx∥)

max
∥x∥=1

∥Ax∥+ max
∥x∥=1

∥Bx∥ = ∥A∥+ ∥B∥

∥AB∥ = max
∥x∥=1

∥ABx∥ ≤ max
∥x∥=1

∥A∥∥Bx∥ ≤ max
∥x∥=1

∥A∥∥B∥∥x∥ = ∥A∥∥B∥

Hence the proof.
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Theorem

Theorem 13
If A = (aij) is an n× n matrix, then

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij |

∥A∥1 = max
1≤j≤n

n∑
i=1

|aij |

The ∥A∥1 norm is also called as the column sum norm as it computes the
maximum absolute column sum of the matrix. The ∥A∥∞ norm is also called
as the row sum norm as it computes the maximum absolute row sum of the
matrix.
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Theorems and Proof

Theorem 14
If A = (aij) is an n× n matrix, then

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij |

∥A∥1 = max
1≤j≤n

n∑
i=1

|aij |

Proof: Observe that when Ax = b

bi =
n∑

j=1

aijxj =⇒ ∥b∥∞ = max
1≤i≤n

|bi| = max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣
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Theorems and Proof

∥A∥∞ = max
∥x∥∞=1

∥Ax∥ = max
∥x∥∞=1

max
1≤i≤n

n∑
j=1

|aijxj | ≤ max
∥x∥∞=1

max
1≤i≤n

n∑
j=1

|aij ||xj |

=⇒ ∥A∥∞ ≤

max
1≤i≤n

n∑
j=1

|aij |

 max
∥x∥∞=1

|xj | =

max
1≤i≤n

n∑
j=1

|aij |

 max
∥x∥∞=1

∥x∥

=⇒ ∥A∥∞ ≤ max
1≤i≤n

n∑
j=1

|aij |

It is enough to prove that the equality is achieved for some x. Choose your x
such that xj = sign(Aij).
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Theorems and Proof
Then the proof follows for row sum follows

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij |

For column sum, consider the columns of A as A1, A2, · · · , An

∥Ax∥1 =

∥∥∥∥∥
n∑

i=1

Aix

∥∥∥∥∥
1

≤
n∑

i=1

∥Aix∥1 =
n∑

i=1

|x|∥Ai∥1 ≤ max
1≤j≤n

∥x∥1
n∑

i=1

|aij |

=⇒ ∥A∥1 = max
∥x∥1=1

∥Ax∥1 ≤ max
1≤j≤n

n∑
i=1

|aij |

The equality and the proof follows by taking the standard basis vector for x.
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Theorem
The Frobenius norm is given by ∥A∥F

∥A∥F =

√√√√ n∑
i=1

n∑
j=1

|aij |2
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Theorems and Proof

Theorem 15
n∑

i=1

n∑
j=1

a2ij = trace(ATA)

∥A∥2F = trace(ATA)

Proof: If A = (aij) and B = (bij), then C = AB = (cij) is given by, then

cij =

n∑
k=1

aikbkj =⇒ cii =

n∑
k=1

aikbki
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Theorems and Proof
When C = ATA, we have

cii =

n∑
k=1

akiaki =

n∑
k=1

a2ki

trace(ATA) =

n∑
i=1

cii =

n∑
i=1

n∑
k=1

a2ki =

n∑
j=1

n∑
i=1

a2ij =

n∑
i=1

n∑
j=1

a2ij

Since
n∑

i=1

n∑
j=1

a2ij =

n∑
i=1

n∑
j=1

|aij |2

the proof follows.

38



Theorems and Proof

Theorem 16
Frobenius norm is a norm.

Proof: If A ̸= 0, at least one element is not a zero element. Let it be apk.
Hence

∥A∥F =

√√√√ n∑
i=1

n∑
j=1

|aij |2 ≥ |apk| > 0

∥αA∥F =

√√√√ n∑
i=1

n∑
j=1

|αaij |2 =

√√√√ n∑
i=1

n∑
j=1

|α||aij |2 = |α|

√√√√ n∑
i=1

n∑
j=1

|aij |2 = |α|∥A∥F
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Theorems and Proof

∥A+B∥2F =

n∑
i=1

n∑
j=1

|aij + bij |2

We know
|a+ b|2 ≤ |a|2 + |b|2 + 2|a||b|

Hence

∥A+B∥2F =

n∑
i=1

n∑
j=1

|aij |2 +
n∑

i=1

n∑
j=1

|bij |2 + 2

n∑
i=1

n∑
j=1

|aij ||bij |

∥A+B∥2F = ∥A∥2F + ∥B∥2F + 2

n∑
i=1

n∑
j=1

|aij ||bij |
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Theorems and Proof
By Cauchy-Schwarz inequality

n∑
i=1

n∑
j=1

|aij ||bij | ≤

 n∑
i=1

n∑
j=1

|aij |2
1/2 n∑

i=1

n∑
j=1

|bij |2
1/2

= ∥A∥F ∥B∥F

∥A+B∥2F = ∥A∥2F + ∥B∥2F + 2∥A∥F ∥B∥F =⇒ ∥A+B∥F ≤ ∥A∥F + ∥B∥F

∥AB∥2F =

n∑
i=1

n∑
j=1

∣∣∣∣∣
n∑

k=1

aikbkj

∣∣∣∣∣
2

≤
n∑

i=1

n∑
j=1

(
n∑

k=1

|aik|2
n∑

k=1

|bkj |2
)

∥AB∥2F ≤
n∑

i=1

n∑
j=1

(
n∑

k=1

|aik|2
n∑

l=1

|blj |2
)

=

n∑
i=1

n∑
k=1

|aik|2
n∑

l=1

n∑
j=1

|blj |2 = ∥A∥2F ∥B∥2F
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Theorems and Proof

Theorem 17
If U and V are orthogonal, then

∥UA∥F = ∥AV ∥F = ∥A∥F

Proof:

∥UA∥2F = trace((UA)T (UA)) = trace(ATUTUA) = trace(ATA) = ∥A∥2F

Since trace(ATA) = trace(AAT ), we get

∥AV ∥2F = trace((AV )T (AV )) = trace((AV )(AV )T )

= trace(AV V TAT ) = trace(AAT ) = trace(ATA) = ∥A∥2F
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Example

Example 18
Compute the ∥.∥1, ∥.∥F and ∥.∥∞ norms of the following matrix.

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18



∥A∥1 = max
1≤j≤n

n∑
i=1

|aij | = max{27, 27, 18, 35} = 35

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij | = max{14, 36, 28, 29} = 36

∥A∥F = 32.3883
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Eigenvalues
If I denotes the identity matrix, then ∥I∥ = 1. Also,

∥AB∥ ≤ ∥A∥∥B∥

Definition 19 (Characteristic Polynomial:)
If A is a square matrix, the characteristic polynomial of A is defined by

p(λ) = det(A− λI)

Definition 20 (Eigenvalue and Eigenvector)
If p is a characteristic polynomial of A, the roots of p are called eigenvalues
or characteristic values of A. If λ is an eigenvalue of A and x ̸= 0 such that
Ax = λx, then x is an eigenvector of A.
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Spectral Radius
Usually, the matrix is considered over the field C though the matrix entries
can be real.
Definition 21 (Singular Values)
The singular values σ of anm×nmatrix A are the positive square roots of the
nonzero eigenvalues of the n× n symmetric matrix ATA.

σi(A) =
√
λi(ATA)

Definition 22 (Spectral Radius)
The spectral radius ρ(A) of a matrix A is defined by

ρ(A) = max
1≤i≤n

|λi|

This is also denoted as λmax(A). 45



Spectral Radius
The matrix norm induced by the Euclidean norm (ℓ2 norm) is the spectral
norm, and is given by

∥A∥2 =
√
ρ(ATA) = σmax(A)

This is the minimum norm and provides the tightest measure of size.
Theorem 23
If A = (aij) is an n× n matrix, then

∥A∥2 ≤ ∥A∥F ≤
√
n∥A∥2,

∥A∥F =
√

trace(ATA)

ρ(A) ≤ ∥A∥

for any natural norm ∥.∥. 46
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panch.m@iittp.ac.in
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