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Iterative Schemes
The underlying principles behind iterative methods to solve Ax = b are as
follows:
1. Guess any x(0)

2. Compute the residual r(0) = b−Ax(0)

3. Compute the residual norm, that is ∥r(0)∥
4. Use an algorithm to compute x(1) involving A, b and x(0)

5. Recompute the residual norm ∥r(1)∥ = ∥b−Ax(1)∥
6. For given x(i), iterate this process until you get the residual as zero or an

equivalent condition
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Norms

Definition 1 (Vector Norms)
A vector norm, usually denoted by ∥.∥, is a function from a vector space V to
the set of nonnegative real numbers that obeys the following three postulates.
∥.∥ : V → R+ such that

∥x∥ > 0 if x ̸= 0, x ∈ V

∥αx∥ = |α|∥x∥ if α ∈ R, x ∈ V

∥x+ y∥ ≤ ∥x∥+ ∥y∥ if x, y ∈ V
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Matrix Norms
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Matrix Norms

Definition 2 (Matrix Norm)
A matrix norm on the set of all n × n matrices, usually denoted by ∥.∥, is a
function from a Mn×n(R) to the set of nonnegative real numbers that obeys
the following three postulates. ∥.∥ : Mn×n(R) → R+ such that

∥A∥ ≥ 0 (nongativity)

∥A∥ = 0, if and only if A is a zero matrix (Mapping of the Identity)

∥αA∥ = |α|∥A∥ if α ∈ R (Scalar multiplication)

∥A+B∥ ≤ ∥A∥+ ∥B∥ (Triangle Inequality)

∥AB∥ ≤ ∥A∥∥B∥ (Consistency)

where A,B ∈ Mn×n(R)
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Matrix Norm
If A = (aij) is an n× n matrix and ∥.∥ is a vector norm in Rn, then the matrix
norm is

∥A∥ = max
∥x∥=1

∥Ax∥ (Vector Induced Norm)

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij | (Row Sum Norm)

∥A∥1 = max
1≤j≤n

n∑
i=1

|aij | (Column Sum Norm)

∥A∥F =

√√√√ n∑
i=1

n∑
j=1

|aij |2 (Frobenius Norm)

∥A∥2 =
√
ρ(ATA) = σmax(A)
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Matrix Norm

• The ∥A∥1 norm is also called as the column sum norm as it computes
the maximum absolute column sum of the matrix.

• The ∥A∥∞ norm is also called as the row sum norm as it computes the
maximum absolute row sum of the matrix.

• An induced matrix norm is also called as operator norm
• The ∥A∥2 norm is also called as the spectral norm
• For Symmetric matrix ∥A∥1 = ∥A∥∞ and ∥A∥2 = ρ(A)

• ∥x∥2 norm is usually called as Euclidean norm, but ∥A∥2 is not.
• If Q is orthogonal, then ∥Q∥2 = 1 and hence an orthogonal matrix is also

called an isometric matrix.
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Theorem
The distance between two matrices A,B ∈ Mn×n(R) is ∥A−B∥.

Theorem 3
If ∥.∥ is a vector norm in Rn, then the vector induced norm is a matrix norm

Proof: It is enough to prove that ∥.∥ is a matrix norm. If A ̸= 0, at least one of
its column is not a zero vector. Let jth column (A)j ̸= 0. Then

∥A∥ = max
∥x∥=1

∥Ax∥ ≥ ∥Aek∥ > 0

∥αA∥ = max
∥x∥=1

∥αAx∥ = max
∥x∥=1

|α|∥Ax∥ = |α| max
∥x∥=1

∥Ax∥ = |α|∥A∥
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Theorems and Proof
Now,

∥A+B∥ = max
∥x∥=1

∥(A+B)x∥ = max
∥x∥=1

∥Ax+Bx∥ ≤ max
∥x∥=1

(∥Ax∥+ ∥Bx∥)

≤ max
∥x∥=1

∥Ax∥+ max
∥x∥=1

∥Bx∥ = ∥A∥+ ∥B∥

∥Ax∥ ≤ ∥A∥∥x∥

Let x be any arbitrary vector, choose y = x
∥x∥ , then

∥Ax∥ = ∥A(y∥x∥)∥ = ∥x∥∥Ay∥ =⇒ ∥Ax∥ ≤ ∥x∥ max
∥y∥=1

∥Ay∥ = ∥A∥∥x∥

∥AB∥ = max
∥x∥=1

∥ABx∥ ≤ max
∥x∥=1

∥A∥∥Bx∥ ≤ max
∥x∥=1

∥A∥∥B∥∥x∥ = ∥A∥∥B∥

Hence the proof. 9



Theorems and Proof

Theorem 4
If A = (aij) is an n× n matrix, then

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij |

∥A∥1 = max
1≤j≤n

n∑
i=1

|aij |

Proof: Observe that when Ax = b

bi =
n∑

j=1

aijxj =⇒ ∥b∥∞ = max
1≤i≤n

|bi| = max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣
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Theorems and Proof

∥A∥∞ = max
∥x∥∞=1

∥Ax∥ = max
∥x∥∞=1

max
1≤i≤n

n∑
j=1

|aijxj | ≤ max
∥x∥∞=1

max
1≤i≤n

n∑
j=1

|aij ||xj |

=⇒ ∥A∥∞ ≤

max
1≤i≤n

n∑
j=1

|aij |

 max
∥x∥∞=1

|xj | =

max
1≤i≤n

n∑
j=1

|aij |

 max
∥x∥∞=1

∥x∥

=⇒ ∥A∥∞ ≤ max
1≤i≤n

n∑
j=1

|aij |

It is enough to prove that the equality is achieved for some x. Choose your x
such that xj = sign(Aij).
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Theorems and Proof
Then the proof follows for row sum

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij |

For column sum, consider the columns of A as A1, A2, · · · , An

∥Ax∥1 =

∥∥∥∥∥
n∑

i=1

Aix

∥∥∥∥∥
1

≤
n∑

i=1

∥Aix∥1 =
n∑

i=1

|x|∥Ai∥1 ≤ max
1≤j≤n

∥x∥1
n∑

i=1

|aij |

=⇒ ∥A∥1 = max
∥x∥1=1

∥Ax∥1 ≤ max
1≤j≤n

n∑
i=1

|aij |

The equality and the proof follows by taking the standard basis vector for x.
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Frobenius Norm
The Frobenius norm is given by ∥A∥F

∥A∥F =

√√√√ n∑
i=1

n∑
j=1

|aij |2
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Theorems and Proof

Theorem 5
n∑

i=1

n∑
j=1

a2ij = trace(ATA)

∥A∥2F = trace(ATA)

Proof: If A = (aij) and B = (bij), then C = AB = (cij) is given by, then

cij =

n∑
k=1

aikbkj =⇒ cii =

n∑
k=1

aikbki
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Theorems and Proof
When C = ATA, we have

cii =

n∑
k=1

akiaki =

n∑
k=1

a2ki =

n∑
k=1

a2ik =

n∑
j=1

a2ij

trace(ATA) =

n∑
i=1

n∑
j=1

a2ij =

n∑
i=1

n∑
j=1

|aij |2

the proof follows.
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Theorems and Proof

Theorem 6
Frobenius norm is a norm.

Proof: If A ̸= 0, at least one element is not a zero element. Let it be apk.
Hence

∥A∥F =

√√√√ n∑
i=1

n∑
j=1

|aij |2 ≥ |apk| > 0

∥αA∥F =

√√√√ n∑
i=1

n∑
j=1

|αaij |2 =

√√√√ n∑
i=1

n∑
j=1

|α||aij |2 = |α|

√√√√ n∑
i=1

n∑
j=1

|aij |2 = |α|∥A∥F
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Theorems and Proof

∥A+B∥2F =

n∑
i=1

n∑
j=1

|aij + bij |2

We know
|a+ b|2 ≤ |a|2 + |b|2 + 2|a||b|

Hence

∥A+B∥2F =

n∑
i=1

n∑
j=1

|aij |2 +
n∑

i=1

n∑
j=1

|bij |2 + 2

n∑
i=1

n∑
j=1

|aij ||bij |

∥A+B∥2F = ∥A∥2F + ∥B∥2F + 2

n∑
i=1

n∑
j=1

|aij ||bij |
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Theorems and Proof
By Cauchy-Schwarz inequality

n∑
i=1

n∑
j=1

|aij ||bij | ≤

 n∑
i=1

n∑
j=1

|aij |2
1/2 n∑

i=1

n∑
j=1

|bij |2
1/2

= ∥A∥F ∥B∥F

∥A+B∥2F = ∥A∥2F + ∥B∥2F + 2∥A∥F ∥B∥F =⇒ ∥A+B∥F ≤ ∥A∥F + ∥B∥F

∥AB∥2F =

n∑
i=1

n∑
j=1

∣∣∣∣∣
n∑

k=1

aikbkj

∣∣∣∣∣
2

≤
n∑

i=1

n∑
j=1

(
n∑

k=1

|aik|2
n∑

k=1

|bkj |2
)

∥AB∥2F ≤
n∑

i=1

n∑
j=1

(
n∑

k=1

|aik|2
n∑

l=1

|blj |2
)

=

n∑
i=1

n∑
k=1

|aik|2
n∑

l=1

n∑
j=1

|blj |2 = ∥A∥2F ∥B∥2F
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Theorems and Proof

Theorem 7
If U and V are orthogonal, then

∥UA∥F = ∥AV ∥F = ∥A∥F

Proof:

∥UA∥2F = trace((UA)T (UA)) = trace(ATUTUA) = trace(ATA) = ∥A∥2F

Since trace(ATA) = trace(AAT ), we get

∥AV ∥2F = trace((AV )T (AV )) = trace((AV )(AV )T )

= trace(AV V TAT ) = trace(AAT ) = trace(ATA) = ∥A∥2F
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Example

Example 8
Compute the ∥.∥1, ∥.∥F and ∥.∥∞ norms of the following matrix.

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18



∥A∥1 = max
1≤j≤n

n∑
i=1

|aij | = max{27, 27, 18, 35} = 35

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij | = max{14, 36, 28, 29} = 36

∥A∥F = 32.3883
20



Eigenvalues
If I denotes the identity matrix, then ∥I∥ = 1. (True or False)

Definition 9 (Characteristic Polynomial:)
If A is a square matrix, the characteristic polynomial of A is defined by

p(λ) = det(A− λI)

Definition 10 (Eigenvalue and Eigenvector)
If p is a characteristic polynomial of A, the roots of p are called eigenvalues
or characteristic values of A. If λ is an eigenvalue of A and x ̸= 0 such that
Ax = λx, then x is an eigenvector of A.
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Spectral Radius
Usually, the matrix is considered over the field C though the matrix entries
can be real.
Definition 11 (Singular Values)
The singular values σ of anm×nmatrix A are the positive square roots of the
nonzero eigenvalues of the n× n symmetric matrix ATA.

σi(A) =
√
λi(ATA)

Definition 12 (Spectral Radius)
The spectral radius ρ(A) of a matrix A is defined by

ρ(A) = max
1≤i≤n

|λi|

This is also denoted as λmax(A). 22



Spectral Radius
The matrix norm induced by the Euclidean norm (ℓ2 norm) is the spectral
norm, and is given by

∥A∥2 =
√
ρ(ATA) = σmax(A)

This is the minimum norm and provides the tightest measure of size.
Theorem 13
If A = (aij) is an n× n matrix, then

∥A∥2 ≤ ∥A∥F ≤
√
n∥A∥2,

∥A∥F =
√

trace(ATA)

ρ(A) ≤ ∥A∥

for any natural norm ∥.∥. 23



Theorem

Definition 1 (Convergent)
We call a matrix A as convergent if

lim
k→∞

(Ak)ij = 0

for all i, j

Example 14

A =

(
1/2 0
1/4 1/2

)
, A2 =

(
1/4 0
1/4 1/4

)
, A3 =

(
1/8 0
3/16 1/8

)
,

An =

(
1/2n 0

n/2n+1 1/2n

)
Therefore, the matrix A is convergent. 24



Theorem

Theorem 15
The following statements are equivalent:
1. A is a convergent matrix.
2. lim

n→∞
∥An∥ = 0 for some natural norm.

3. lim
n→∞

∥An∥ = 0 for all natural norm.

4. ρ(A) < 1.
5. lim

n→∞
Anx = 0 for every x.
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Theorems

Theorem 16
Suppose

Ax = b

where A is an n × n matrix and A is invertible. If A−1 is perturbed to obtain a
new matrix B and the solution x = A−1b is perturbed to become a new vector
x̃ = Bb, then

∥x− x̃∥
∥x∥

≤ ∥I −BA∥

Proof:

∥x− x̃∥ = ∥x−Bb∥ = ∥x−BAx∥ = ∥(I −BA)x∥ ≤ ∥I −BA∥∥x∥

Hence the Proof.
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Theorems
The above theorem gives an upper bound on ∥x−x̃∥

∥x∥ and this ratio denotes the
relative error.
Example 17
Suppose that the vector b is perturbed to obtain a vector b̃. If x and x̃ satisfy
Ax = b and Ax̃ = b̃, by how much do x and x̃ differ in absolute and relative
terms?
Solution:

∥x− x̃∥ = ∥A−1b−A−1b̃∥ = ∥A−1(b− b̃)∥ ≤ ∥A−1∥∥b− b̃∥

b = Ax =⇒ ∥b∥ = ∥A∥∥x∥ =⇒ 1

∥x∥
=

∥A∥
∥b∥

Hence,
∥x− x̃∥
∥x∥

≤ ∥A∥∥A−1∥∥b− b̃∥
∥b∥ 27



Condition Number

28



Condition Number
The above inequality implies that the relative error in x is not greater than
∥A∥∥A−1∥ times the relative error in b.

Definition 18 (Condition Numbmer)
If A is an invertible matrix, then its condition number κ(A) is defined by

κ(A) = ∥A∥∥A−1∥ (1)

From the equation (1), if the condition number is small, then perturbations in b
lead to small perturbation in x. The inequality k(A) ≥ 1 is always true (Why?!).
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Condition Number

1. From equation (1) from equation it seems that we need to compute the
inverse of A to obtain the condition number if the norm is used as
ℓ2-matrix norm.

2. Also, it can be shown that the condition number κ(A) gauges the transfer
of error from the matrix A and the vector b to the solution x.

3. If κ(A) = 10k , then one can expect to lose at least k digits of precision in
solving the system Ax = b.

30



Condition Number

1. If the matrix A is very sensitive to perturbations in the elements of A, or
to perturbations of the components of b, then this fact is reflected in A
having a large condition number. Such matrix is called ill-conditioned.
That is, larger the condition number, more ill-conditioned system.

2. True or False: When a matrix A is invertible, then κ(A) = κ(A−1). For
identity matrix κ(I) = 1. If α is a scalar, then κ(αA) = κ(A)

3. When the condition number is near 1, it is an well-conditioned matrix
whereas large values indicate that, it is an ill-condition matrix.

4. When the condition number of a matrix is very large, one can suspect
that the model and numerical results.
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Condition Number

Example 19
Hilbert Matrix: A Hilbert matrix Hn is defined as follows:

aij =
1

i+ j − 1
(2)

H4 =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


The condition number of the matrix H4 is κ(H4) = 1551.4 and its determinant
is 1.65× 10−7. It is an ill-conditioned matrix.
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Condition Number
If A is singular, it is customary to define κ(A) = ∞.

Example 20
Find the condition number of the following matrix with respect to ℓ1, ℓ2, ℓ∞ and
Frobenius norm

A =

2 −1 1
1 0 1
3 −1 4


A−1 =

1

2

 1 3 −1
−1 5 −1
−1 −1 1
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Condition Number

ATA =

14 −5 15
−5 2 −5
15 −5 18


A−TA−1 =

1

4

 3 −1 −1
−1 35 −9
−1 −9 3


λ(ATA) = {0.1070, 1.1411, 32.7519}

λ(A−TA−1) = {0.0305, 0.8764, 9.3431}
∥A∥1 = max{6, 2, 6} = 6

∥A∥2 =
√
32.7519

∥A∥∞ = max{6, 2, 8} = 8
34



Condition Number

∥A∥F =
√

trace(ATA) =
√
34

∥A−1∥1 = max{3/2, 9/2, 3/2} = 9/2

∥A−1∥2 =
√
9.34315

∥A−1∥∞ = max{5/2, 7/2, 3/2} = 7/2

∥A−1∥F =
√

trace(A−TA−1) =
√

41/4 = 3.2016

κ(A)1 = 27

κ(A)2 = 17.4930

κ(A)∞ = 28

κ(A)F = 18.6682
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Condition Number
From this you can verify that

∥A2∥ ≤ ∥A∥F ≤
√
3∥A∥2

Is this true for any general n?
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Challenges
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Challenges

1. Definition of condition number involves matrix inverse, which is not easy
to compute and requires more work than solving the system Ax = b.

2. In practice, condition number is merely estimated, using another relative
expensive byproduct of the solution procedure.

3. If z is a solution of Ax = y, then

∥z∥ = ∥A−1y∥ ≤ ∥A−1y∥ =⇒ ∥z∥
∥y∥

≤ ∥A−1∥

4. If we can find a vector y such that ∥z∥
∥y∥ is as large as possible, then we can

find an reasonable estimate for ∥A−1∥.
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Challenges

1. Usually, the ℓ2 norm or spectral norm is used for the condition number as
it provides the tightest measure of size.

2. Also, this norm does not require any matrix inverse, instead computation
of eigenvalues. With the help of Gersghorin’s theorem and Spectral
radius, one can find this.

3. The condition number of a matrix in ℓ2 norm can be defined as

κ(A) =
σmax(A)

σmin(A)

where σmax and σmin denote the maximal and minimal singular values of
A respectively.
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Challenges

1. If A is normal (A∗A = AA∗), then

κ(A) =
|λmax(A)|
|λmin(A)|

2. If A is unitary A∗A = AA∗ = I , then

κ(A) = 1

3. If ∥.∥ is the ℓ∞ norm and A is a nonsingular lower or upper triangular
matrix, then

κ(A) ≥ max1≤i≤n |aii|
min1≤i≤n |aii|
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Properties
Verify whether the following Statements are True or Not.
1. For any matrix A, κ(A) ≥ 1

2. κ(I) = 1

3. κ(αA) = κ(A)

4. κ(D) = maxi |di|
mini |di|

5. κ(AB) ≤ κ(A)κ(B)

6. If A = AT , then κ(A2) = κ(A)2

41



Theorems

Theorem 21
If A is and n× n matrix such that ∥A∥ < 1, then I −A is invertible, and

(I −A)−1 =
∞∑
k=0

Ak

From this theorem, we can observe that

∥(I −A)−1∥ ≤
∞∑
k=0

∥Ak∥ ≤
∞∑
k=0

∥A∥k =
1

1− ∥A∥

42



Theorems

Theorem 22
If A and B are n × n matrices such that ∥I − AB∥ < 1, then A and B are
invertible. Furthermore,

A−1 = B

∞∑
k=0

(I −AB)k

and

B−1 =

∞∑
k=0

(I −AB)kA
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Theorems

Theorem 23
If A and B are n × n matrices such that ∥I − AB∥ < 1, then A and B are
invertible. Furthermore,

A−1 = B

∞∑
k=0

(I −AB)k

and

B−1 =

∞∑
k=0

(I −AB)kA

44



Theorems
Proof: By previous theorem, AB = I − (I −AB) is invertible and

(AB)−1 =

∞∑
k=0

(I −AB)k

A−1 = B(AB)−1 = B

∞∑
k=0

(I −AB)k

B−1 = (AB)−1A =

∞∑
k=0

(I −AB)kA

45



Iterative Methods
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Theorems

Theorem 24
If A is and n× n matrix such that ∥A∥ < 1, then I −A is invertible, and

(I −A)−1 =
∞∑
k=0

Ak

From this theorem, we can observe that

∥(I −A)−1∥ ≤
∞∑
k=0

∥Ak∥ ≤
∞∑
k=0

∥A∥k =
1

1− ∥A∥
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Theorems

Theorem 25
If A and B are n × n matrices such that ∥I − AB∥ < 1, then A and B are
invertible. Furthermore,

A−1 = B

∞∑
k=0

(I −AB)k

and

B−1 =

∞∑
k=0

(I −AB)kA
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Iterative Methods
The general algorithm for solving a system Ax = b is as follows:
1. Choose a nonsingular matrix Q

2. Choose an arbitrary starting vector x(0)

3. Generate vectors x(1), x(2), · · · recursively from the equation

Qx(k) = (Q−A)x(k−1) + b, k = 1, 2, 3, · · · (3)

Suppose x is the solution of the system Ax = b and x(k) converges to x, as
k → ∞, then

Qx = (Q−A)x+ b

Note, that the system (3) should be easy to solve for x(k) when the right hand
side is known. Also, Q should be chosen to ensure that x(k) converges to x,
no matter, what initial vector is used and the convergence should be rapid.

49



Iterative Methods
Note that the true solution x satisfies the equation

x = (I −Q−1A)x+Q−1b (4)

Therefore, x is a fixed point of the mapping

f(x) = (I −Q−1A)x+Q−1b

From (3)
Qx(k) = (Q−A)x(k−1) + b, k = 1, 2, 3, · · ·

=⇒ x(k) = (I −Q−1A)x(k−1) +Q−1b, k = 1, 2, 3, · · ·
Now,

x(k) − x = (I −Q−1A)(x(k−1) − x), k = 1, 2, 3, · · · (5)

=⇒ ∥x(k) − x∥ = ∥(I −Q−1A)∥∥(x(k−1))− x∥
=⇒ ∥x(k) − x∥ = ∥(I −Q−1A)∥k∥(x(0))− x∥

50



Iterative Methods
If ∥I −Q−1A∥ < 1, we can conclude that

lim
k→∞

∥x(k) − x∥ = 0

By above theorem, it is guaranteed that if ∥I −Q−1A∥ < 1, then both Q−1A
and A are invertible.

Theorem 26
If ∥I − Q−1A∥ < 1 for some matrix norm, then the sequence produced by (3)
converges to the solution of Ax = b for any initial vector x(0).

Theorem 27
If all eigenvalues of I − Q−1A lies in the open unit disc |z| < 1, then the se-
quence produced by (3) converges to the solution of Ax = b for any initial
vector x(0).
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Iterative Methods
The above theorem implies that the spectral radius of I −Q−1A must be less
than 1, that is,

ρ(I −Q−1A) < 1

Let r(k) denote the residual vector obtained from x(k) after k iterations, then
we get

r(k) = b−Ax(k).

By above theorem, if ∥I −Q−1A∥ < 1, then ∥r(k)∥ → 0.
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