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Iterative Schemes
The underlying principles behind iterative methods to solve Ax = b are as
follows:
1. Guess any x(0)

2. Compute the residual r(0) = b−Ax(0)

3. Compute the residual norm, that is ∥r(0)∥
4. Use an algorithm to compute x(1) involving A, b and x(0)

5. Recompute the residual norm ∥r(1)∥ = ∥b−Ax(1)∥
6. For given x(i), iterate this process until you get the residual as zero or an

equivalent condition
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Norms

Definition 1 (Vector Norms)
A vector norm, usually denoted by ∥.∥, is a function from a vector space V to
the set of non-negative real numbers that obeys the following three postulates.
∥.∥ : V → R+ such that

∥x∥ > 0 if x ̸= 0, x ∈ V

∥αx∥ = |α|∥x∥ if α ∈ R, x ∈ V

∥x+ y∥ ≤ ∥x∥+ ∥y∥ if x, y ∈ V
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Matrix Norms

Definition 2 (Matrix Norm)
A matrix norm on the set of all n × n matrices, usually denoted by ∥.∥, is a
function from a Mn×n(R) to the set of non-negative real numbers that obeys
the following three postulates. ∥.∥ : Mn×n(R) → R+ such that

∥A∥ ≥ 0 (non-negativity)

∥A∥ = 0, if and only if A is a zero matrix (Mapping of the Identity)

∥αA∥ = |α|∥A∥ if α ∈ R (Scalar multiplication)

∥A+B∥ ≤ ∥A∥+ ∥B∥ (Triangle Inequality)

∥AB∥ ≤ ∥A∥∥B∥ (Consistency)

where A,B ∈ Mn×n(R)
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Matrix Norm
If A = (aij) is an n× n matrix and ∥.∥ is a vector norm in Rn, then the matrix
norm is

∥A∥ = max
∥x∥=1

∥Ax∥ (Vector Induced Norm)

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij | (Row Sum Norm)

∥A∥1 = max
1≤j≤n

n∑
i=1

|aij | (Column Sum Norm)

∥A∥F =

√√√√ n∑
i=1

n∑
j=1

|aij |2 (Frobenius Norm)

∥A∥2 =
√
ρ(ATA) = σmax(A)
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Matrix Norm

• The ∥A∥1 norm is also called as the column sum norm as it computes
the maximum absolute column sum of the matrix.

• The ∥A∥∞ norm is also called as the row sum norm as it computes the
maximum absolute row sum of the matrix.

• An induced matrix norm is also called as operator norm
• The ∥A∥2 norm is also called as the spectral norm
• For Symmetric matrix ∥A∥1 = ∥A∥∞ and ∥A∥2 = ρ(A)

• ∥x∥2 norm is usually called as Euclidean norm, but ∥A∥2 is not.
• If Q is orthogonal, then ∥Q∥2 = 1 and hence an orthogonal matrix is also

called an isometric matrix.
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Eigenvalues
Eigenvalues and Eigenvector

Ax = λx

Singular Values
σi(A) =

√
λi(ATA)

The spectral radius
ρ(A) = max

1≤i≤n
|λi|

∥A∥2 =
√

ρ(ATA) = σmax(A)

This is the minimum norm and provides the tightest measure of size.
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Condition Number
We call a matrix A as convergent if

lim
k→∞

(Ak)ij = 0

for all i, j

κ(A) = ∥A∥∥A−1∥

If A is singular, it is customary to define κ(A) = ∞.
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Challenges
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Challenges

1. Definition of condition number involves matrix inverse, which is not easy
to compute and requires more work than solving the system Ax = b.

2. In practice, condition number is merely estimated, using another relative
expensive byproduct of the solution procedure.

3. If z is a solution of Ax = y, then

∥z∥ = ∥A−1y∥ ≤ ∥A−1∥∥y∥ =⇒ ∥z∥
∥y∥

≤ ∥A−1∥

4. If we can find a vector y such that ∥z∥
∥y∥ is as large as possible, then we can

find a reasonable estimate for ∥A−1∥.
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Challenges

1. Usually, the ℓ2 norm or spectral norm is used for the condition number as
it provides the tightest measure of size.

2. Also, this norm does not require any matrix inverse, instead computation
of eigenvalues. With the help of Gersghorin’s theorem and Spectral
radius, one can find this.

3. The condition number of a matrix in ℓ2 norm can be defined as

κ(A) =
σmax(A)

σmin(A)

where σmax and σmin denote the maximal and minimal singular values of
A respectively.
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Challenges

1. If A is normal (A∗A = AA∗), then

κ(A) =
|λmax(A)|
|λmin(A)|

2. If A is unitary A∗A = AA∗ = I , then

κ(A) = 1

3. If ∥.∥ is the ℓ∞ norm and A is a nonsingular lower or upper triangular
matrix, then

κ(A) ≥ max1≤i≤n |aii|
min1≤i≤n |aii|
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Properties
Verify whether the following Statements are True or Not.
1. For any matrix A, κ(A) ≥ 1

2. κ(I) = 1

3. κ(αA) = κ(A)

4. κ(D) = maxi |di|
mini |di|

5. κ(AB) ≤ κ(A)κ(B)

6. If A = AT , then κ(A2) = κ(A)2
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Theorems

Theorem 3
If A is and n× n matrix such that ∥A∥ < 1, then I −A is invertible, and

(I −A)−1 =
∞∑
k=0

Ak

From this theorem, we can observe that

∥(I −A)−1∥ ≤
∞∑
k=0

∥Ak∥ ≤
∞∑
k=0

∥A∥k =
1

1− ∥A∥
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Theorems

Theorem 4
If A and B are n × n matrices such that ∥I − AB∥ < 1, then A and B are
invertible. Furthermore,

A−1 = B

∞∑
k=0

(I −AB)k

and

B−1 =

∞∑
k=0

(I −AB)kA

15



Theorems
Proof: By previous theorem, AB = I − (I −AB) is invertible and

(AB)−1 =

∞∑
k=0

(I −AB)k

A−1 = B(AB)−1 = B

∞∑
k=0

(I −AB)k

B−1 = (AB)−1A =

∞∑
k=0

(I −AB)kA
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Iterative Methods
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Iterative Methods
The general algorithm for solving a system Ax = b is as follows:
1. Choose a nonsingular matrix Q

2. Choose an arbitrary starting vector x(0)

3. Generate vectors x(1), x(2), · · · recursively from the equation

Qx(k) = (Q−A)x(k−1) + b, k = 1, 2, 3, · · · (1)

Suppose x is the solution of the system Ax = b and x(k) converges to x, as
k → ∞, then

Qx = (Q−A)x+ b

Note, that the system (1) should be easy to solve for x(k) when the right hand
side is known. Also, Q should be chosen to ensure that x(k) converges to x,
no matter, what initial vector is used and the convergence should be rapid.
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Iterative Methods
Note that the true solution x satisfies the equation

x = (I −Q−1A)x+Q−1b (2)

Therefore, x is a fixed point of the mapping

f(x) = (I −Q−1A)x+Q−1b

From (1)
Qx(k) = (Q−A)x(k−1) + b, k = 1, 2, 3, · · ·

=⇒ x(k) = (I −Q−1A)x(k−1) +Q−1b, k = 1, 2, 3, · · ·
Now,

x(k) − x = (I −Q−1A)(x(k−1) − x), k = 1, 2, 3, · · · (3)

=⇒ ∥x(k) − x∥ = ∥(I −Q−1A)∥∥(x(k−1))− x∥
=⇒ ∥x(k) − x∥ = ∥(I −Q−1A)∥k∥(x(0))− x∥
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Iterative Methods
If ∥I −Q−1A∥ < 1, we can conclude that

lim
k→∞

∥x(k) − x∥ = 0

By above theorem, it is guaranteed that if ∥I −Q−1A∥ < 1, then both Q−1A
and A are invertible.

Theorem 5
If ∥I − Q−1A∥ < 1 for some matrix norm, then the sequence produced by (1)
converges to the solution of Ax = b for any initial vector x(0).

Theorem 6
If all eigenvalues of I − Q−1A lies in the open unit disc |z| < 1, then the se-
quence produced by (1) converges to the solution of Ax = b for any initial
vector x(0).
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Iterative Methods
The above theorem implies that the spectral radius of I −Q−1A must be less
than 1, that is,

ρ(I −Q−1A) < 1

Let r(k) denote the residual vector obtained from x(k) after k iterations, then
we get

r(k) = b−Ax(k).

By above theorem, if ∥I −Q−1A∥ < 1, then ∥r(k)∥ → 0.
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Richardson/Jacobi
Iteration
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Richardson Iteration

Qx(k) = (Q−A)x(k−1) + b, k = 1, 2, 3, · · ·

The Richardson iteration is obtained when Q = I.
So equation (1) becomes

x(k) = (I −A)x(k−1) + b = x(k−1) + r(k−1)
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Richardson Iteration

Example 7
Compute the first 100 iterates on the following problem using Richardson al-
gorithm starting with x = (0, 0, 0)T 1 1/2 1/3

1/3 1 1/2
1/2 1/3 1

x1
x2
x3

 =

11/18
11/18
11/18


Using the computer program, we can obtain that

x(0) = (0, 0, 0)T

x(80) = (0.333333, 0.333333, 0.333333)T
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Jacobi method
In Jacobi method our choice of Q is the diagonal matrix of A.

x(k) = (I −D−1A)x(k−1) +D−1b

In particular,

x
(k)
i = −

n∑
j=1
j ̸=i

aij
aii

x
(k−1)
j +

bi
aii

When the norm is ℓ∞, we get that

∥I −D−1A∥∞ = max
1≤i≤n

n∑
j=1
j ̸=i

∣∣∣∣aijaii

∣∣∣∣
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Jacobi method

Theorem 8
If A is diagonally dominant, then the sequence produced by Jacobi iteration
converges to the solution of Ax = b for any starting vector.

Example 9
Compute the first 100 iterates on the following problem using Jacobi algorithm
starting with x = (0, 0, 0)T 2 −1 0

−1 3 −1
0 −1 2

x1
x2
x3

 =

 1
8
−5


26



Jacobi method

x(k) = (I −D−1A)x(k−1) +D−1bx
(k)
1

x
(k)
2

x
(k)
3

 =

 0 1/2 0
1/303 1/3
0 1/2 0


x

(k−1)
1

x
(k−1)
2

x
(k−1)
3

+

 1/2
8/3
−5/2


x(0) = (0, 0, 0)T

x(21) = (2.00, 3.00,−1.00)T
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Gauss-Seidel and SOR
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Gauss-Seidel
In Gauss-Seidel method our choice of Q is a little different. We can write A as
follows:

A = D − L− U

where D is the diagonal matrix of A, L is the negative of the strictly lower
triangular part of A and U is the negative of the strictly upper triangular
matrix. Now, choose Q = D − L, that is the lower triangular part of A, then

Qx(k) = (Q−A)x(k−1) + b

can be written as

(D − L)x(k) = (D − L− (D − L− U))x(k−1) + b

=⇒ (D − L)x(k) = (U)x(k−1) + b
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Gauss-Seidel
In particular,

x
(k)
i = −

n∑
j=1
j<i

aij
aii

x
(k)
j −

n∑
j=1
j>i

aij
aii

x
(k−1)
j +

bi
aii

Notice that Gauss-Seidel and Jacobi method is almost similar. For Jacobi
method, the right-hand side values depend only on the previous iteration
whereas the Gauss-Seidel method uses the updated information for its
computation. However, the major drawback of Gauss-Seidel method is that it
can’t be parallelized. That is, in the Jacobi algorithm, the x

(k)
i components

can be computed simultaneously, whereas in the Gauss-Seidel algorithm,
they must be computed serially, since the computation of x(k)i depends on all
x
(k)
1 , x

(k)
2 , · · · , x(k)i−1. Therefore, Jacobi method is preferably used for parallel

processing.
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Gauss-Seidel

Theorem 10
If A is diagonally dominant, then the sequence produced by Gauss-Seidel iter-
ation converges to the solution of Ax = b for any starting vector.

Note that for both Jacobi and Gauss-Seidel method, diagonally dominant is a
sufficient condition, but not necessary. There are matrices that are not
diagonally dominant, but still these two methods converge.

A =

(
0.5 1
1 0.5

)
When A = D − L− U , the Jacobi method can also be written as

Dx(k) = (L+ U))x(k−1) + b
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SOR
In order to accelerate Gauss-Seidel method, we introduce a relaxation factor
ω and obtain a new method called successive overrelaxation (SOR) method.
Here we consider Q as follows:

Q =
1

ω
(D − ωL)

Then the algorithm is given by

1

ω
(D − ωL)x(k) =

(
1

ω
(D − ωL)−D + L+ U

)
x(k−1) + b

=⇒ (D − ωL)x(k) = ((D − ωL)− ω(D − L− U))x(k−1) + ωb

=⇒ (D − ωL)x(k) = ((1− ω)D + ωU)x(k−1) + ωb

32



SOR
In particular, we have

x
(k)
i = ω

− n∑
j=1
j<i

aij
aii

x
(k)
j −

n∑
j=1
j>i

aij
aii

x
(k−1)
j +

bi
aii

+ (1− ω)x
(k−1)
i

Here, the lower triangular part of A is chosen in such a way that each
diagonal element is replaced by aij/ω.
For symmetric matrix,

A = D − L− LT

you can apply two SOR methods in opposite directions and is called
symmetric successive overrelaxation (SSOR) method (Explore it).
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SOR

Theorem 11
If A is symmetric, positive definite matrix and 0 < ω < 2, then the SOR method
converges for any starting vector x(0).

Example 12
Compute the first 100 iterates on the following problem using Richardson al-
gorithm starting with x = (0, 0, 0)T and ω = 1.1
x = (0, 0, 0)T  2 −1 0

−1 3 −1
0 −1 2

x1
x2
x3

 =

 1
8
−5


x(0) = (0, 0, 0)T

x(7) = (2.00, 3.00,−1.00)T
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JOR
The other iterative scheme can be improve by the introduction of auxiliary
equation and an acceleration parameter ω was follows:

Qz(k) = (Q−A)x(k−1) + b

x(k) = ωz(k) + (1− ω)x(k−1)

or
x(k) = ω[(I −Q−1A)x(k−1) +Q−1b] + (1− ω)x(k−1)
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JOR

• When ω = 1, this reduces to basic iterative methods.
• When 1 < ω < 2, the rate of convergence may be improved, which is

called overrelaxation.
• When Q = D, we have the Jacobi overrelaxation (JOR) method

x(k) = ω[(I −D−1A)x(k−1) +D−1b] + (1− ω)x(k−1)

Theorem 13
If A is symmetric, positive definite matrix and 0 < ω < 2

ρ(D−1A)
, then the JOR

method converges for any starting vector x(0).
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Stationary Iterative Methods

• Iterative methods for Ax = b is called stationary iterative methods if it
can be written as

x(k) = Gx(k−1) + c

with constant R
• This iteration converges to the solution x if and only if ρ(G) < 1.
• A splitting is a decomposition A = M −K with nonsingular M
• Stationary iterative method from splitting

Ax = Mx−Kx = b =⇒ Mx = Kx+b =⇒ x = M−1Kx+M−1b = Gx+c

• Find a splitting A = M −K such that M−1Kx and M−1b are easy to
compute and ρ(M−1K) is small.
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Stationary Iterative Methods

• When M = I , ρ(M−1K) = ρ(I −A) = is not small
• When M = A, K = 0, ρ(M−1K) = 0, but expensive to compute M−1

• Split A = D − L− U

• Jacobi method M = D,K = L+ U

• Gauss-Seidel, M = D − L,K = U
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Theorems on
Convergence of
Iterative Methods
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Convergence
Let us find necessary and sufficient condition for the convergence of the
iterative method

x(k) = Gx(k−1) + c

For example, as per our splitting in Jacobi, Gauss-Seidel, Richardson and
SOR, we can write the splitting as

x(k) = Gx(k−1) + c, k = 1, 2, 3, · · · (4)
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Convergence

Theorem 14
The iteration (4) converges to (I −G)−1c if and only if ρ(G) < 1.

Proof for Sufficient Part: Suppose ρ(G) < 1.
Claim: The iteration (4) converges to (I −G)−1c
Then there exists a matrix norm ∥.∥ such that ∥G∥ < 1. Hence,

x(k) = Gkx(0) +
k−1∑
j=0

Gjc, k = 1, 2, 3, · · ·

The first term goes to zero as k → ∞ since

∥Gkx(0)∥ ≤ ∥G∥k∥x(0)∥,

Hence the claim follows. 41



Convergence
Proof for Necessary Part: Suppose the iteration (4) converges to (I −G)−1c.
Claim: ρ(G) < 1
Suppose ρ(G) ≥ 1. Let λ, u be an eigenpair of G with |λ| ≥ 1. Let x(0) = 0 and
c = u, then we obtain

x(k) =

k−1∑
j=0

Gju =

k−1∑
j=0

λju =

{
ku λ = 1
1−λk

1−λ u λ ̸= 1

Therefore, the iteration (4) does not converges when ρ(G) ≥ 1. Hence the
claim follows.
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Convergence

Corollary 1
The iteration

x(k) = (I −Q−1A)x(k−1) +Q−1b, k = 1, 2, 3, · · · (5)

converges to Ax = b for any initial guesses x(0) if and only if ρ(I −Q−1A) < 1.
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Convergence of Gauss-Seidel

Theorem 15
If A is diagonally dominant then the Gauss-Seidel method converges for any
initial guess x(0)

By above corollary, if we prove ρ(I −Q−1A) < 1, the theorem follows. Let λ be
an eigenvalue and x be the corresponding eigenvector of I −Q−1A with
∥x∥∞ = 1.

(I −Q−1A)x = λx =⇒ (Q−A)x = λQx

−
n∑

j=i+1

aijxj = λ

i∑
j=1

aijxj , 1 ≤ i ≤ n
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Convergence of Gauss-Seidel

λaiixi = −λ

i−1∑
j=1

aijxj −
n∑

j=i+1

aijxj , 1 ≤ i ≤ n

Now, pick the index i such that |xi| = 1, then

|λ||aii| =

∣∣∣∣∣∣−λ
i−1∑
j=1

aijxj −
n∑

j=i+1

aijxj

∣∣∣∣∣∣ ≤ |λ|
i−1∑
j=1

|aij |+
n∑

j=i+1

|aij |

|λ||aii| − |λ|
i−1∑
j=1

|aij | ≤
n∑

j=i+1

|aij |
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Convergence of Gauss-Seidel

|λ|

|aii| −
i−1∑
j=1

|aij |

 ≤
n∑

j=i+1

|aij | =⇒ |λ| ≤

n∑
j=i+1

|aij |

|aii| −
i−1∑
j=1

|aij |

Since

|aii| >
n∑

j=1

j ̸=i

|aij | =⇒
n∑

j=i+1

|aij | ≤ |aii| −
i−1∑
j=1

|aij | =⇒ |λ| < 1

Since this holds for all eigenvalues of I −Q−1A, we obtain ρ(I −Q−1A) < 1.
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Convergence of Gauss-Seidel

Theorem 16
If ∥I − Q−1A∥ < 1 for some matrix norm, then the sequence produced by (5)
converges to the solution of Ax = b for any initial vector x(0)
.Proof: We know that for any n× n matrix ρ(A) ≤ ∥A∥ for any natural norm.

∥I −Q−1A∥ < 1 =⇒ ρ(I −Q−1A) ≤ ∥I −Q−1A∥ < 1
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