MA633L-Numerical Analysis

Lecture 28 : Numerical Linear Algebra - Matrix Norms

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

March 17, 2025

Recap

Iterative Schemes

The underlying principles behind iterative methods to solve Ax = b are as follows:

- 1. Guess any $x^{(0)}$
- 2. Compute the residual $r^{(0)} = b Ax^{(0)}$
- 3. Compute the residual norm, that is $\|r^{(0)}\|$
- 4. Use an algorithm to compute $x^{(1)}$ involving A, b and $x^{(0)}$
- 5. Recompute the residual norm $\|r^{(1)}\| = \|b Ax^{(1)}\|$
- 6. For given $x^{(i)}$, iterate this process until you get the residual as zero or an equivalent condition

Norms

Definition 1 (Vector Norms)

A vector norm, usually denoted by $\|.\|$, is a function from a vector space V to the set of non-negative real numbers that obeys the following three postulates. $\|.\|: V \to \mathbb{R}_+$ such that

$$\|\mathbf{x}\| > 0 \quad \text{if } \mathbf{x} \neq 0, \mathbf{x} \in V$$
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\| \quad \text{if } \alpha \in \mathbb{R}, \mathbf{x} \in V$$
$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| \quad \text{if } \mathbf{x}, \mathbf{y} \in V$$

Matrix Norms

Definition 2 (Matrix Norm)

A matrix norm on the set of all $n \times n$ matrices, usually denoted by $\|.\|$, is a function from a $M_{n \times n}(\mathbb{R})$ to the set of non-negative real numbers that obeys the following three postulates. $\|.\|: M_{n \times n}(\mathbb{R}) \to \mathbb{R}_+$ such that

 $||A|| \ge 0$ (non-negativity)

 $\|A\| = 0$, if and only if A is a zero matrix (Mapping of the Identity)

 $\|\alpha A\| = |\alpha| \|A\|$ if $\alpha \in \mathbb{R}$ (Scalar multiplication)

 $||A + B|| \le ||A|| + ||B||$ (Triangle Inequality)

 $||AB|| \le ||A|| ||B||$ (Consistency)

where $A, B \in M_{n \times n}(\mathbb{R})$

Matrix Norm

MUMERICAL ANALYSY

If $A = (a_{ij})$ is an $n \times n$ matrix and $\|.\|$ is a vector norm in \mathbb{R}^n , then the matrix norm is

 $||A|| = \max_{||x||=1} ||Ax||$ (Vector Induced Norm) $||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}| \quad (\text{Row Sum Norm})$ $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}| \quad \text{(Column Sum Norm)}$ $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2} \quad \text{(Frobenius Norm)}$ $||A||_2 = \sqrt{\rho(A^T A)} = \sigma_{max}(A)$

Matrix Norm

- AUMERICAL ANALYSI
- The $||A||_1$ norm is also called as the **column sum norm** as it computes the maximum absolute column sum of the matrix.
- The ||A||∞ norm is also called as the row sum norm as it computes the maximum absolute row sum of the matrix.
- An induced matrix norm is also called as operator norm
- The $||A||_2$ norm is also called as the **spectral norm**
- For Symmetric matrix $\|A\|_1 = \|A\|_\infty$ and $\|A\|_2 = \rho(A)$
- $||x||_2$ norm is usually called as Euclidean norm, but $||A||_2$ is not.
- If Q is orthogonal, then $||Q||_2 = 1$ and hence an orthogonal matrix is also called an isometric matrix.

Eigenvalues

Eigenvalues and Eigenvector

$$Ax = \lambda x$$

Singular Values

$$\sigma_i(A) = \sqrt{\lambda_i(A^T A)}$$

The spectral radius

$$\rho(A) = \max_{1 \le i \le n} |\lambda_i|$$
$$\|A\|_2 = \sqrt{\rho(A^T A)} = \sigma_{max}(A)$$

This is the minimum norm and provides the tightest measure of size.

Condition Number

We call a matrix A as convergent if

$$\lim_{k \to \infty} (A^k)_{ij} = 0$$

for all i, j

$$\kappa(A) = \|A\| \|A^{-1}\|$$

If A is singular, it is customary to define $\kappa(A) = \infty$.

- 1. Definition of condition number involves matrix inverse, which is not easy to compute and requires more work than solving the system Ax = b.
- 2. In practice, condition number is merely estimated, using another relative expensive byproduct of the solution procedure.
- **3**. If *z* is a solution of Ax = y, then

$$||z|| = ||A^{-1}y|| \le ||A^{-1}|| ||y|| \implies \frac{||z||}{||y||} \le ||A^{-1}||$$

4. If we can find a vector y such that $\frac{\|z\|}{\|y\|}$ is as large as possible, then we can find a reasonable estimate for $\|A^{-1}\|$.

- AUMERICAL MALTER
- 1. Usually, the ℓ_2 norm or spectral norm is used for the condition number as it provides the tightest measure of size.
- 2. Also, this norm does not require any matrix inverse, instead computation of eigenvalues. With the help of Gersghorin's theorem and Spectral radius, one can find this.
- 3. The condition number of a matrix in ℓ_2 norm can be defined as

$$\kappa(A) = \frac{\sigma_{max}(A)}{\sigma_{min}(A)}$$

where σ_{max} and σ_{min} denote the maximal and minimal singular values of A respectively.

1. If A is normal $(A^*A = AA^*)$, then

$$\kappa(A) = \frac{|\lambda_{max}(A)|}{|\lambda_{min}(A)|}$$

2. If *A* is unitary $A^*A = AA^* = I$, then

$$\kappa(A) = 1$$

3. If $\|.\|$ is the ℓ_∞ norm and A is a nonsingular lower or upper triangular matrix, then

$$\kappa(A) \ge \frac{\max_{1 \le i \le n} |a_{ii}|}{\min_{1 \le i \le n} |a_{ii}|}$$

Properties

Verify whether the following Statements are True or Not.

- 1. For any matrix A, $\kappa(A) \geq 1$
- 2. $\kappa(I) = 1$ 3. $\kappa(\alpha A) = \kappa(A)$ 4. $\kappa(D) = \frac{\max_i |d_i|}{\min_i |d_i|}$ 5. $\kappa(AB) \le \kappa(A)\kappa(B)$ 6. If $A = A^T$, then $\kappa(A^2) = \kappa(A)^2$

Theorems

If A is and $n \times n$ matrix such that ||A|| < 1, then I - A is invertible, and

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k$$

From this theorem, we can observe that

$$\|(I-A)^{-1}\| \le \sum_{k=0}^{\infty} \|A^k\| \le \sum_{k=0}^{\infty} \|A\|^k = \frac{1}{1-\|A\|}$$

Theorems

Theorem 4

If A and B are $n\times n$ matrices such that $\|I-AB\|<1$, then A and B are invertible. Furthermore,

$$A^{-1} = B \sum_{k=0}^{\infty} (I - AB)^k$$

and

$$B^{-1} = \sum_{k=0}^{\infty} (I - AB)^k A$$

Theorems

Proof: By previous theorem, AB = I - (I - AB) is invertible and

$$(AB)^{-1} = \sum_{k=0}^{\infty} (I - AB)^k$$

$$A^{-1} = B(AB)^{-1} = B\sum_{k=0}^{\infty} (I - AB)^k$$

$$B^{-1} = (AB)^{-1}A = \sum_{k=0}^{\infty} (I - AB)^k A$$

The general algorithm for solving a system Ax = b is as follows:

- 1. Choose a nonsingular matrix Q
- 2. Choose an arbitrary starting vector $x^{(0)}$
- 3. Generate vectors $x^{(1)}, x^{(2)}, \cdots$ recursively from the equation

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b, \quad k = 1, 2, 3, \cdots$$
(1)

Suppose x is the solution of the system Ax=b and $x^{(k)}$ converges to x, as $k\to\infty,$ then

$$Qx = (Q - A)x + b$$

Note, that the system (1) should be easy to solve for $x^{(k)}$ when the right hand side is known. Also, Q should be chosen to ensure that $x^{(k)}$ converges to x, no matter, what initial vector is used and the convergence should be rapid.

Note that the true solution x satisfies the equation

$$x = (I - Q^{-1}A)x + Q^{-1}b$$

Therefore, x is a fixed point of the mapping

$$f(x) = (I - Q^{-1}A)x + Q^{-1}b$$

From (1)

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b, \quad k = 1, 2, 3, \cdots$$
$$\implies x^{(k)} = (I - Q^{-1}A)x^{(k-1)} + Q^{-1}b, \quad k = 1, 2, 3, \cdots$$

Now,

$$x^{(k)} - x = (I - Q^{-1}A)(x^{(k-1)} - x), \quad k = 1, 2, 3, \cdots$$
 (3)

$$\implies ||x^{(k)} - x|| = ||(I - Q^{-1}A)|| ||(x^{(k-1)}) - x|$$

$$\implies ||x^{(k)} - x|| = ||(I - Q^{-1}A)||^k ||(x^{(0)}) - x||$$

(2)

If $\|I - Q^{-1}A\| < 1$, we can conclude that

$$\lim_{k \to \infty} \|x^{(k)} - x\| = 0$$

By above theorem, it is guaranteed that if $||I - Q^{-1}A|| < 1$, then both $Q^{-1}A$ and A are invertible.

Theorem 5

If $||I - Q^{-1}A|| < 1$ for some matrix norm, then the sequence produced by (1) converges to the solution of Ax = b for any initial vector $x^{(0)}$.

Theorem 6

If all eigenvalues of $I - Q^{-1}A$ lies in the open unit disc |z| < 1, then the sequence produced by (1) converges to the solution of Ax = b for any initial vector $x^{(0)}$.

The above theorem implies that the spectral radius of $I - Q^{-1}A$ must be less than 1, that is,

$$o(I - Q^{-1}A) < 1$$

Let $\boldsymbol{r}^{(k)}$ denote the residual vector obtained from $\boldsymbol{x}^{(k)}$ after k iterations, then we get

$$r^{(k)} = b - Ax^{(k)}.$$

By above theorem, if $||I - Q^{-1}A|| < 1$, then $||r^{(k)}|| \to 0$.

Richardson/Jacobi Iteration

Richardson Iteration

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b, \quad k = 1, 2, 3, \cdots$$

The Richardson iteration is obtained when Q = I. So equation (1) becomes

$$x^{(k)} = (I - A)x^{(k-1)} + b = x^{(k-1)} + r^{(k-1)}$$

Richardson Iteration

Example 7

Compute the first 100 iterates on the following problem using Richardson algorithm starting with $x=(0,0,0)^T$

$$\begin{pmatrix} 1 & 1/2 & 1/3 \\ 1/3 & 1 & 1/2 \\ 1/2 & 1/3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 11/18 \\ 11/18 \\ 11/18 \end{pmatrix}$$

Using the computer program, we can obtain that

$$x^{(0)} = (0, 0, 0)^T$$

 $x^{(80)} = (0.333333, 0.333333, 0.333333)^T$

Jacobi method

In Jacobi method our choice of Q is the diagonal matrix of A.

$$x^{(k)} = (I - D^{-1}A)x^{(k-1)} + D^{-1}b$$

In particular,

$$x_{i}^{(k)} = -\sum_{\substack{j=1\\j\neq i}}^{n} \frac{a_{ij}}{a_{ii}} x_{j}^{(k-1)} + \frac{b_{i}}{a_{ii}}$$

When the norm is ℓ_∞ , we get that

$$I - D^{-1}A \|_{\infty} = \max_{\substack{1 \le i \le n \\ j \ne i}} \sum_{\substack{j=1 \\ j \ne i}}^{n} \left| \frac{a_{ij}}{a_{ii}} \right|$$

Jacobi method

Theorem 8

If A is diagonally dominant, then the sequence produced by Jacobi iteration converges to the solution of Ax = b for any starting vector.

Example 9

Compute the first 100 iterates on the following problem using Jacobi algorithm starting with $x=(0,0,0)^T$

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 8 \\ -5 \end{pmatrix}$$

Jacobi method

Gauss-Seidel and SOR

Gauss-Seidel

In Gauss-Seidel method our choice of Q is a little different. We can write A as follows:

$$A = D - L - U$$

where D is the diagonal matrix of A, L is the negative of the strictly lower triangular part of A and U is the negative of the strictly upper triangular matrix. Now, choose Q = D - L, that is the lower triangular part of A, then

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b$$

can be written as

$$(D-L)x^{(k)} = (D-L-(D-L-U))x^{(k-1)} + b$$

 $\implies (D-L)x^{(k)} = (U)x^{(k-1)} + b$

Gauss-Seidel

In particular,

$$x_i^{(k)} = -\sum_{\substack{j=1\\j < i}}^n \frac{a_{ij}}{a_{ii}} x_j^{(k)} - \sum_{\substack{j=1\\j > i}}^n \frac{a_{ij}}{a_{ii}} x_j^{(k-1)} + \frac{b_i}{a_{ii}}$$

Notice that Gauss-Seidel and Jacobi method is almost similar. For Jacobi method, the right-hand side values depend only on the previous iteration whereas the Gauss-Seidel method uses the updated information for its computation. However, the major drawback of Gauss-Seidel method is that it can't be parallelized. That is, in the Jacobi algorithm, the $x_i^{(k)}$ components can be computed simultaneously, whereas in the Gauss-Seidel algorithm, they must be computed serially, since the computation of $x_i^{(k)}$ depends on all $x_1^{(k)}, x_2^{(k)}, \cdots, x_{i-1}^{(k)}$. Therefore, Jacobi method is preferably used for parallel processing.

Gauss-Seidel

Theorem 10

If A is diagonally dominant, then the sequence produced by Gauss-Seidel iteration converges to the solution of Ax = b for any starting vector.

Note that for both Jacobi and Gauss-Seidel method, diagonally dominant is a sufficient condition, but not necessary. There are matrices that are not diagonally dominant, but still these two methods converge.

$$A = \begin{pmatrix} 0.5 & 1\\ 1 & 0.5 \end{pmatrix}$$

When A = D - L - U, the Jacobi method can also be written as

$$Dx^{(k)} = (L+U))x^{(k-1)} + b$$

SOR

In order to accelerate Gauss-Seidel method, we introduce a relaxation factor ω and obtain a new method called successive overrelaxation (SOR) method. Here we consider Q as follows:

$$Q = \frac{1}{\omega}(D - \omega L)$$

Then the algorithm is given by

$$\frac{1}{\omega}(D-\omega L)x^{(k)} = \left(\frac{1}{\omega}(D-\omega L) - D + L + U\right)x^{(k-1)} + b$$
$$\implies (D-\omega L)x^{(k)} = ((D-\omega L) - \omega(D-L-U))x^{(k-1)} + \omega b$$
$$\implies (D-\omega L)x^{(k)} = ((1-\omega)D + \omega U)x^{(k-1)} + \omega b$$

SOR

In particular, we have

$$x_i^{(k)} = \omega \left[-\sum_{\substack{j=1\\j< i}}^n \frac{a_{ij}}{a_{ii}} x_j^{(k)} - \sum_{\substack{j=1\\j> i}}^n \frac{a_{ij}}{a_{ii}} x_j^{(k-1)} + \frac{b_i}{a_{ii}} \right] + (1-\omega) x_i^{(k-1)}$$

Here, the lower triangular part of A is chosen in such a way that each diagonal element is replaced by a_{ij}/ω .

For symmetric matrix,

$$A = D - L - L^T$$

you can apply two SOR methods in opposite directions and is called symmetric successive overrelaxation (SSOR) method (Explore it).

SOR

Theorem 11

If A is symmetric, positive definite matrix and $0 < \omega < 2$, then the SOR method converges for any starting vector $x^{(0)}$.

Example 12

Compute the first 100 iterates on the following problem using Richardson algorithm starting with $x = (0, 0, 0)^T$ and $\omega = 1.1$ $x = (0, 0, 0)^T$

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 8 \\ -5 \end{pmatrix}$$
$$x^{(0)} = (0, 0, 0)^T$$
$$x^{(7)} = (2.00, 3.00, -1.00)^T$$

JOR

The other iterative scheme can be improve by the introduction of auxiliary equation and an acceleration parameter ω was follows:

$$Qz^{(k)} = (Q - A)x^{(k-1)} + b$$
$$x^{(k)} = \omega z^{(k)} + (1 - \omega)x^{(k-1)}$$

or

$$x^{(k)} = \omega[(I - Q^{-1}A)x^{(k-1)} + Q^{-1}b] + (1 - \omega)x^{(k-1)}$$

JOR

- When $\omega = 1$, this reduces to basic iterative methods.
- When $1 < \omega < 2$, the rate of convergence may be improved, which is called overrelaxation.
- When Q = D, we have the Jacobi overrelaxation (JOR) method

$$x^{(k)} = \omega[(I - D^{-1}A)x^{(k-1)} + D^{-1}b] + (1 - \omega)x^{(k-1)}$$

Theorem 13

If A is symmetric, positive definite matrix and $0 < \omega < \frac{2}{\rho(D^{-1}A)}$, then the JOR method converges for any starting vector $x^{(0)}$.

Stationary Iterative Methods

• Iterative methods for Ax = b is called stationary iterative methods if it can be written as

$$x^{(k)} = Gx^{(k-1)} + c$$

with constant R

- This iteration converges to the solution x if and only if $\rho(G) < 1$.
- A splitting is a decomposition A = M K with nonsingular M
- Stationary iterative method from splitting

 $Ax = Mx - Kx = b \implies Mx = Kx + b \implies x = M^{-1}Kx + M^{-1}b = Gx + c$

• Find a splitting A = M - K such that $M^{-1}Kx$ and $M^{-1}b$ are easy to compute and $\rho(M^{-1}K)$ is small.

Stationary Iterative Methods

- When M = I, $\rho(M^{-1}K) = \rho(I A) =$ is not small
- When M = A, K = 0, $\rho(M^{-1}K) = 0$, but expensive to compute M^{-1}
- Split A = D L U
- Jacobi method M = D, K = L + U
- Gauss-Seidel, M = D L, K = U

Theorems on Convergence of Iterative Methods

Let us find necessary and sufficient condition for the convergence of the iterative method

$$x^{(k)} = Gx^{(k-1)} + c$$

For example, as per our splitting in Jacobi, Gauss-Seidel, Richardson and SOR, we can write the splitting as

$$x^{(k)} = Gx^{(k-1)} + c, \quad k = 1, 2, 3, \cdots$$

(4)

Theorem 14

The iteration (4) converges to $(I - G)^{-1}c$ if and only if $\rho(G) < 1$. **Proof for Sufficient Part:** Suppose $\rho(G) < 1$. Claim: The iteration (4) converges to $(I - G)^{-1}c$

Then there exists a matrix norm $\|.\|$ such that $\|G\| < 1$. Hence,

$$x^{(k)} = G^k x^{(0)} + \sum_{j=0}^{k-1} G^j c, \quad k = 1, 2, 3, \cdots$$

The first term goes to zero as $k \to \infty$ since

$$\|G^k x^{(0)}\| \le \|G\|^k \|x^{(0)}\|,$$

Hence the claim follows.

MUMERICAL MALTER

Proof for Necessary Part: Suppose the iteration (4) converges to $(I - G)^{-1}c$. <u>Claim:</u> $\rho(G) < 1$ Suppose $\rho(G) \ge 1$. Let λ, u be an eigenpair of G with $|\lambda| \ge 1$. Let $x^{(0)} = 0$ and c = u, then we obtain

$$x^{(k)} = \sum_{j=0}^{k-1} G^j u = \sum_{j=0}^{k-1} \lambda^j u = \begin{cases} ku & \lambda = 1\\ \frac{1-\lambda^k}{1-\lambda}u & \lambda \neq 1 \end{cases}$$

Therefore, the iteration (4) does not converges when $\rho(G) \ge 1$. Hence the claim follows.

Corollary 1 The iteration

$$x^{(k)} = (I - Q^{-1}A)x^{(k-1)} + Q^{-1}b, \quad k = 1, 2, 3, \cdots$$
 (5)

converges to Ax = b for any initial guesses $x^{(0)}$ if and only if $\rho(I - Q^{-1}A) < 1$.

Theorem 15

If A is diagonally dominant then the Gauss-Seidel method converges for any initial guess $\boldsymbol{x}^{(0)}$

By above corollary, if we prove $\rho(I - Q^{-1}A) < 1$, the theorem follows. Let λ be an eigenvalue and x be the corresponding eigenvector of $I - Q^{-1}A$ with $||x||_{\infty} = 1$.

$$(I - Q^{-1}A)x = \lambda x \implies (Q - A)x = \lambda Qx$$
$$-\sum_{j=i+1}^{n} a_{ij}x_j = \lambda \sum_{j=1}^{i} a_{ij}x_j, 1 \le i \le n$$

$$\lambda a_{ii} x_i = -\lambda \sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^n a_{ij} x_j, 1 \le i \le n$$

Now, pick the index i such that $|x_i| = 1$, then

$$\begin{aligned} |\lambda||a_{ii}| &= \left| -\lambda \sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^n a_{ij} x_j \right| \le |\lambda| \sum_{j=1}^{i-1} |a_{ij}| + \sum_{j=i+1}^n |a_{ij}| \\ |\lambda||a_{ii}| - |\lambda| \sum_{j=1}^{i-1} |a_{ij}| \le \sum_{j=i+1}^n |a_{ij}| \end{aligned}$$

$$|\lambda| \left(|a_{ii}| - \sum_{j=1}^{i-1} |a_{ij}| \right) \le \sum_{j=i+1}^{n} |a_{ij}| \implies |\lambda| \le \frac{\sum_{j=i+1}^{i-1} |a_{ij}|}{|a_{ii}| - \sum_{j=1}^{i-1} |a_{ij}|}$$

n

Since

$$|a_{ii}| > \sum_{\substack{j=1\\j \neq i}}^{n} |a_{ij}| \implies \sum_{j=i+1}^{n} |a_{ij}| \le |a_{ii}| - \sum_{j=1}^{i-1} |a_{ij}| \implies |\lambda| < 1$$

Since this holds for all eigenvalues of $I - Q^{-1}A$, we obtain $\rho(I - Q^{-1}A) < 1$.

Theorem 16

If $||I - Q^{-1}A|| < 1$ for some matrix norm, then the sequence produced by (5) converges to the solution of Ax = b for any initial vector $x^{(0)}$

Proof: We know that for any $n \times n$ matrix $\rho(A) \leq ||A||$ for any natural norm.

$$\|I - Q^{-1}A\| < 1 \implies \rho(I - Q^{-1}A) \le \|I - Q^{-1}A\| < 1$$

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

MA633L-Numerical Analysis

Lecture 28 : Numerical Linear Algebra - Matrix Norms

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

March 17, 2025

